summaryrefslogtreecommitdiff
path: root/vm/vm_page.c
blob: 9a7fa27574e972e96447b438f6987a0609c5e82e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
/*
 * Copyright (c) 2010-2014 Richard Braun.
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *
 * This implementation uses the binary buddy system to manage its heap.
 * Descriptions of the buddy system can be found in the following works :
 * - "UNIX Internals: The New Frontiers", by Uresh Vahalia.
 * - "Dynamic Storage Allocation: A Survey and Critical Review",
 *    by Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles.
 *
 * In addition, this allocator uses per-CPU pools of pages for order 0
 * (i.e. single page) allocations. These pools act as caches (but are named
 * differently to avoid confusion with CPU caches) that reduce contention on
 * multiprocessor systems. When a pool is empty and cannot provide a page,
 * it is filled by transferring multiple pages from the backend buddy system.
 * The symmetric case is handled likewise.
 *
 * TODO Limit number of dirty pages, block allocations above a top limit.
 */

#include <string.h>
#include <kern/assert.h>
#include <kern/counters.h>
#include <kern/cpu_number.h>
#include <kern/debug.h>
#include <kern/list.h>
#include <kern/lock.h>
#include <kern/macros.h>
#include <kern/printf.h>
#include <kern/thread.h>
#include <mach/vm_param.h>
#include <machine/pmap.h>
#include <sys/types.h>
#include <vm/memory_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>

#define DEBUG 0

#define __init
#define __initdata
#define __read_mostly

#define thread_pin()
#define thread_unpin()

/*
 * Number of free block lists per segment.
 */
#define VM_PAGE_NR_FREE_LISTS 11

/*
 * The size of a CPU pool is computed by dividing the number of pages in its
 * containing segment by this value.
 */
#define VM_PAGE_CPU_POOL_RATIO 1024

/*
 * Maximum number of pages in a CPU pool.
 */
#define VM_PAGE_CPU_POOL_MAX_SIZE 128

/*
 * The transfer size of a CPU pool is computed by dividing the pool size by
 * this value.
 */
#define VM_PAGE_CPU_POOL_TRANSFER_RATIO 2

/*
 * Per-processor cache of pages.
 */
struct vm_page_cpu_pool {
    simple_lock_data_t lock;
    int size;
    int transfer_size;
    int nr_pages;
    struct list pages;
} __aligned(CPU_L1_SIZE);

/*
 * Special order value for pages that aren't in a free list. Such pages are
 * either allocated, or part of a free block of pages but not the head page.
 */
#define VM_PAGE_ORDER_UNLISTED ((unsigned short)-1)

/*
 * Doubly-linked list of free blocks.
 */
struct vm_page_free_list {
    unsigned long size;
    struct list blocks;
};

/*
 * XXX Because of a potential deadlock involving the default pager (see
 * vm_map_lock()), it's currently impossible to reliably determine the
 * minimum number of free pages required for successful pageout. Since
 * that process is dependent on the amount of physical memory, we scale
 * the minimum number of free pages from it, in the hope that memory
 * exhaustion happens as rarely as possible...
 */

/*
 * Ratio used to compute the minimum number of pages in a segment.
 */
#define VM_PAGE_SEG_THRESHOLD_MIN_NUM   5
#define VM_PAGE_SEG_THRESHOLD_MIN_DENOM 100

/*
 * Number of pages reserved for privileged allocations in a segment.
 */
#define VM_PAGE_SEG_THRESHOLD_MIN 500

/*
 * Ratio used to compute the threshold below which pageout is started.
 */
#define VM_PAGE_SEG_THRESHOLD_LOW_NUM   6
#define VM_PAGE_SEG_THRESHOLD_LOW_DENOM 100

/*
 * Minimum value the low threshold can have for a segment.
 */
#define VM_PAGE_SEG_THRESHOLD_LOW 600

#if VM_PAGE_SEG_THRESHOLD_LOW <= VM_PAGE_SEG_THRESHOLD_MIN
#error VM_PAGE_SEG_THRESHOLD_LOW invalid
#endif /* VM_PAGE_SEG_THRESHOLD_LOW >= VM_PAGE_SEG_THRESHOLD_MIN */

/*
 * Ratio used to compute the threshold above which pageout is stopped.
 */
#define VM_PAGE_SEG_THRESHOLD_HIGH_NUM      10
#define VM_PAGE_SEG_THRESHOLD_HIGH_DENOM    100

/*
 * Minimum value the high threshold can have for a segment.
 */
#define VM_PAGE_SEG_THRESHOLD_HIGH 1000

#if VM_PAGE_SEG_THRESHOLD_HIGH <= VM_PAGE_SEG_THRESHOLD_LOW
#error VM_PAGE_SEG_THRESHOLD_HIGH invalid
#endif /* VM_PAGE_SEG_THRESHOLD_HIGH <= VM_PAGE_SEG_THRESHOLD_LOW */

/*
 * Minimum number of pages allowed for a segment.
 */
#define VM_PAGE_SEG_MIN_PAGES 2000

#if VM_PAGE_SEG_MIN_PAGES <= VM_PAGE_SEG_THRESHOLD_HIGH
#error VM_PAGE_SEG_MIN_PAGES invalid
#endif /* VM_PAGE_SEG_MIN_PAGES <= VM_PAGE_SEG_THRESHOLD_HIGH */

/*
 * Ratio used to compute the threshold of active pages beyond which
 * to refill the inactive queue.
 */
#define VM_PAGE_HIGH_ACTIVE_PAGE_NUM    1
#define VM_PAGE_HIGH_ACTIVE_PAGE_DENOM  3

/*
 * Page cache queue.
 *
 * XXX The current implementation hardcodes a preference to evict external
 * pages first and keep internal ones as much as possible. This is because
 * the Hurd default pager implementation suffers from bugs that can easily
 * cause the system to freeze.
 */
struct vm_page_queue {
    struct list internal_pages;
    struct list external_pages;
};

/*
 * Segment name buffer size.
 */
#define VM_PAGE_NAME_SIZE 16

/*
 * Segment of contiguous memory.
 *
 * XXX Per-segment locking is probably useless, since one or both of the
 * page queues lock and the free page queue lock is held on any access.
 * However it should first be made clear which lock protects access to
 * which members of a segment.
 */
struct vm_page_seg {
    struct vm_page_cpu_pool cpu_pools[NCPUS];

    phys_addr_t start;
    phys_addr_t end;
    struct vm_page *pages;
    struct vm_page *pages_end;
    simple_lock_data_t lock;
    struct vm_page_free_list free_lists[VM_PAGE_NR_FREE_LISTS];
    unsigned long nr_free_pages;

    /* Free memory thresholds */
    unsigned long min_free_pages; /* Privileged allocations only */
    unsigned long low_free_pages; /* Pageout daemon starts scanning */
    unsigned long high_free_pages; /* Pageout daemon stops scanning,
                                      unprivileged allocations resume */

    /* Page cache related data */
    struct vm_page_queue active_pages;
    unsigned long nr_active_pages;
    unsigned long high_active_pages;
    struct vm_page_queue inactive_pages;
    unsigned long nr_inactive_pages;
};

