summaryrefslogtreecommitdiff
path: root/crypto/secp256k1/libsecp256k1/src/field_5x52_impl.h
blob: dd88f38c77bbc5f0b86772b8d680c3f769e05a11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
/**********************************************************************
 * Copyright (c) 2013, 2014 Pieter Wuille                             *
 * Distributed under the MIT software license, see the accompanying   *
 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
 **********************************************************************/

#ifndef _SECP256K1_FIELD_REPR_IMPL_H_
#define _SECP256K1_FIELD_REPR_IMPL_H_

#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif

#include "util.h"
#include "num.h"
#include "field.h"

#if defined(USE_ASM_X86_64)
#include "field_5x52_asm_impl.h"
#else
#include "field_5x52_int128_impl.h"
#endif

/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
 *  represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
 *  each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
 *  is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
 *  accept any input with magnitude at most M, and have different rules for propagating magnitude to their
 *  output.
 */

#ifdef VERIFY
static void secp256k1_fe_verify(const secp256k1_fe *a) {
    const uint64_t *d = a->n;
    int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
   /* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
    r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m);
    r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m);
    r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m);
    r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m);
    r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m);
    r &= (a->magnitude >= 0);
    r &= (a->magnitude <= 2048);
    if (a->normalized) {
        r &= (a->magnitude <= 1);
        if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
            r &= (d[0] < 0xFFFFEFFFFFC2FULL);
        }
    }
    VERIFY_CHECK(r == 1);
}
#endif

static void secp256k1_fe_normalize(secp256k1_fe *r) {
    uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];

    /* Reduce t4 at the start so there will be at most a single carry from the first pass */
    uint64_t m;
    uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;

    /* The first pass ensures the magnitude is 1, ... */
    t0 += x * 0x1000003D1ULL;
    t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
    t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
    t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
    t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;

    /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
    VERIFY_CHECK(t4 >> 49 == 0);

    /* At most a single final reduction is needed; check if the value is >= the field characteristic */
    x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
        & (t0 >= 0xFFFFEFFFFFC2FULL));

    /* Apply the final reduction (for constant-time behaviour, we do it always) */
    t0 += x * 0x1000003D1ULL;
    t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
    t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
    t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
    t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;

    /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
    VERIFY_CHECK(t4 >> 48 == x);

    /* Mask off the possible multiple of 2^256 from the final reduction */
    t4 &= 0x0FFFFFFFFFFFFULL;

    r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;

#ifdef VERIFY
    r->magnitude = 1;
    r->normalized = 1;
    secp256k1_fe_verify(r);
#endif
}

static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
    uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];

    /* Reduce t4 at the start so there will be at most a single carry from the first pass */
    uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;

    /* The first pass ensures the magnitude is 1, ... */
    t0 += x * 0x1000003D1ULL;
    t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
    t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
    t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
    t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;

    /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
    VERIFY_CHECK(t4 >> 49 == 0);

    r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;

#ifdef VERIFY
    r->magnitude = 1;
    secp256k1_fe_verify(r);
#endif
}

static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
    uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];

    /* Reduce t4 at the start so there will be at most a single carry from the first pass */
    uint64_t m;
    uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;

    /* The first pass ensures the magnitude is 1, ... */
    t0 += x * 0x1000003D1ULL;
    t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
    t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
    t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
    t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;

    /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
    VERIFY_CHECK(t4 >> 49 == 0);

    /* At most a single final reduction is needed; check if the value is >= the field characteristic */
    x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
        & (t0 >= 0xFFFFEFFFFFC2FULL));

    if (x) {
        t0 += 0x1000003D1ULL;
        t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
        t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
        t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
        t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;

        /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
        VERIFY_CHECK(t4 >> 48 == x);

        /* Mask off the possible multiple of 2^256 from the final reduction */
        t4 &= 0x0FFFFFFFFFFFFULL;
    }

    r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;

#ifdef VERIFY
    r->magnitude = 1;
    r->normalized = 1;
    secp256k1_fe_verify(r);
#endif
}

static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) {
    uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];

    /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
    uint64_t z0, z1;

    /* Reduce t4 at the start so there will be at most a single carry from the first pass */
    uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;

    /* The first pass ensures the magnitude is 1, ... */
    t0 += x * 0x1000003D1ULL;
    t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0  = t0; z1  = t0 ^ 0x1000003D0ULL;
    t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
    t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
    t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
                                                z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;

    /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
    VERIFY_CHECK(t4 >> 49 == 0);

    return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
}

static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) {
    uint64_t t0, t1, t2, t3, t4;
    uint64_t z0, z1;
    uint64_t x;

    t0 = r->n[0];
    t4 = r->n[4];

    /* Reduce t4 at the start so there will be at most a single carry from the first pass */
    x = t4 >> 48;

    /* The first pass ensures the magnitude is 1, ... */
    t0 += x * 0x1000003D1ULL;

    /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
    z0 = t0 & 0xFFFFFFFFFFFFFULL;
    z1 = z0 ^ 0x1000003D0ULL;

    /* Fast return path should catch the majority of cases */
    if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) {
        return 0;
    }

    t1 = r->n[1];
    t2 = r->n[2];
    t3 = r->n[3];

    t4 &= 0x0FFFFFFFFFFFFULL;

    t1 += (t0 >> 52);
    t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
    t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
    t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
                                                z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;

