summaryrefslogtreecommitdiff
path: root/util/compress/libdeflate/lib/crc32.c
blob: 6adacc5dc2f6663205f46132eea50711d9a48045 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/*
 * crc32.c - CRC-32 checksum algorithm for the gzip format
 *
 * Copyright 2016 Eric Biggers
 *
 * Permission is hereby granted, free of charge, to any person
 * obtaining a copy of this software and associated documentation
 * files (the "Software"), to deal in the Software without
 * restriction, including without limitation the rights to use,
 * copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following
 * conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

/*
 * High-level description of CRC
 * =============================
 *
 * Consider a bit sequence 'bits[1...len]'.  Interpret 'bits' as the "message"
 * polynomial M(x) with coefficients in GF(2) (the field of integers modulo 2),
 * where the coefficient of 'x^i' is 'bits[len - i]'.  Then, compute:
 *
 *			R(x) = M(x)*x^n mod G(x)
 *
 * where G(x) is a selected "generator" polynomial of degree 'n'.  The remainder
 * R(x) is a polynomial of max degree 'n - 1'.  The CRC of 'bits' is R(x)
 * interpreted as a bitstring of length 'n'.
 *
 * CRC used in gzip
 * ================
 *
 * In the gzip format (RFC 1952):
 *
 *	- The bitstring to checksum is formed from the bytes of the uncompressed
 *	  data by concatenating the bits from the bytes in order, proceeding
 *	  from the low-order bit to the high-order bit within each byte.
 *
 *	- The generator polynomial G(x) is: x^32 + x^26 + x^23 + x^22 + x^16 +
 *	  x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1.
 *	  Consequently, the CRC length is 32 bits ("CRC-32").
 *
 *	- The highest order 32 coefficients of M(x)*x^n are inverted.
 *
 *	- All 32 coefficients of R(x) are inverted.
 *
 * The two inversions cause added leading and trailing zero bits to affect the
 * resulting CRC, whereas with a regular CRC such bits would have no effect on
 * the CRC.
 *
 * Computation and optimizations
 * =============================
 *
 * We can compute R(x) through "long division", maintaining only 32 bits of
 * state at any given time.  Multiplication by 'x' can be implemented as
 * right-shifting by 1 (assuming the polynomial<=>bitstring mapping where the
 * highest order bit represents the coefficient of x^0), and both addition and
 * subtraction can be implemented as bitwise exclusive OR (since we are working
 * in GF(2)).  Here is an unoptimized implementation:
 *
 *	static u32 crc32_gzip(const u8 *buffer, size_t size)
 *	{
 *		u32 remainder = 0;
 *		const u32 divisor = 0xEDB88320;
 *
 *		for (size_t i = 0; i < size * 8 + 32; i++) {
 *			int bit;
 *			u32 multiple;
 *
 *			if (i < size * 8)
 *				bit = (buffer[i / 8] >> (i % 8)) & 1;
 *			else
 *				bit = 0; // one of the 32 appended 0 bits
 *
 *			if (i < 32) // the first 32 bits are inverted
 *				bit ^= 1;
 *
 *			if (remainder & 1)
 *				multiple = divisor;
 *			else
 *				multiple = 0;
 *
 *			remainder >>= 1;
 *			remainder |= (u32)bit << 31;
 *			remainder ^= multiple;
 *		}
 *
 *		return ~remainder;
 *	}
 *