/*
 * Bootstrap information about a segment.
 */
struct vm_page_boot_seg {
    phys_addr_t start;
    phys_addr_t end;
    boolean_t heap_present;
    phys_addr_t avail_start;
    phys_addr_t avail_end;
};

static int vm_page_is_ready __read_mostly;

/*
 * Segment table.
 *
 * The system supports a maximum of 4 segments :
 *  - DMA: suitable for DMA
 *  - DMA32: suitable for DMA when devices support 32-bits addressing
 *  - DIRECTMAP: direct physical mapping, allows direct access from
 *    the kernel with a simple offset translation
 *  - HIGHMEM: must be mapped before it can be accessed
 *
 * Segments are ordered by priority, 0 being the lowest priority. Their
 * relative priorities are DMA < DMA32 < DIRECTMAP < HIGHMEM. Some segments
 * may actually be aliases for others, e.g. if DMA is always possible from
 * the direct physical mapping, DMA and DMA32 are aliases for DIRECTMAP,
 * in which case the segment table contains DIRECTMAP and HIGHMEM only.
 */
static struct vm_page_seg vm_page_segs[VM_PAGE_MAX_SEGS];

/*
 * Bootstrap segment table.
 */
static struct vm_page_boot_seg vm_page_boot_segs[VM_PAGE_MAX_SEGS] __initdata;

/*
 * Number of loaded segments.
 */
static unsigned int vm_page_segs_size __read_mostly;

/*
 * If true, unprivileged allocations are blocked, disregarding any other
 * condition.
 *
 * This variable is also used to resume clients once pages are available.
 *
 * The free page queue lock must be held when accessing this variable.
 */
static boolean_t vm_page_alloc_paused;

static void __init
vm_page_init_pa(struct vm_page *page, unsigned short seg_index, phys_addr_t pa)
{
    memset(page, 0, sizeof(*page));
    vm_page_init(page); /* vm_resident members */
    page->type = VM_PT_RESERVED;
    page->seg_index = seg_index;
    page->order = VM_PAGE_ORDER_UNLISTED;
    page->priv = NULL;
    page->phys_addr = pa;
}

void
vm_page_set_type(struct vm_page *page, unsigned int order, unsigned short type)
{
    unsigned int i, nr_pages;

    nr_pages = 1 << order;

    for (i = 0; i < nr_pages; i++)
        page[i].type = type;
}

static boolean_t
vm_page_pageable(const struct vm_page *page)
{
    return (page->object != NULL)
           && (page->wire_count == 0)
           && (page->active || page->inactive);
}

static boolean_t
vm_page_can_move(const struct vm_page *page)
{
    /*
     * This function is called on pages pulled from the page queues,
     * implying they're pageable, which is why the wire count isn't
     * checked here.
     */

    return !page->busy
           && !page->wanted
           && !page->absent
           && page->object->alive;
}

static void
vm_page_remove_mappings(struct vm_page *page)
{
    page->busy = TRUE;
    pmap_page_protect(page->phys_addr, VM_PROT_NONE);

    if (!page->dirty) {
        page->dirty = pmap_is_modified(page->phys_addr);
    }
}

static void __init
vm_page_free_list_init(struct vm_page_free_list *free_list)
{
    free_list->size = 0;
    list_init(&free_list->blocks);
}

static inline void
vm_page_free_list_insert(struct vm_page_free_list *free_list,
                         struct vm_page *page)
{
    assert(page->order == VM_PAGE_ORDER_UNLISTED);

    free_list->size++;
    list_insert_head(&free_list->blocks, &page->node);
}

static inline void
vm_page_free_list_remove(struct vm_page_free_list *free_list,
                         struct vm_page *page)
{
    assert(page->order != VM_PAGE_ORDER_UNLISTED);

    free_list->size--;
    list_remove(&page->node);
}

static struct vm_page *
vm_page_seg_alloc_from_buddy(struct vm_page_seg *seg, unsigned int order)
{
    struct vm_page_free_list *free_list = free_list;
    struct vm_page *page, *buddy;
    unsigned int i;

    assert(order < VM_PAGE_NR_FREE_LISTS);

    if (vm_page_alloc_paused && current_thread()
        && !current_thread()->vm_privilege) {
        return NULL;
    } else if (seg->nr_free_pages <= seg->low_free_pages) {
        vm_pageout_start();

        if ((seg->nr_free_pages <= seg->min_free_pages)
            && current_thread() && !current_thread()->vm_privilege) {
            vm_page_alloc_paused = TRUE;
            return NULL;
        }
    }

    for (i = order; i < VM_PAGE_NR_FREE_LISTS; i++) {
        free_list = &seg->free_lists[i];

        if (free_list->size != 0)
            break;
    }

    if (i == VM_PAGE_NR_FREE_LISTS)
        return NULL;

    page = list_first_entry(&free_list->blocks, struct vm_page, node);
    vm_page_free_list_remove(free_list, page);
    page->order = VM_PAGE_ORDER_UNLISTED;

    while (i > order) {
        i--;
        buddy = &page[1 << i];
        vm_page_free_list_insert(&seg->free_lists[i], buddy);
        buddy->order = i;
    }

    seg->nr_free_pages -= (1 << order);

    if (seg->nr_free_pages < seg->min_free_pages) {
        vm_page_alloc_paused = TRUE;
    }

    return page;
}

static void
vm_page_seg_free_to_buddy(struct vm_page_seg *seg, struct vm_page *page,
                          unsigned int order)
{
    struct vm_page *buddy;
    phys_addr_t pa, buddy_pa;
    unsigned int nr_pages;

    assert(page >= seg->pages);
    assert(page < seg->pages_end);
    assert(page->order == VM_PAGE_ORDER_UNLISTED);
    assert(order < VM_PAGE_NR_FREE_LISTS);

    nr_pages = (1 << order);
    pa = page->phys_addr;

    while (order < (VM_PAGE_NR_FREE_LISTS - 1)) {
        buddy_pa = pa ^ vm_page_ptoa(1 << order);

        if ((buddy_pa < seg->start) || (buddy_pa >= seg->end))
            break;

        buddy = &seg->pages[vm_page_atop(buddy_pa - seg->start)];

        if (buddy->order != order)
            break;

        vm_page_free_list_remove(&seg->free_lists[order], buddy);
        buddy->order = VM_PAGE_ORDER_UNLISTED;
        order++;
        pa &= -vm_page_ptoa(1 << order);
        page = &seg->pages[vm_page_atop(pa - seg->start)];
    }

    vm_page_free_list_insert(&seg->free_lists[order], page);
    page->order = order;
    seg->nr_free_pages += nr_pages;
}

static void __init
vm_page_cpu_pool_init(struct vm_page_cpu_pool *cpu_pool, int size)
{
    simple_lock_init(&cpu_pool->lock);
    cpu_pool->size = size;
    cpu_pool->transfer_size = (size + VM_PAGE_CPU_POOL_TRANSFER_RATIO - 1)
                              / VM_PAGE_CPU_POOL_TRANSFER_RATIO;
    cpu_pool->nr_pages = 0;
    list_init(&cpu_pool->pages);
}

static inline struct vm_page_cpu_pool *
vm_page_cpu_pool_get(struct vm_page_seg *seg)
{
    return &seg->cpu_pools[cpu_number()];
}