    /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
    VERIFY_CHECK(t4 >> 49 == 0);

    return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
}

SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
    r->n[0] = a;
    r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
#ifdef VERIFY
    r->magnitude = 1;
    r->normalized = 1;
    secp256k1_fe_verify(r);
#endif
}

SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
    const uint64_t *t = a->n;
#ifdef VERIFY
    VERIFY_CHECK(a->normalized);
    secp256k1_fe_verify(a);
#endif
    return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
}

SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
#ifdef VERIFY
    VERIFY_CHECK(a->normalized);
    secp256k1_fe_verify(a);
#endif
    return a->n[0] & 1;
}

SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
    int i;
#ifdef VERIFY
    a->magnitude = 0;
    a->normalized = 1;
#endif
    for (i=0; i<5; i++) {
        a->n[i] = 0;
    }
}

static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
    int i;
#ifdef VERIFY
    VERIFY_CHECK(a->normalized);
    VERIFY_CHECK(b->normalized);
    secp256k1_fe_verify(a);
    secp256k1_fe_verify(b);
#endif
    for (i = 4; i >= 0; i--) {
        if (a->n[i] > b->n[i]) {
            return 1;
        }
        if (a->n[i] < b->n[i]) {
            return -1;
        }
    }
    return 0;
}

static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
    int i;
    r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
    for (i=0; i<32; i++) {
        int j;
        for (j=0; j<2; j++) {
            int limb = (8*i+4*j)/52;
            int shift = (8*i+4*j)%52;
            r->n[limb] |= (uint64_t)((a[31-i] >> (4*j)) & 0xF) << shift;
        }
    }
    if (r->n[4] == 0x0FFFFFFFFFFFFULL && (r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL && r->n[0] >= 0xFFFFEFFFFFC2FULL) {
        return 0;
    }
#ifdef VERIFY
    r->magnitude = 1;
    r->normalized = 1;
    secp256k1_fe_verify(r);
#endif
    return 1;
}

/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
    int i;
#ifdef VERIFY
    VERIFY_CHECK(a->normalized);
    secp256k1_fe_verify(a);
#endif
    for (i=0; i<32; i++) {
        int j;
        int c = 0;
        for (j=0; j<2; j++) {
            int limb = (8*i+4*j)/52;
            int shift = (8*i+4*j)%52;
            c |= ((a->n[limb] >> shift) & 0xF) << (4 * j);
        }
        r[31-i] = c;
    }
}

SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
#ifdef VERIFY
    VERIFY_CHECK(a->magnitude <= m);
    secp256k1_fe_verify(a);
#endif
    r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0];
    r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1];
    r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2];
    r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3];
    r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
#ifdef VERIFY
    r->magnitude = m + 1;
    r->normalized = 0;
    secp256k1_fe_verify(r);
#endif
}

SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
    r->n[0] *= a;
    r->n[1] *= a;
    r->n[2] *= a;
    r->n[3] *= a;
    r->n[4] *= a;
#ifdef VERIFY
    r->magnitude *= a;
    r->normalized = 0;
    secp256k1_fe_verify(r);
#endif
}

SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
#ifdef VERIFY
    secp256k1_fe_verify(a);
#endif
    r->n[0] += a->n[0];
    r->n[1] += a->n[1];
    r->n[2] += a->n[2];
    r->n[3] += a->n[3];
    r->n[4] += a->n[4];
#ifdef VERIFY
    r->magnitude += a->magnitude;
    r->normalized = 0;
    secp256k1_fe_verify(r);
#endif
}

static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
#ifdef VERIFY
    VERIFY_CHECK(a->magnitude <= 8);
    VERIFY_CHECK(b->magnitude <= 8);
    secp256k1_fe_verify(a);
    secp256k1_fe_verify(b);
    VERIFY_CHECK(r != b);
#endif
    secp256k1_fe_mul_inner(r->n, a->n, b->n);
#ifdef VERIFY
    r->magnitude = 1;
    r->normalized = 0;
    secp256k1_fe_verify(r);
#endif
}

static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
#ifdef VERIFY
    VERIFY_CHECK(a->magnitude <= 8);
    secp256k1_fe_verify(a);
#endif
    secp256k1_fe_sqr_inner(r->n, a->n);
#ifdef VERIFY
    r->magnitude = 1;
    r->normalized = 0;
    secp256k1_fe_verify(r);
#endif
}

static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
    uint64_t mask0, mask1;
    mask0 = flag + ~((uint64_t)0);
    mask1 = ~mask0;
    r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
    r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
    r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
    r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
    r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
#ifdef VERIFY
    if (a->magnitude > r->magnitude) {
        r->magnitude = a->magnitude;
    }
    r->normalized &= a->normalized;
#endif
}

static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
    uint64_t mask0, mask1;
    mask0 = flag + ~((uint64_t)0);
    mask1 = ~mask0;
    r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
    r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
    r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
    r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
}

static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
#ifdef VERIFY
    VERIFY_CHECK(a->normalized);
#endif
    r->n[0] = a->n[0] | a->n[1] << 52;
    r->n[1] = a->n[1] >> 12 | a->n[2] << 40;
    r->n[2] = a->n[2] >> 24 | a->n[3] << 28;
    r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
}

static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
    r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
    r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
    r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
    r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL);
    r->n[4] = a->n[3] >> 16;
#ifdef VERIFY
    r->magnitude = 1;
    r->normalized = 1;
#endif
}

#endif