summaryrefslogtreecommitdiff
path: root/kern/act.c
blob: 3819ef32534a939c73d6f90f6be3655a6a823801 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
/*
 * Copyright (c) 1993,1994 The University of Utah and
 * the Computer Systems Laboratory (CSL).  All rights reserved.
 *
 * Permission to use, copy, modify and distribute this software and its
 * documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS
 * IS" CONDITION.  THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF
 * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * CSL requests users of this software to return to csl-dist@cs.utah.edu any
 * improvements that they make and grant CSL redistribution rights.
 *
 *	Author:	Bryan Ford, University of Utah CSL
 */
/*
 *	File:	act.c
 *
 *	Activation management routines
 *
 */

#ifdef MIGRATING_THREADS

#include <string.h>

#include <mach/kern_return.h>
#include <mach/alert.h>
#include <kern/slab.h>
#include <kern/thread.h>
#include <kern/task.h>
#include <kern/debug.h>
#include <kern/act.h>
#include <kern/current.h>
#include "ipc_target.h"

static void special_handler(ReturnHandler *rh, struct Act *act);

#ifdef ACT_STATIC_KLUDGE
#undef ACT_STATIC_KLUDGE
#define ACT_STATIC_KLUDGE 300
#endif

#ifndef ACT_STATIC_KLUDGE
static struct kmem_cache act_cache;
#else
static Act *act_freelist;
static Act free_acts[ACT_STATIC_KLUDGE];
#endif

/* This is a rather special activation
   which resides at the top and bottom of every thread.
   When the last "real" activation on a thread is destroyed,
   the null_act on the bottom gets invoked, destroying the thread.
   At the top, the null_act acts as an "invalid" cached activation,
   which will always fail the cached-activation test on RPC paths.

   As you might expect, most of its members have no particular value.
   alerts is zero.  */
Act null_act;

void
global_act_init(void)
{
#ifndef ACT_STATIC_KLUDGE
	kmem_cache_init(&act_cache, "Act", sizeof(struct Act), 0,
			NULL, 0);
#else
	int i;

printf("activations: [%x-%x]\n", &free_acts[0], &free_acts[ACT_STATIC_KLUDGE]);
	act_freelist = &free_acts[0];
	free_acts[0].ipt_next = 0;
	for (i = 1; i < ACT_STATIC_KLUDGE; i++) {
		free_acts[i].ipt_next = act_freelist;
		act_freelist = &free_acts[i];
	}
	/* XXX simple_lock_init(&act_freelist->lock); */
#endif

#if 0
	simple_lock_init(&null_act.lock);
	refcount_init(&null_act.ref_count, 1);
#endif

	act_machine_init();
}

/* Create a new activation in a specific task.
   Locking: Task */
kern_return_t act_create(task_t task, vm_offset_t user_stack,
			 vm_offset_t user_rbuf, vm_size_t user_rbuf_size,
			 struct Act **new_act)
{
	Act *act;

#ifndef ACT_STATIC_KLUDGE
	act = (Act*)kmem_cache_alloc(&act_cache);
	if (act == 0)
		return(KERN_RESOURCE_SHORTAGE);
#else
	/* XXX ipt_lock(act_freelist); */
	act = act_freelist;
	if (act == 0) panic("out of activations");
	act_freelist = act->ipt_next;
	/* XXX ipt_unlock(act_freelist); */
	act->ipt_next = 0;
#endif
	memset(act, 0, sizeof(*act)); /*XXX shouldn't be needed */

#ifdef DEBUG
	act->lower = act->higher = 0;
#endif

	/* Start with one reference for being active, another for the caller */
	simple_lock_init(&act->lock);
	refcount_init(&act->ref_count, 2);

	/* Latch onto the task.  */
	act->task = task;
	task_reference(task);

	/* Other simple setup */
	act->ipt = 0;
	act->thread = 0;
	act->suspend_count = 0;
	act->active = 1;
	act->handlers = 0;

	/* The special_handler will always be last on the returnhandlers list.  */
	act->special_handler.next = 0;
	act->special_handler.handler = special_handler;

	ipc_act_init(task, act);
	act_machine_create(task, act, user_stack, user_rbuf, user_rbuf_size);

	task_lock(task);

	/* Chain the act onto the task's list */
	act->task_links.next = task->acts.next;
	act->task_links.prev = &task->acts;
	task->acts.next->prev = &act->task_links;
	task->acts.next = &act->task_links;
	task->act_count++;

	task_unlock(task);