static inline struct vm_page *
vm_page_cpu_pool_pop(struct vm_page_cpu_pool *cpu_pool)
{
    struct vm_page *page;

    assert(cpu_pool->nr_pages != 0);
    cpu_pool->nr_pages--;
    page = list_first_entry(&cpu_pool->pages, struct vm_page, node);
    list_remove(&page->node);
    return page;
}

static inline void
vm_page_cpu_pool_push(struct vm_page_cpu_pool *cpu_pool, struct vm_page *page)
{
    assert(cpu_pool->nr_pages < cpu_pool->size);
    cpu_pool->nr_pages++;
    list_insert_head(&cpu_pool->pages, &page->node);
}

static int
vm_page_cpu_pool_fill(struct vm_page_cpu_pool *cpu_pool,
                      struct vm_page_seg *seg)
{
    struct vm_page *page;
    int i;

    assert(cpu_pool->nr_pages == 0);

    simple_lock(&seg->lock);

    for (i = 0; i < cpu_pool->transfer_size; i++) {
        page = vm_page_seg_alloc_from_buddy(seg, 0);

        if (page == NULL)
            break;

        vm_page_cpu_pool_push(cpu_pool, page);
    }

    simple_unlock(&seg->lock);

    return i;
}

static void
vm_page_cpu_pool_drain(struct vm_page_cpu_pool *cpu_pool,
                       struct vm_page_seg *seg)
{
    struct vm_page *page;
    int i;

    assert(cpu_pool->nr_pages == cpu_pool->size);

    simple_lock(&seg->lock);

    for (i = cpu_pool->transfer_size; i > 0; i--) {
        page = vm_page_cpu_pool_pop(cpu_pool);
        vm_page_seg_free_to_buddy(seg, page, 0);
    }

    simple_unlock(&seg->lock);
}

static void
vm_page_queue_init(struct vm_page_queue *queue)
{
    list_init(&queue->internal_pages);
    list_init(&queue->external_pages);
}

static void
vm_page_queue_push(struct vm_page_queue *queue, struct vm_page *page)
{
    if (page->external) {
        list_insert_tail(&queue->external_pages, &page->node);
    } else {
        list_insert_tail(&queue->internal_pages, &page->node);
    }
}

static void
vm_page_queue_remove(struct vm_page_queue *queue, struct vm_page *page)
{
    (void)queue;
    list_remove(&page->node);
}

static struct vm_page *
vm_page_queue_first(struct vm_page_queue *queue, boolean_t external_only)
{
    struct vm_page *page;

    if (!list_empty(&queue->external_pages)) {
        page = list_first_entry(&queue->external_pages, struct vm_page, node);
        return page;
    }

    if (!external_only && !list_empty(&queue->internal_pages)) {
        page = list_first_entry(&queue->internal_pages, struct vm_page, node);
        return page;
    }

    return NULL;
}

static struct vm_page_seg *
vm_page_seg_get(unsigned short index)
{
    assert(index < vm_page_segs_size);
    return &vm_page_segs[index];
}

static unsigned int
vm_page_seg_index(const struct vm_page_seg *seg)
{
    unsigned int index;

    index = seg - vm_page_segs;
    assert(index < vm_page_segs_size);
    return index;
}

static phys_addr_t __init
vm_page_seg_size(struct vm_page_seg *seg)
{
    return seg->end - seg->start;
}

static int __init
vm_page_seg_compute_pool_size(struct vm_page_seg *seg)
{
    phys_addr_t size;

    size = vm_page_atop(vm_page_seg_size(seg)) / VM_PAGE_CPU_POOL_RATIO;

    if (size == 0)
        size = 1;
    else if (size > VM_PAGE_CPU_POOL_MAX_SIZE)
        size = VM_PAGE_CPU_POOL_MAX_SIZE;

    return size;
}

static void __init
vm_page_seg_compute_pageout_thresholds(struct vm_page_seg *seg)
{
    unsigned long nr_pages;

    nr_pages = vm_page_atop(vm_page_seg_size(seg));

    if (nr_pages < VM_PAGE_SEG_MIN_PAGES) {
        panic("vm_page: segment too small");
    }

    seg->min_free_pages = nr_pages * VM_PAGE_SEG_THRESHOLD_MIN_NUM
                          / VM_PAGE_SEG_THRESHOLD_MIN_DENOM;

    if (seg->min_free_pages < VM_PAGE_SEG_THRESHOLD_MIN) {
        seg->min_free_pages = VM_PAGE_SEG_THRESHOLD_MIN;
    }

    seg->low_free_pages = nr_pages * VM_PAGE_SEG_THRESHOLD_LOW_NUM
                          / VM_PAGE_SEG_THRESHOLD_LOW_DENOM;

    if (seg->low_free_pages < VM_PAGE_SEG_THRESHOLD_LOW) {
        seg->low_free_pages = VM_PAGE_SEG_THRESHOLD_LOW;
    }

    seg->high_free_pages = nr_pages * VM_PAGE_SEG_THRESHOLD_HIGH_NUM
                           / VM_PAGE_SEG_THRESHOLD_HIGH_DENOM;

    if (seg->high_free_pages < VM_PAGE_SEG_THRESHOLD_HIGH) {
        seg->high_free_pages = VM_PAGE_SEG_THRESHOLD_HIGH;
    }
}

static void __init
vm_page_seg_init(struct vm_page_seg *seg, phys_addr_t start, phys_addr_t end,
                 struct vm_page *pages)
{
    phys_addr_t pa;
    int pool_size;
    unsigned int i;

    seg->start = start;
    seg->end = end;
    pool_size = vm_page_seg_compute_pool_size(seg);

    for (i = 0; i < ARRAY_SIZE(seg->cpu_pools); i++)
        vm_page_cpu_pool_init(&seg->cpu_pools[i], pool_size);

    seg->pages = pages;
    seg->pages_end = pages + vm_page_atop(vm_page_seg_size(seg));
    simple_lock_init(&seg->lock);

    for (i = 0; i < ARRAY_SIZE(seg->free_lists); i++)
        vm_page_free_list_init(&seg->free_lists[i]);

    seg->nr_free_pages = 0;

    vm_page_seg_compute_pageout_thresholds(seg);

    vm_page_queue_init(&seg->active_pages);
    seg->nr_active_pages = 0;
    vm_page_queue_init(&seg->inactive_pages);
    seg->nr_inactive_pages = 0;

    i = vm_page_seg_index(seg);

    for (pa = seg->start; pa < seg->end; pa += PAGE_SIZE)
        vm_page_init_pa(&pages[vm_page_atop(pa - seg->start)], i, pa);
}

static struct vm_page *
vm_page_seg_alloc(struct vm_page_seg *seg, unsigned int order,
                  unsigned short type)
{
    struct vm_page_cpu_pool *cpu_pool;
    struct vm_page *page;
    int filled;

    assert(order < VM_PAGE_NR_FREE_LISTS);

    if (order == 0) {
        thread_pin();
        cpu_pool = vm_page_cpu_pool_get(seg);
        simple_lock(&cpu_pool->lock);

        if (cpu_pool->nr_pages == 0) {
            filled = vm_page_cpu_pool_fill(cpu_pool, seg);

            if (!filled) {
                simple_unlock(&cpu_pool->lock);
                thread_unpin();
                return NULL;
            }
        }