 * In this implementation, the 32-bit integer 'remainder' maintains the
 * remainder of the currently processed portion of the message (with 32 zero
 * bits appended) when divided by the generator polynomial.  'remainder' is the
 * representation of R(x), and 'divisor' is the representation of G(x) excluding
 * the x^32 coefficient.  For each bit to process, we multiply R(x) by 'x^1',
 * then add 'x^0' if the new bit is a 1.  If this causes R(x) to gain a nonzero
 * x^32 term, then we subtract G(x) from R(x).
 *
 * We can speed this up by taking advantage of the fact that XOR is commutative
 * and associative, so the order in which we combine the inputs into 'remainder'
 * is unimportant.  And since each message bit we add doesn't affect the choice
 * of 'multiple' until 32 bits later, we need not actually add each message bit
 * until that point:
 *
 *	static u32 crc32_gzip(const u8 *buffer, size_t size)
 *	{
 *		u32 remainder = ~0;
 *		const u32 divisor = 0xEDB88320;
 *
 *		for (size_t i = 0; i < size * 8; i++) {
 *			int bit;
 *			u32 multiple;
 *
 *			bit = (buffer[i / 8] >> (i % 8)) & 1;
 *			remainder ^= bit;
 *			if (remainder & 1)
 *				multiple = divisor;
 *			else
 *				multiple = 0;
 *			remainder >>= 1;
 *			remainder ^= multiple;
 *		}
 *
 *		return ~remainder;
 *	}
 *
 * With the above implementation we get the effect of 32 appended 0 bits for
 * free; they never affect the choice of a divisor, nor would they change the
 * value of 'remainder' if they were to be actually XOR'ed in.  And by starting
 * with a remainder of all 1 bits, we get the effect of complementing the first
 * 32 message bits.
 *
 * The next optimization is to process the input in multi-bit units.  Suppose
 * that we insert the next 'n' message bits into the remainder.  Then we get an
 * intermediate remainder of length '32 + n' bits, and the CRC of the extra 'n'
 * bits is the amount by which the low 32 bits of the remainder will change as a
 * result of cancelling out those 'n' bits.  Taking n=8 (one byte) and
 * precomputing a table containing the CRC of each possible byte, we get
 * crc32_slice1() defined below.
 *
 * As a further optimization, we could increase the multi-bit unit size to 16.
 * However, that is inefficient because the table size explodes from 256 entries
 * (1024 bytes) to 65536 entries (262144 bytes), which wastes memory and won't
 * fit in L1 cache on typical processors.
 *
 * However, we can actually process 4 bytes at a time using 4 different tables
 * with 256 entries each.  Logically, we form a 64-bit intermediate remainder
 * and cancel out the high 32 bits in 8-bit chunks.  Bits 32-39 are cancelled
 * out by the CRC of those bits, whereas bits 40-47 are be cancelled out by the
 * CRC of those bits with 8 zero bits appended, and so on.  This method is
 * implemented in crc32_slice4(), defined below.
 *
 * In crc32_slice8(), this method is extended to 8 bytes at a time.  The
 * intermediate remainder (which we never actually store explicitly) is 96 bits.
 *
 * On CPUs that support fast carryless multiplication, CRCs can be computed even
 * more quickly via "folding".  See e.g. the x86 PCLMUL implementation.
 */