	*new_act = act;
	return KERN_SUCCESS;
}

/* This is called when an act's ref_count drops to zero.
   This can only happen when thread is zero (not in use),
   ipt is zero (not attached to any ipt),
   and active is false (terminated).  */
static void act_free(Act *inc)
{
	act_machine_destroy(inc);
	ipc_act_destroy(inc);

	/* Drop the task reference.  */
	task_deallocate(inc->task);

	/* Put the act back on the act cache */
#ifndef ACT_STATIC_KLUDGE
	kmem_cache_free(&act_cache, (vm_offset_t)inc);
#else
	/* XXX ipt_lock(act_freelist); */
	inc->ipt_next = act_freelist;
	act_freelist = inc;
	/* XXX ipt_unlock(act_freelist); */
#endif
}

void act_deallocate(Act *inc)
{
	refcount_drop(&inc->ref_count, act_free(inc));
}

/* Attach an act to the top of a thread ("push the stack").
   The thread must be either the current one or a brand-new one.
   Assumes the act is active but not in use.
   Assumes that if it is attached to an ipt (i.e. the ipt pointer is nonzero),
   the act has already been taken off the ipt's list.

   Already locked: cur_thread, act */
void act_attach(Act *act, thread_t thread, unsigned init_alert_mask)
{
	Act *lower;

	act->thread = thread;

	/* The thread holds a reference to the activation while using it.  */
	refcount_take(&act->ref_count);

	/* XXX detach any cached activations from above the target */

	/* Chain the act onto the thread's act stack.  */
	lower = thread->top_act;
	act->lower = lower;
	lower->higher = act;
	thread->top_act = act;

	act->alert_mask = init_alert_mask;
	act->alerts = lower->alerts & init_alert_mask;
}

/* Remove the current act from the top of the current thread ("pop the stack").
   Return it to the ipt it lives on, if any.
   Locking: Thread > Act(not on ipt) > ipc_target */
void act_detach(Act *cur_act)
{
	thread_t cur_thread = cur_act->thread;

	thread_lock(cur_thread);
	act_lock(cur_act);

	/* Unlink the act from the thread's act stack */
	cur_thread->top_act = cur_act->lower;
	cur_act->thread = 0;
#ifdef DEBUG
	cur_act->lower = cur_act->higher = 0;
#endif

	thread_unlock(cur_thread);

	/* Return it to the ipt's list */
	if (cur_act->ipt)
	{
		ipt_lock(cur_act->ipt);
		cur_act->ipt_next = cur_act->ipt->ipt_acts;
		cur_act->ipt->ipt_acts = cur_act;
		ipt_unlock(cur_act->ipt);
#if 0
	printf("  return to ipt %x\n", cur_act->ipt);
#endif
	}

	act_unlock(cur_act);

	/* Drop the act reference taken for being in use.  */
	refcount_drop(&cur_act->ref_count, act_free(cur_act));
}



/*** Activation control support routines ***/

/* This is called by system-dependent code
   when it detects that act->handlers is non-null
   while returning into user mode.
   Activations linked onto an ipt always have null act->handlers,
   so RPC entry paths need not check it.

   Locking: Act */
void act_execute_returnhandlers(void)
{
	Act *act = current_act();

#if 0
	printf("execute_returnhandlers\n");
#endif
	while (1) {
		ReturnHandler *rh;

		/* Grab the next returnhandler */
		act_lock(act);
		rh = act->handlers;
		if (!rh) {
			act_unlock(act);
			return;
		}
		act->handlers = rh->next;
		act_unlock(act);

		/* Execute it */
		(*rh->handler)(rh, act);
	}
}

/* Try to nudge an act into executing its returnhandler chain.
   Ensures that the activation will execute its returnhandlers
   before it next executes any of its user-level code.
   Also ensures that it is safe to break the thread's activation chain
   immediately above this activation,
   by rolling out of any outstanding two-way-optimized RPC.

   The target activation is not necessarily active
   or even in use by a thread.
   If it isn't, this routine does nothing.

   Already locked: Act */
static void act_nudge(struct Act *act)
{
	/* If it's suspended, wake it up.  */
	thread_wakeup(&act->suspend_count);

	/* Do a machine-dependent low-level nudge.
	   If we're on a multiprocessor,
	   this may mean sending an interprocessor interrupt.
	   In any case, it means rolling out of two-way-optimized RPC paths.  */
	act_machine_nudge(act);
}

/* Install the special returnhandler that handles suspension and termination,
   if it hasn't been installed already.