        page = vm_page_cpu_pool_pop(cpu_pool);
        simple_unlock(&cpu_pool->lock);
        thread_unpin();
    } else {
        simple_lock(&seg->lock);
        page = vm_page_seg_alloc_from_buddy(seg, order);
        simple_unlock(&seg->lock);

        if (page == NULL)
            return NULL;
    }

    assert(page->type == VM_PT_FREE);
    vm_page_set_type(page, order, type);
    return page;
}

static void
vm_page_seg_free(struct vm_page_seg *seg, struct vm_page *page,
                 unsigned int order)
{
    struct vm_page_cpu_pool *cpu_pool;

    assert(page->type != VM_PT_FREE);
    assert(order < VM_PAGE_NR_FREE_LISTS);

    vm_page_set_type(page, order, VM_PT_FREE);

    if (order == 0) {
        thread_pin();
        cpu_pool = vm_page_cpu_pool_get(seg);
        simple_lock(&cpu_pool->lock);

        if (cpu_pool->nr_pages == cpu_pool->size)
            vm_page_cpu_pool_drain(cpu_pool, seg);

        vm_page_cpu_pool_push(cpu_pool, page);
        simple_unlock(&cpu_pool->lock);
        thread_unpin();
    } else {
        simple_lock(&seg->lock);
        vm_page_seg_free_to_buddy(seg, page, order);
        simple_unlock(&seg->lock);
    }
}

static void
vm_page_seg_add_active_page(struct vm_page_seg *seg, struct vm_page *page)
{
    assert(page->object != NULL);
    assert(page->seg_index == vm_page_seg_index(seg));
    assert(page->type != VM_PT_FREE);
    assert(page->order == VM_PAGE_ORDER_UNLISTED);
    assert(!page->free && !page->active && !page->inactive);
    page->active = TRUE;
    page->reference = TRUE;
    vm_page_queue_push(&seg->active_pages, page);
    seg->nr_active_pages++;
    vm_page_active_count++;
}

static void
vm_page_seg_remove_active_page(struct vm_page_seg *seg, struct vm_page *page)
{
    assert(page->object != NULL);
    assert(page->seg_index == vm_page_seg_index(seg));
    assert(page->type != VM_PT_FREE);
    assert(page->order == VM_PAGE_ORDER_UNLISTED);
    assert(!page->free && page->active && !page->inactive);
    page->active = FALSE;
    vm_page_queue_remove(&seg->active_pages, page);
    seg->nr_active_pages--;
    vm_page_active_count--;
}

static void
vm_page_seg_add_inactive_page(struct vm_page_seg *seg, struct vm_page *page)
{
    assert(page->object != NULL);
    assert(page->seg_index == vm_page_seg_index(seg));
    assert(page->type != VM_PT_FREE);
    assert(page->order == VM_PAGE_ORDER_UNLISTED);
    assert(!page->free && !page->active && !page->inactive);
    page->inactive = TRUE;
    vm_page_queue_push(&seg->inactive_pages, page);
    seg->nr_inactive_pages++;
    vm_page_inactive_count++;
}

static void
vm_page_seg_remove_inactive_page(struct vm_page_seg *seg, struct vm_page *page)
{
    assert(page->object != NULL);
    assert(page->seg_index == vm_page_seg_index(seg));
    assert(page->type != VM_PT_FREE);
    assert(page->order == VM_PAGE_ORDER_UNLISTED);
    assert(!page->free && !page->active && page->inactive);
    page->inactive = FALSE;
    vm_page_queue_remove(&seg->inactive_pages, page);
    seg->nr_inactive_pages--;
    vm_page_inactive_count--;
}

/*
 * Attempt to pull an active page.
 *
 * If successful, the object containing the page is locked.
 */
static struct vm_page *
vm_page_seg_pull_active_page(struct vm_page_seg *seg, boolean_t external_only)
{
    struct vm_page *page, *first;
    boolean_t locked;

    first = NULL;

    for (;;) {
        page = vm_page_queue_first(&seg->active_pages, external_only);

        if (page == NULL) {
            break;
        } else if (first == NULL) {
            first = page;
        } else if (first == page) {
            break;
        }

        vm_page_seg_remove_active_page(seg, page);
        locked = vm_object_lock_try(page->object);

        if (!locked) {
            vm_page_seg_add_active_page(seg, page);
            continue;
        }

        if (!vm_page_can_move(page)) {
            vm_page_seg_add_active_page(seg, page);
            vm_object_unlock(page->object);
            continue;
        }

        return page;
    }

    return NULL;
}

/*
 * Attempt to pull an inactive page.
 *
 * If successful, the object containing the page is locked.
 *
 * XXX See vm_page_seg_pull_active_page (duplicated code).
 */
static struct vm_page *
vm_page_seg_pull_inactive_page(struct vm_page_seg *seg, boolean_t external_only)
{
    struct vm_page *page, *first;
    boolean_t locked;

    first = NULL;

    for (;;) {
        page = vm_page_queue_first(&seg->inactive_pages, external_only);

        if (page == NULL) {
            break;
        } else if (first == NULL) {
            first = page;
        } else if (first == page) {
            break;
        }

        vm_page_seg_remove_inactive_page(seg, page);
        locked = vm_object_lock_try(page->object);

        if (!locked) {
            vm_page_seg_add_inactive_page(seg, page);
            continue;
        }

        if (!vm_page_can_move(page)) {
            vm_page_seg_add_inactive_page(seg, page);
            vm_object_unlock(page->object);
            continue;
        }

        return page;
    }

    return NULL;
}

/*
 * Attempt to pull a page cache page.
 *
 * If successful, the object containing the page is locked.
 */
static struct vm_page *
vm_page_seg_pull_cache_page(struct vm_page_seg *seg,
                            boolean_t external_only,
                            boolean_t *was_active)
{
    struct vm_page *page;

    page = vm_page_seg_pull_inactive_page(seg, external_only);

    if (page != NULL) {
        *was_active = FALSE;
        return page;
    }

    page = vm_page_seg_pull_active_page(seg, external_only);

    if (page != NULL) {
        *was_active = TRUE;
        return page;
    }

    return NULL;
}

static boolean_t
vm_page_seg_page_available(const struct vm_page_seg *seg)
{
    return (seg->nr_free_pages > seg->high_free_pages);
}

static boolean_t
vm_page_seg_usable(const struct vm_page_seg *seg)
{
    if ((seg->nr_active_pages + seg->nr_inactive_pages) == 0) {
        /* Nothing to page out, assume segment is usable */
        return TRUE;
    }

    return (seg->nr_free_pages >= seg->high_free_pages);
}

static void
vm_page_seg_double_lock(struct vm_page_seg *seg1, struct vm_page_seg *seg2)
{
    assert(seg1 != seg2);

    if (seg1 < seg2) {
        simple_lock(&seg1->lock);
        simple_lock(&seg2->lock);
    } else {
        simple_lock(&seg2->lock);
        simple_lock(&seg1->lock);
    }
}

static void
vm_page_seg_double_unlock(struct vm_page_seg *seg1, struct vm_page_seg *seg2)
{
    simple_unlock(&seg1->lock);
    simple_unlock(&seg2->lock);
}