#include "lib_common.h"
#include "libdeflate.h"

typedef u32 (*crc32_func_t)(u32, const u8 *, size_t);

/* Include architecture-specific implementations if available */
#undef CRC32_SLICE1
#undef CRC32_SLICE4
#undef CRC32_SLICE8
#undef DEFAULT_IMPL
#undef DISPATCH
#if defined(__arm__) || defined(__aarch64__)
#  include "arm/crc32_impl.h"
#elif defined(__i386__) || defined(__x86_64__)
#  include "x86/crc32_impl.h"
#endif

/*
 * Define a generic implementation (crc32_slice8()) if needed.  crc32_slice1()
 * may also be needed as a fallback for architecture-specific implementations.
 */

#ifndef DEFAULT_IMPL
#  define CRC32_SLICE8	1
#  define DEFAULT_IMPL	crc32_slice8
#endif

#if defined(CRC32_SLICE1) || defined(CRC32_SLICE4) || defined(CRC32_SLICE8)
#include "crc32_table.h"
static forceinline u32
crc32_update_byte(u32 remainder, u8 next_byte)
{
	return (remainder >> 8) ^ crc32_table[(u8)remainder ^ next_byte];
}
#endif

#ifdef CRC32_SLICE1
static u32
crc32_slice1(u32 remainder, const u8 *buffer, size_t size)
{
	size_t i;

	STATIC_ASSERT(ARRAY_LEN(crc32_table) >= 0x100);

	for (i = 0; i < size; i++)
		remainder = crc32_update_byte(remainder, buffer[i]);
	return remainder;
}
#endif /* CRC32_SLICE1 */

#ifdef CRC32_SLICE4
static u32
crc32_slice4(u32 remainder, const u8 *buffer, size_t size)
{
	const u8 *p = buffer;
	const u8 *end = buffer + size;
	const u8 *end32;

	STATIC_ASSERT(ARRAY_LEN(crc32_table) >= 0x400);

	for (; ((uintptr_t)p & 3) && p != end; p++)
		remainder = crc32_update_byte(remainder, *p);

	end32 = p + ((end - p) & ~3);
	for (; p != end32; p += 4) {
		u32 v = le32_bswap(*(const u32 *)p);
		remainder =
		    crc32_table[0x300 + (u8)((remainder ^ v) >>  0)] ^
		    crc32_table[0x200 + (u8)((remainder ^ v) >>  8)] ^
		    crc32_table[0x100 + (u8)((remainder ^ v) >> 16)] ^
		    crc32_table[0x000 + (u8)((remainder ^ v) >> 24)];
	}

	for (; p != end; p++)
		remainder = crc32_update_byte(remainder, *p);

	return remainder;
}
#endif /* CRC32_SLICE4 */

#ifdef CRC32_SLICE8
static u32
crc32_slice8(u32 remainder, const u8 *buffer, size_t size)
{
	const u8 *p = buffer;
	const u8 *end = buffer + size;
	const u8 *end64;

	STATIC_ASSERT(ARRAY_LEN(crc32_table) >= 0x800);

	for (; ((uintptr_t)p & 7) && p != end; p++)
		remainder = crc32_update_byte(remainder, *p);

	end64 = p + ((end - p) & ~7);
	for (; p != end64; p += 8) {
		u32 v1 = le32_bswap(*(const u32 *)(p + 0));
		u32 v2 = le32_bswap(*(const u32 *)(p + 4));
		remainder =
		    crc32_table[0x700 + (u8)((remainder ^ v1) >>  0)] ^
		    crc32_table[0x600 + (u8)((remainder ^ v1) >>  8)] ^
		    crc32_table[0x500 + (u8)((remainder ^ v1) >> 16)] ^
		    crc32_table[0x400 + (u8)((remainder ^ v1) >> 24)] ^
		    crc32_table[0x300 + (u8)(v2 >>  0)] ^
		    crc32_table[0x200 + (u8)(v2 >>  8)] ^
		    crc32_table[0x100 + (u8)(v2 >> 16)] ^
		    crc32_table[0x000 + (u8)(v2 >> 24)];
	}

	for (; p != end; p++)
		remainder = crc32_update_byte(remainder, *p);

	return remainder;
}
#endif /* CRC32_SLICE8 */

#ifdef DISPATCH
static u32 dispatch(u32, const u8 *, size_t);

static volatile crc32_func_t crc32_impl = dispatch;

/* Choose the fastest implementation at runtime */
static u32 dispatch(u32 remainder, const u8 *buffer, size_t size)
{
	crc32_func_t f = arch_select_crc32_func();

	if (f == NULL)
		f = DEFAULT_IMPL;

	crc32_impl = f;
	return crc32_impl(remainder, buffer, size);
}
#else
#  define crc32_impl DEFAULT_IMPL /* only one implementation, use it */
#endif

LIBDEFLATEEXPORT u32 LIBDEFLATEAPI
libdeflate_crc32(u32 remainder, const void *buffer, size_t size)
{
	if (buffer == NULL) /* return initial value */
		return 0;
	return ~crc32_impl(~remainder, buffer, size);
}