   Already locked: Act */
static void install_special_handler(struct Act *act)
{
	ReturnHandler **rh;

	/* The work handler must always be the last ReturnHandler on the list,
	   because it can do tricky things like detach the act.  */
	for (rh = &act->handlers; *rh; rh = &(*rh)->next);
	if (rh != &act->special_handler.next) {
		*rh = &act->special_handler;
	}

	/* Nudge the target activation,
	   to ensure that it will see the returnhandler we're adding.  */
	act_nudge(act);
}

/* Locking: Act */
static void special_handler(ReturnHandler *rh, struct Act *cur_act)
{
      retry:

	act_lock(cur_act);

	/* If someone has killed this invocation,
	   invoke the return path with a terminated exception.  */
	if (!cur_act->active) {
		act_unlock(cur_act);
		act_machine_return(KERN_TERMINATED);
		/* XXX should just set the activation's reentry_routine
		   and then return from special_handler().
		   The magic reentry_routine should just pop its own activation
		   and chain to the reentry_routine of the _lower_ activation.
		   If that lower activation is the null_act,
		   the thread will then be terminated.  */
	}

	/* If we're suspended, go to sleep and wait for someone to wake us up.  */
	if (cur_act->suspend_count) {
		act_unlock(cur_act);
		/* XXX mp unsafe */
		thread_wait((int)&cur_act->suspend_count, FALSE);

		act_lock(cur_act);

		/* If we're still (or again) suspended,
		   go to sleep again after executing any new returnhandlers that may have appeared.  */
		if (cur_act->suspend_count)
			install_special_handler(cur_act);
	}

	act_unlock(cur_act);
}

#if 0 /************************ OLD SEMI-OBSOLETE CODE *********************/
static __dead void act_throughcall_return(Act *act)
{
	/* Done - destroy the act and return */
	act_detach(act);
	act_terminate(act);
	act_deallocate(act);

	/* XXX */
	thread_terminate_self();
}

__dead void act_throughcall(task_t task, void (*infunc)())
{
	thread_t thread = current_thread();
	Act *act;
	ReturnHandler rh;
	int rc;

	rc = act_create(task, 0, 0, 0, &act);
	if (rc) return rc;

	act->return_routine = act_throughcall_return;

	thread_lock(thread);
	act_lock(act);

	act_attach(thread, act, 0);

	rh.handler = infunc;
	rh.next = act->handlers;
	act->handlers = &rh;

	act_unlock(act);
	thread_unlock(thread);

	/* Call through the act into the returnhandler list */
	act_machine_throughcall(act);
}


/* Grab an act from the specified pool, to pass to act_upcall.
   Returns with the act locked, since it's in an inconsistent state
   (not on its ipt but not on a thread either).
   Returns null if no acts are available on the ipt.

   Locking: ipc_target > Act(on ipt) */
Act *act_grab(struct ipc_target *ipt)
{
	Act *act;

	ipt_lock(ipt);

      retry:

	/* Pull an act off the ipt's list.  */
	act = ipt->acts;
	if (!act)
		goto none_avail;
	ipt->acts = act->ipt_next;

	act_lock(act);

	/* If it's been terminated, drop it and get another one.  */
	if (!act->active) {
#if 0
		printf("dropping terminated act %08x\n", act);
#endif
		/* XXX ipt_deallocate(ipt); */
		act->ipt = 0;
		act_unlock(act);
		act_deallocate(act);
		goto retry;
	}

none_avail:
	ipt_unlock(ipt);

	return act;
}

/* Try to make an upcall with an act on the specified ipt.
   If the ipt is empty, returns KERN_RESOURCE_SHORTAGE.  XXX???

   Locking: ipc_target > Act > Thread */
kern_return_t	act_upcall(struct Act *act, unsigned init_alert_mask,
			      vm_offset_t user_entrypoint, vm_offset_t user_data)
{
	thread_t cur_thread = current_thread();
	int rc;

	/* XXX locking */

	act_attach(cur_thread, act, init_alert_mask);

	/* Make the upcall into the destination task */
	rc = act_machine_upcall(act, user_entrypoint, user_data);

	/* Done - detach the act and return */
	act_detach(act);

	return rc;
}
#endif /************************ END OF OLD SEMI-OBSOLETE CODE *********************/




/*** Act service routines ***/

/* Lock this act and its current thread.
   We can only find the thread from the act
   and the thread must be locked before the act,
   requiring a little icky juggling.

   If the thread is not currently on any thread,
   returns with only the act locked.