/*
 * Attempt to balance a segment by moving one page to another segment.
 *
 * Return TRUE if a page was actually moved.
 */
static boolean_t
vm_page_seg_balance_page(struct vm_page_seg *seg,
                         struct vm_page_seg *remote_seg)
{
    struct vm_page *src, *dest;
    vm_object_t object;
    vm_offset_t offset;
    boolean_t was_active;

    vm_page_lock_queues();
    simple_lock(&vm_page_queue_free_lock);
    vm_page_seg_double_lock(seg, remote_seg);

    if (vm_page_seg_usable(seg)
        || !vm_page_seg_page_available(remote_seg)) {
        goto error;
    }

    src = vm_page_seg_pull_cache_page(seg, FALSE, &was_active);

    if (src == NULL) {
        goto error;
    }

    assert(src->object != NULL);
    assert(!src->fictitious && !src->private);
    assert(src->wire_count == 0);
    assert(src->type != VM_PT_FREE);
    assert(src->order == VM_PAGE_ORDER_UNLISTED);

    dest = vm_page_seg_alloc_from_buddy(remote_seg, 0);
    assert(dest != NULL);

    vm_page_seg_double_unlock(seg, remote_seg);
    simple_unlock(&vm_page_queue_free_lock);

    if (!was_active && !src->reference && pmap_is_referenced(src->phys_addr)) {
        src->reference = TRUE;
    }

    object = src->object;
    offset = src->offset;
    vm_page_remove(src);

    vm_page_remove_mappings(src);

    vm_page_set_type(dest, 0, src->type);
    memcpy(&dest->vm_page_header, &src->vm_page_header,
           sizeof(*dest) - VM_PAGE_HEADER_SIZE);
    vm_page_copy(src, dest);

    if (!src->dirty) {
        pmap_clear_modify(dest->phys_addr);
    }

    dest->busy = FALSE;

    simple_lock(&vm_page_queue_free_lock);
    vm_page_init(src);
    src->free = TRUE;
    simple_lock(&seg->lock);
    vm_page_set_type(src, 0, VM_PT_FREE);
    vm_page_seg_free_to_buddy(seg, src, 0);
    simple_unlock(&seg->lock);
    simple_unlock(&vm_page_queue_free_lock);

    vm_page_insert(dest, object, offset);
    vm_object_unlock(object);

    if (was_active) {
        vm_page_activate(dest);
    } else {
        vm_page_deactivate(dest);
    }

    vm_page_unlock_queues();

    return TRUE;

error:
    vm_page_seg_double_unlock(seg, remote_seg);
    simple_unlock(&vm_page_queue_free_lock);
    vm_page_unlock_queues();
    return FALSE;
}

static boolean_t
vm_page_seg_balance(struct vm_page_seg *seg)
{
    struct vm_page_seg *remote_seg;
    unsigned int i;
    boolean_t balanced;

    /*
     * It's important here that pages are moved to lower priority
     * segments first.
     */

    for (i = vm_page_segs_size - 1; i < vm_page_segs_size; i--) {
        remote_seg = vm_page_seg_get(i);

        if (remote_seg == seg) {
            continue;
        }

        balanced = vm_page_seg_balance_page(seg, remote_seg);

        if (balanced) {
            return TRUE;
        }
    }

    return FALSE;
}

static boolean_t
vm_page_seg_evict(struct vm_page_seg *seg, boolean_t external_only,
                  boolean_t alloc_paused)
{
    struct vm_page *page;
    boolean_t reclaim, double_paging;
    vm_object_t object;
    boolean_t was_active;

    page = NULL;
    object = NULL;
    double_paging = FALSE;

restart:
    vm_page_lock_queues();
    simple_lock(&seg->lock);

    if (page != NULL) {
        vm_object_lock(page->object);
    } else {
        page = vm_page_seg_pull_cache_page(seg, external_only, &was_active);

        if (page == NULL) {
            goto out;
        }
    }

    assert(page->object != NULL);
    assert(!page->fictitious && !page->private);
    assert(page->wire_count == 0);
    assert(page->type != VM_PT_FREE);
    assert(page->order == VM_PAGE_ORDER_UNLISTED);

    object = page->object;

    if (!was_active
        && (page->reference || pmap_is_referenced(page->phys_addr))) {
        vm_page_seg_add_active_page(seg, page);
        simple_unlock(&seg->lock);
        vm_object_unlock(object);
        vm_stat.reactivations++;
        current_task()->reactivations++;
        vm_page_unlock_queues();
        page = NULL;
        goto restart;
    }

    vm_page_remove_mappings(page);

    if (!page->dirty && !page->precious) {
        reclaim = TRUE;
        goto out;
    }

    reclaim = FALSE;

    /*
     * If we are very low on memory, then we can't rely on an external
     * pager to clean a dirty page, because external pagers are not
     * vm-privileged.
     *
     * The laundry bit tells vm_pageout_setup not to do any special
     * processing of this page since it's immediately going to be
     * double paged out to the default pager. The laundry bit is
     * reset and the page is inserted into an internal object by
     * vm_pageout_setup before the second double paging pass.
     *
     * There is one important special case: the default pager can
     * back external memory objects. When receiving the first
     * pageout request, where the page is no longer present, a
     * fault could occur, during which the map would be locked.
     * This fault would cause a new paging request to the default
     * pager. Receiving that request would deadlock when trying to
     * lock the map again. Instead, the page isn't double paged
     * and vm_pageout_setup wires the page down, trusting the
     * default pager as for internal pages.
     */

    assert(!page->laundry);
    assert(!(double_paging && page->external));

    if (object->internal || !alloc_paused ||
        memory_manager_default_port(object->pager)) {
        double_paging = FALSE;
    } else {
        double_paging = page->laundry = TRUE;
    }

out:
    simple_unlock(&seg->lock);

    if (object == NULL) {
        vm_page_unlock_queues();
        return FALSE;
    }

    if (reclaim) {
        vm_page_free(page);
        vm_page_unlock_queues();

        if (vm_object_collectable(object)) {
            vm_object_collect(object);
        } else {
            vm_object_unlock(object);
        }

        return TRUE;
    }

    vm_page_unlock_queues();

    /*
     * If there is no memory object for the page, create one and hand it
     * to the default pager. First try to collapse, so we don't create
     * one unnecessarily.
     */

    if (!object->pager_initialized) {
        vm_object_collapse(object);
    }

    if (!object->pager_initialized) {
        vm_object_pager_create(object);
    }

    if (!object->pager_initialized) {
        panic("vm_page_seg_evict");
    }

    vm_pageout_page(page, FALSE, TRUE); /* flush it */
    vm_object_unlock(object);

    if (double_paging) {
        goto restart;
    }

    return TRUE;
}

static void
vm_page_seg_compute_high_active_page(struct vm_page_seg *seg)
{
    unsigned long nr_pages;

    nr_pages = seg->nr_active_pages + seg->nr_inactive_pages;
    seg->high_active_pages = nr_pages * VM_PAGE_HIGH_ACTIVE_PAGE_NUM
                             / VM_PAGE_HIGH_ACTIVE_PAGE_DENOM;
}

static void
vm_page_seg_refill_inactive(struct vm_page_seg *seg)
{
    struct vm_page *page;

    simple_lock(&seg->lock);

    vm_page_seg_compute_high_active_page(seg);

    while (seg->nr_active_pages > seg->high_active_pages) {
        page = vm_page_seg_pull_active_page(seg, FALSE);

        if (page == NULL) {
            break;
        }

        page->reference = FALSE;
        pmap_clear_reference(page->phys_addr);
        vm_page_seg_add_inactive_page(seg, page);
        vm_object_unlock(page->object);
    }

    simple_unlock(&seg->lock);
}

void __init
vm_page_load(unsigned int seg_index, phys_addr_t start, phys_addr_t end)
{
    struct vm_page_boot_seg *seg;

    assert(seg_index < ARRAY_SIZE(vm_page_boot_segs));
    assert(vm_page_aligned(start));
    assert(vm_page_aligned(end));
    assert(start < end);
    assert(vm_page_segs_size < ARRAY_SIZE(vm_page_boot_segs));

    seg = &vm_page_boot_segs[seg_index];
    seg->start = start;
    seg->end = end;
    seg->heap_present = FALSE;

#if DEBUG
    printf("vm_page: load: %s: %llx:%llx\n",
           vm_page_seg_name(seg_index),
           (unsigned long long)start, (unsigned long long)end);
#endif

    vm_page_segs_size++;
}

void
vm_page_load_heap(unsigned int seg_index, phys_addr_t start, phys_addr_t end)
{
    struct vm_page_boot_seg *seg;

    assert(seg_index < ARRAY_SIZE(vm_page_boot_segs));
    assert(vm_page_aligned(start));
    assert(vm_page_aligned(end));

    seg = &vm_page_boot_segs[seg_index];

    assert(seg->start <= start);
    assert(end <= seg-> end);

    seg->avail_start = start;
    seg->avail_end = end;
    seg->heap_present = TRUE;

#if DEBUG
    printf("vm_page: heap: %s: %llx:%llx\n",
           vm_page_seg_name(seg_index),
           (unsigned long long)start, (unsigned long long)end);
#endif
}

int
vm_page_ready(void)
{
    return vm_page_is_ready;
}

static unsigned int
vm_page_select_alloc_seg(unsigned int selector)
{
    unsigned int seg_index;

    switch (selector) {
    case VM_PAGE_SEL_DMA:
        seg_index = VM_PAGE_SEG_DMA;
        break;
    case VM_PAGE_SEL_DMA32:
        seg_index = VM_PAGE_SEG_DMA32;
        break;
    case VM_PAGE_SEL_DIRECTMAP:
        seg_index = VM_PAGE_SEG_DIRECTMAP;
        break;
    case VM_PAGE_SEL_HIGHMEM:
        seg_index = VM_PAGE_SEG_HIGHMEM;
        break;
    default:
        panic("vm_page: invalid selector");
    }

    return MIN(vm_page_segs_size - 1, seg_index);
}

static int __init
vm_page_boot_seg_loaded(const struct vm_page_boot_seg *seg)
{
    return (seg->end != 0);
}

static void __init
vm_page_check_boot_segs(void)
{
    unsigned int i;
    int expect_loaded;

    if (vm_page_segs_size == 0)
        panic("vm_page: no physical memory loaded");

    for (i = 0; i < ARRAY_SIZE(vm_page_boot_segs); i++) {
        expect_loaded = (i < vm_page_segs_size);

        if (vm_page_boot_seg_loaded(&vm_page_boot_segs[i]) == expect_loaded)
            continue;

        panic("vm_page: invalid boot segment table");
    }
}

static phys_addr_t __init
vm_page_boot_seg_size(struct vm_page_boot_seg *seg)
{
    return seg->end - seg->start;
}

static phys_addr_t __init
vm_page_boot_seg_avail_size(struct vm_page_boot_seg *seg)
{
    return seg->avail_end - seg->avail_start;
}

unsigned long __init
vm_page_bootalloc(size_t size)
{
    struct vm_page_boot_seg *seg;
    phys_addr_t pa;
    unsigned int i;

    for (i = vm_page_select_alloc_seg(VM_PAGE_SEL_DIRECTMAP);
         i < vm_page_segs_size;
         i--) {
        seg = &vm_page_boot_segs[i];

        if (size <= vm_page_boot_seg_avail_size(seg)) {
            pa = seg->avail_start;
            seg->avail_start += vm_page_round(size);
            return pa;
        }
    }

    panic("vm_page: no physical memory available");
}

void __init
vm_page_setup(void)
{
    struct vm_page_boot_seg *boot_seg;
    struct vm_page_seg *seg;
    struct vm_page *table, *page, *end;
    size_t nr_pages, table_size;
    unsigned long va;
    unsigned int i;
    phys_addr_t pa;

    vm_page_check_boot_segs();

    /*
     * Compute the page table size.
     */
    nr_pages = 0;

    for (i = 0; i < vm_page_segs_size; i++)
        nr_pages += vm_page_atop(vm_page_boot_seg_size(&vm_page_boot_segs[i]));

    table_size = vm_page_round(nr_pages * sizeof(struct vm_page));
    printf("vm_page: page table size: %lu entries (%luk)\n", nr_pages,
           table_size >> 10);
    table = (struct vm_page *)pmap_steal_memory(table_size);
    va = (unsigned long)table;

    /*
     * Initialize the segments, associating them to the page table. When
     * the segments are initialized, all their pages are set allocated.
     * Pages are then released, which populates the free lists.
     */
    for (i = 0; i < vm_page_segs_size; i++) {
        seg = &vm_page_segs[i];
        boot_seg = &vm_page_boot_segs[i];
        vm_page_seg_init(seg, boot_seg->start, boot_seg->end, table);
        page = seg->pages + vm_page_atop(boot_seg->avail_start
                                         - boot_seg->start);
        end = seg->pages + vm_page_atop(boot_seg->avail_end
                                        - boot_seg->start);

        while (page < end) {
            page->type = VM_PT_FREE;
            vm_page_seg_free_to_buddy(seg, page, 0);
            page++;
        }

        table += vm_page_atop(vm_page_seg_size(seg));
    }

    while (va < (unsigned long)table) {
        pa = pmap_extract(kernel_pmap, va);
        page = vm_page_lookup_pa(pa);
        assert((page != NULL) && (page->type == VM_PT_RESERVED));
        page->type = VM_PT_TABLE;
        va += PAGE_SIZE;
    }

    vm_page_is_ready = 1;
}

void __init
vm_page_manage(struct vm_page *page)
{
    assert(page->seg_index < ARRAY_SIZE(vm_page_segs));
    assert(page->type == VM_PT_RESERVED);

    vm_page_set_type(page, 0, VM_PT_FREE);
    vm_page_seg_free_to_buddy(&vm_page_segs[page->seg_index], page, 0);
}

struct vm_page *
vm_page_lookup_pa(phys_addr_t pa)
{
    struct vm_page_seg *seg;
    unsigned int i;

    for (i = 0; i < vm_page_segs_size; i++) {
        seg = &vm_page_segs[i];

        if ((pa >= seg->start) && (pa < seg->end))
            return &seg->pages[vm_page_atop(pa - seg->start)];
    }

    return NULL;
}

static struct vm_page_seg *
vm_page_lookup_seg(const struct vm_page *page)
{
    struct vm_page_seg *seg;
    unsigned int i;