   Note that this routine is not called on any performance-critical path.
   It is only for explicit act operations
   which don't happen often.

   Locking: Thread > Act */
static thread_t act_lock_thread(Act *act)
{
	thread_t thread;

      retry:

	/* Find the thread */
	act_lock(act);
	thread = act->thread;
	if (thread == 0)
	{
		act_unlock(act);
		return 0;
	}
	thread_reference(thread);
	act_unlock(act);

	/* Lock the thread and re-lock the act,
	   and make sure the thread didn't change.  */
	thread_lock(thread);
	act_lock(act);
	if (act->thread != thread)
	{
		act_unlock(act);
		thread_unlock(thread);
		thread_deallocate(thread);
		goto retry;
	}

	thread_deallocate(thread);

	return thread;
}

/* Already locked: act->task
   Locking: Task > Act */
kern_return_t act_terminate_task_locked(struct Act *act)
{
	act_lock(act);

	if (act->active)
	{
		/* Unlink the act from the task's act list,
		   so it doesn't appear in calls to task_acts and such.
		   The act still keeps its ref on the task, however,
		   until it loses all its own references and is freed.  */
		act->task_links.next->prev = act->task_links.prev;
		act->task_links.prev->next = act->task_links.next;
		act->task->act_count--;

		/* Remove it from any ipc_target.  XXX is this right?  */
		act_set_target(act, 0);

		/* This will allow no more control operations on this act.  */
		act->active = 0;

		/* When the special_handler gets executed,
		   it will see the terminated condition and exit immediately.  */
		install_special_handler(act);

		/* Drop the act reference taken for being active.
		   (There is still at least one reference left: the one we were passed.)  */
		act_deallocate(act);
	}

	act_unlock(act);

	return KERN_SUCCESS;
}

/* Locking: Task > Act */
kern_return_t act_terminate(struct Act *act)
{
	task_t task = act->task;
	kern_return_t rc;

	/* act->task never changes,
	   so we can read it before locking the act.  */
	task_lock(act->task);

	rc = act_terminate_task_locked(act);

	task_unlock(act->task);

	return rc;
}

/* If this Act is on a Thread and is not the topmost,
   yank it and everything below it off of the thread's stack
   and put it all on a new thread forked from the original one.
   May fail due to resource shortage, but can always be retried.

   Locking: Thread > Act */
kern_return_t act_yank(Act *act)
{
	thread_t thread = act_lock_thread(act);

#if 0
	printf("act_yank inc %08x thread %08x\n", act, thread);
#endif
	if (thread)
	{
		if (thread->top_act != act)
		{
			printf("detaching act %08x from thread %08x\n", act, thread);

			/* Nudge the activation into a clean point for detachment.  */
			act_nudge(act);

			/* Now detach the activation
			   and give the orphan its own flow of control.  */
			/*XXX*/
		}

		thread_unlock(thread);
	}
	act_unlock(act);

	/* Ask the thread to return as quickly as possible,
	   because its results are now useless.  */
	act_abort(act);

	return KERN_SUCCESS;
}

/* Assign an activation to a specific ipc_target.
   Fails if the activation is already assigned to another pool.
   If ipt == 0, we remove the from its ipt.

   Locking: Act(not on ipt) > ipc_target > Act(on ipt) */
kern_return_t act_set_target(Act *act, struct ipc_target *ipt)
{
	act_lock(act);

	if (ipt == 0)
	{
		Act **lact;

		ipt = act->ipt;
		if (ipt == 0)
			return;

		/* XXX This is a violation of the locking order.  */
		ipt_lock(ipt);
		for (lact = &ipt->ipt_acts; *lact; lact = &((*lact)->ipt_next))
			if (act == *lact)
			{
				*lact = act->ipt_next;
				break;
			}
		ipt_unlock(ipt);

		act->ipt = 0;
		/* XXX ipt_deallocate(ipt); */
		act_deallocate(act);
		return;
	}
	if (act->ipt != ipt)
	{
		if (act->ipt != 0)
		{
			act_unlock(act);
			return KERN_FAILURE; /*XXX*/
		}
		act->ipt = ipt;
		ipt->ipt_type |= IPT_TYPE_MIGRATE_RPC;

		/* They get references to each other.  */
		act_reference(act);
		ipt_reference(ipt);

		/* If it is available,
		   add it to the ipt's available-activation list.  */
		if ((act->thread == 0) && (act->suspend_count == 0))
		{
			ipt_lock(ipt);
			act->ipt_next = ipt->ipt_acts;
			act->ipt->ipt_acts = act;
			ipt_unlock(ipt);
		}
	}
	act_unlock(act);

	return KERN_SUCCESS;
}

/* Register an alert from this activation.
   Each set bit is propagated upward from (but not including) this activation,
   until the top of the chain is reached or the bit is masked.