    for (i = 0; i < vm_page_segs_size; i++) {
        seg = &vm_page_segs[i];

        if ((page->phys_addr >= seg->start) && (page->phys_addr < seg->end)) {
            return seg;
        }
    }

    return NULL;
}

void vm_page_check(const struct vm_page *page)
{
    if (page->fictitious) {
        if (page->private) {
            panic("vm_page: page both fictitious and private");
        }

        if (page->phys_addr != vm_page_fictitious_addr) {
            panic("vm_page: invalid fictitious page");
        }
    } else {
        struct vm_page_seg *seg;

        if (page->phys_addr == vm_page_fictitious_addr) {
            panic("vm_page: real page has fictitious address");
        }

        seg = vm_page_lookup_seg(page);

        if (seg == NULL) {
            if (!page->private) {
                panic("vm_page: page claims it's managed but not in any segment");
            }
        } else {
            if (page->private) {
                struct vm_page *real_page;

                if (vm_page_pageable(page)) {
                    panic("vm_page: private page is pageable");
                }

                real_page = vm_page_lookup_pa(page->phys_addr);

                if (vm_page_pageable(real_page)) {
                    panic("vm_page: page underlying private page is pageable");
                }

                if ((real_page->type == VM_PT_FREE)
                    || (real_page->order != VM_PAGE_ORDER_UNLISTED)) {
                    panic("vm_page: page underlying private pagei is free");
                }
            } else {
                unsigned int index;

                index = vm_page_seg_index(seg);

                if (index != page->seg_index) {
                    panic("vm_page: page segment mismatch");
                }
            }
        }
    }
}

struct vm_page *
vm_page_alloc_pa(unsigned int order, unsigned int selector, unsigned short type)
{
    struct vm_page *page;
    unsigned int i;

    for (i = vm_page_select_alloc_seg(selector); i < vm_page_segs_size; i--) {
        page = vm_page_seg_alloc(&vm_page_segs[i], order, type);

        if (page != NULL)
            return page;
    }

    if (!current_thread() || current_thread()->vm_privilege)
        panic("vm_page: privileged thread unable to allocate page");

    return NULL;
}

void
vm_page_free_pa(struct vm_page *page, unsigned int order)
{
    assert(page != NULL);
    assert(page->seg_index < ARRAY_SIZE(vm_page_segs));

    vm_page_seg_free(&vm_page_segs[page->seg_index], page, order);
}

const char *
vm_page_seg_name(unsigned int seg_index)
{
    /* Don't use a switch statement since segments can be aliased */
    if (seg_index == VM_PAGE_SEG_HIGHMEM)
        return "HIGHMEM";
    else if (seg_index == VM_PAGE_SEG_DIRECTMAP)
        return "DIRECTMAP";
    else if (seg_index == VM_PAGE_SEG_DMA32)
        return "DMA32";
    else if (seg_index == VM_PAGE_SEG_DMA)
        return "DMA";
    else
        panic("vm_page: invalid segment index");
}

void
vm_page_info_all(void)
{
    struct vm_page_seg *seg;
    unsigned long pages;
    unsigned int i;

    for (i = 0; i < vm_page_segs_size; i++) {
        seg = &vm_page_segs[i];
        pages = (unsigned long)(seg->pages_end - seg->pages);
        printf("vm_page: %s: pages: %lu (%luM), free: %lu (%luM)\n",
               vm_page_seg_name(i), pages, pages >> (20 - PAGE_SHIFT),
               seg->nr_free_pages, seg->nr_free_pages >> (20 - PAGE_SHIFT));
        printf("vm_page: %s: min:%lu low:%lu high:%lu\n",
               vm_page_seg_name(vm_page_seg_index(seg)),
               seg->min_free_pages, seg->low_free_pages, seg->high_free_pages);
    }
}

phys_addr_t
vm_page_seg_end(unsigned int selector)
{
    return vm_page_segs[vm_page_select_alloc_seg(selector)].end;
}

static unsigned long
vm_page_boot_table_size(void)
{
    unsigned long nr_pages;
    unsigned int i;

    nr_pages = 0;

    for (i = 0; i < vm_page_segs_size; i++) {
        nr_pages += vm_page_atop(vm_page_boot_seg_size(&vm_page_boot_segs[i]));
    }

    return nr_pages;
}

unsigned long
vm_page_table_size(void)
{
    unsigned long nr_pages;
    unsigned int i;

    if (!vm_page_is_ready) {
        return vm_page_boot_table_size();
    }

    nr_pages = 0;

    for (i = 0; i < vm_page_segs_size; i++) {
        nr_pages += vm_page_atop(vm_page_seg_size(&vm_page_segs[i]));
    }

    return nr_pages;
}

unsigned long
vm_page_table_index(phys_addr_t pa)
{
    struct vm_page_seg *seg;
    unsigned long index;
    unsigned int i;

    index = 0;

    for (i = 0; i < vm_page_segs_size; i++) {
        seg = &vm_page_segs[i];

        if ((pa >= seg->start) && (pa < seg->end)) {
            return index + vm_page_atop(pa - seg->start);
        }

        index += vm_page_atop(vm_page_seg_size(seg));
    }

    panic("vm_page: invalid physical address");
}

phys_addr_t
vm_page_mem_size(void)
{
    phys_addr_t total;
    unsigned int i;

    total = 0;

    for (i = 0; i < vm_page_segs_size; i++) {
        total += vm_page_seg_size(&vm_page_segs[i]);
    }

    return total;
}

unsigned long
vm_page_mem_free(void)
{
    unsigned long total;
    unsigned int i;

    total = 0;

    for (i = 0; i < vm_page_segs_size; i++) {
        total += vm_page_segs[i].nr_free_pages;
    }

    return total;
}

/*
 * Mark this page as wired down by yet another map, removing it
 * from paging queues as necessary.
 *
 * The page's object and the page queues must be locked.
 */
void
vm_page_wire(struct vm_page *page)
{
    VM_PAGE_CHECK(page);

    if (page->wire_count == 0) {
        vm_page_queues_remove(page);

        if (!page->private && !page->fictitious) {
            vm_page_wire_count++;
        }
    }

    page->wire_count++;
}

/*
 * Release one wiring of this page, potentially enabling it to be paged again.
 *
 * The page's object and the page queues must be locked.
 */
void
vm_page_unwire(struct vm_page *page)
{
    struct vm_page_seg *seg;

    VM_PAGE_CHECK(page);

    assert(page->wire_count != 0);
    page->wire_count--;

    if ((page->wire_count != 0)
        || page->fictitious
        || page->private) {
        return;
    }

    seg = vm_page_seg_get(page->seg_index);

    simple_lock(&seg->lock);
    vm_page_seg_add_active_page(seg, page);
    simple_unlock(&seg->lock);

    vm_page_wire_count--;
}

/*
 * Returns the given page to the inactive list, indicating that
 * no physical maps have access to this page.
 * [Used by the physical mapping system.]
 *
 * The page queues must be locked.
 */
void
vm_page_deactivate(struct vm_page *page)
{
    struct vm_page_seg *seg;

    VM_PAGE_CHECK(page);

    /*
     * This page is no longer very interesting.  If it was
     * interesting (active or inactive/referenced), then we
     * clear the reference bit and (re)enter it in the
     * inactive queue.  Note wired pages should not have
     * their reference bit cleared.
     */

    if (page->active || (page->inactive && page->reference)) {
        if (!page->fictitious && !page->private && !page->absent) {
            pmap_clear_reference(page->phys_addr);
        }

        page->reference = FALSE;
        vm_page_queues_remove(page);
    }

    if ((page->wire_count == 0) && !page->fictitious
        && !page->private && !page->inactive) {
        seg = vm_page_seg_get(page->seg_index);

        simple_lock(&seg->lock);
        vm_page_seg_add_inactive_page(seg, page);
        simple_unlock(&seg->lock);
    }
}

/*
 * Put the specified page on the active list (if appropriate).
 *
 * The page queues must be locked.
 */
void
vm_page_activate(struct vm_page *page)
{
    struct vm_page_seg *seg;

    VM_PAGE_CHECK(page);

    /*
     * Unconditionally remove so that, even if the page was already
     * active, it gets back to the end of the active queue.
     */
    vm_page_queues_remove(page);

    if ((page->wire_count == 0) && !page->fictitious && !page->private) {
        seg = vm_page_seg_get(page->seg_index);

        if (page->active)
            panic("vm_page_activate: already active");

        simple_lock(&seg->lock);
        vm_page_seg_add_active_page(seg, page);
        simple_unlock(&seg->lock);
    }
}

void
vm_page_queues_remove(struct vm_page *page)
{
    struct vm_page_seg *seg;

    assert(!page->active || !page->inactive);

    if (!page->active && !page->inactive) {
        return;
    }

    seg = vm_page_seg_get(page->seg_index);

    simple_lock(&seg->lock);

    if (page->active) {
        vm_page_seg_remove_active_page(seg, page);
    } else {
        vm_page_seg_remove_inactive_page(seg, page);
    }

    simple_unlock(&seg->lock);
}

/*
 * Check whether segments are all usable for unprivileged allocations.
 *
 * If all segments are usable, resume pending unprivileged allocations
 * and return TRUE.
 *
 * This function acquires vm_page_queue_free_lock, which is held on return.
 */
static boolean_t
vm_page_check_usable(void)
{
    struct vm_page_seg *seg;
    boolean_t usable;
    unsigned int i;

    simple_lock(&vm_page_queue_free_lock);

    for (i = 0; i < vm_page_segs_size; i++) {
        seg = vm_page_seg_get(i);

        simple_lock(&seg->lock);
        usable = vm_page_seg_usable(seg);
        simple_unlock(&seg->lock);

        if (!usable) {
            return FALSE;
        }
    }

    vm_page_external_laundry_count = -1;
    vm_page_alloc_paused = FALSE;
    thread_wakeup(&vm_page_alloc_paused);
    return TRUE;
}

static boolean_t
vm_page_may_balance(void)
{
    struct vm_page_seg *seg;
    boolean_t page_available;
    unsigned int i;

    for (i = 0; i < vm_page_segs_size; i++) {
        seg = vm_page_seg_get(i);

        simple_lock(&seg->lock);
        page_available = vm_page_seg_page_available(seg);
        simple_unlock(&seg->lock);

        if (page_available) {
            return TRUE;
        }
    }

    return FALSE;
}

static boolean_t
vm_page_balance_once(void)
{
    boolean_t balanced;
    unsigned int i;

    /*
     * It's important here that pages are moved from higher priority
     * segments first.
     */

    for (i = 0; i < vm_page_segs_size; i++) {
        balanced = vm_page_seg_balance(vm_page_seg_get(i));

        if (balanced) {
            return TRUE;
        }
    }

    return FALSE;
}

boolean_t
vm_page_balance(void)
{
    boolean_t balanced;

    while (vm_page_may_balance()) {
        balanced = vm_page_balance_once();

        if (!balanced) {
            break;
        }
    }

    return vm_page_check_usable();
}

static boolean_t
vm_page_evict_once(boolean_t external_only, boolean_t alloc_paused)
{
    boolean_t evicted;
    unsigned int i;

    /*
     * It's important here that pages are evicted from lower priority
     * segments first.
     */

    for (i = vm_page_segs_size - 1; i < vm_page_segs_size; i--) {
        evicted = vm_page_seg_evict(vm_page_seg_get(i),
                                    external_only, alloc_paused);

        if (evicted) {
            return TRUE;
        }
    }

    return FALSE;
}

#define VM_PAGE_MAX_LAUNDRY   5
#define VM_PAGE_MAX_EVICTIONS 5

boolean_t
vm_page_evict(boolean_t *should_wait)
{
    boolean_t pause, evicted, external_only, alloc_paused;
    unsigned int i;

    *should_wait = TRUE;
    external_only = TRUE;

    simple_lock(&vm_page_queue_free_lock);
    vm_page_external_laundry_count = 0;
    alloc_paused = vm_page_alloc_paused;
    simple_unlock(&vm_page_queue_free_lock);

again:
    vm_page_lock_queues();
    pause = (vm_page_laundry_count >= VM_PAGE_MAX_LAUNDRY);
    vm_page_unlock_queues();

    if (pause) {
        simple_lock(&vm_page_queue_free_lock);
        return FALSE;
    }

    for (i = 0; i < VM_PAGE_MAX_EVICTIONS; i++) {
        evicted = vm_page_evict_once(external_only, alloc_paused);

        if (!evicted) {
            break;
        }
    }

    simple_lock(&vm_page_queue_free_lock);

    /*
     * Keep in mind eviction may not cause pageouts, since non-precious
     * clean pages are simply released.
     */
    if ((vm_page_laundry_count == 0) && (vm_page_external_laundry_count == 0)) {
        /*
         * No pageout, but some clean pages were freed. Start a complete
         * scan again without waiting.
         */
        if (evicted) {
            *should_wait = FALSE;
            return FALSE;
        }

        /*
         * Eviction failed, consider pages from internal objects on the
         * next attempt.
         */
        if (external_only) {
            simple_unlock(&vm_page_queue_free_lock);
            external_only = FALSE;
            goto again;
        }

        /*
         * TODO Find out what could cause this and how to deal with it.
         * This will likely require an out-of-memory killer.
         */
        panic("vm_page: unable to recycle any page");
    }

    simple_unlock(&vm_page_queue_free_lock);

    return vm_page_check_usable();
}

void
vm_page_refill_inactive(void)
{
    unsigned int i;

    vm_page_lock_queues();

    for (i = 0; i < vm_page_segs_size; i++) {
        vm_page_seg_refill_inactive(vm_page_seg_get(i));
    }

    vm_page_unlock_queues();
}

void
vm_page_wait(void (*continuation)(void))
{
    assert(!current_thread()->vm_privilege);

    simple_lock(&vm_page_queue_free_lock);

    if (!vm_page_alloc_paused) {
        simple_unlock(&vm_page_queue_free_lock);
        return;
    }

    assert_wait(&vm_page_alloc_paused, FALSE);

    simple_unlock(&vm_page_queue_free_lock);

    if (continuation != 0) {
        counter(c_vm_page_wait_block_user++);
        thread_block(continuation);
    } else {
        counter(c_vm_page_wait_block_kernel++);
        thread_block((void (*)(void)) 0);
    }
}