   Locking: Thread > Act */
kern_return_t act_alert(struct Act *act, unsigned alerts)
{
	thread_t thread = act_lock_thread(act);

#if 0
	printf("act_alert %08x: %08x\n", act, alerts);
#endif
	if (thread)
	{
		struct Act *act_up = act;
		while ((alerts) && (act_up != thread->top_act))
		{
			act_up = act_up->higher;
			alerts &= act_up->alert_mask;
			act_up->alerts |= alerts;
		}

		/* XXX If we reach the top, and it is blocked in glue code, do something.  */

		thread_unlock(thread);
	}
	act_unlock(act);

	return KERN_SUCCESS;
}

/* Locking: Thread > Act */
kern_return_t act_abort(struct Act *act)
{
	return act_alert(act, ALERT_ABORT_STRONG);
}

/* Locking: Thread > Act */
kern_return_t act_abort_safely(struct Act *act)
{
	return act_alert(act, ALERT_ABORT_SAFE);
}

/* Locking: Thread > Act */
kern_return_t act_alert_mask(struct Act *act, unsigned alert_mask)
{
	panic("act_alert_mask\n");
	return KERN_SUCCESS;
}

/* Locking: Thread > Act */
kern_return_t act_suspend(struct Act *act)
{
	thread_t thread = act_lock_thread(act);
	kern_return_t rc = KERN_SUCCESS;

#if 0
	printf("act_suspend %08x\n", act);
#endif
	if (act->active)
	{
		if (act->suspend_count++ == 0)
		{
			/* XXX remove from ipt */
			install_special_handler(act);
			act_nudge(act);
		}
	}
	else
		rc = KERN_TERMINATED;

	if (thread)
		thread_unlock(thread);
	act_unlock(act);

	return rc;
}

/* Locking: Act */
kern_return_t act_resume(struct Act *act)
{
#if 0
	printf("act_resume %08x from %d\n", act, act->suspend_count);
#endif

	act_lock(act);
	if (!act->active)
	{
		act_unlock(act);
		return KERN_TERMINATED;
	}

	if (act->suspend_count > 0) {
		if (--act->suspend_count == 0) {
			thread_wakeup(&act->suspend_count);
			/* XXX return to ipt */
		}
	}

	act_unlock(act);

	return KERN_SUCCESS;
}

typedef struct GetSetState {
	struct ReturnHandler rh;
	int flavor;
	void *state;
	int *pcount;
	int result;
} GetSetState;

/* Locking: Thread */
kern_return_t get_set_state(struct Act *act, int flavor, void *state, int *pcount,
			    void (*handler)(ReturnHandler *rh, struct Act *act))
{
	GetSetState gss;

	/* Initialize a small parameter structure */
	gss.rh.handler = handler;
	gss.flavor = flavor;
	gss.state = state;
	gss.pcount = pcount;

	/* Add it to the act's return handler list */
	act_lock(act);
	gss.rh.next = act->handlers;
	act->handlers = &gss.rh;

	act_nudge(act);

	act_unlock(act);
	/* XXX mp unsafe */
	thread_wait((int)&gss, 0); /* XXX could be interruptible */

	return gss.result;
}

static void get_state_handler(ReturnHandler *rh, struct Act *act)
{
	GetSetState *gss = (GetSetState*)rh;

	gss->result = act_machine_get_state(act, gss->flavor, gss->state, gss->pcount);
	thread_wakeup((int)gss);
}

/* Locking: Thread */
kern_return_t act_get_state(struct Act *act, int flavor, natural_t *state, natural_t *pcount)
{
	return get_set_state(act, flavor, state, pcount, get_state_handler);
}

static void set_state_handler(ReturnHandler *rh, struct Act *act)
{
	GetSetState *gss = (GetSetState*)rh;

	gss->result = act_machine_set_state(act, gss->flavor, gss->state, *gss->pcount);
	thread_wakeup((int)gss);
}

/* Locking: Thread */
kern_return_t act_set_state(struct Act *act, int flavor, natural_t *state, natural_t count)
{
	return get_set_state(act, flavor, state, &count, set_state_handler);
}



/*** backward compatibility hacks ***/

#include <mach/thread_info.h>
#include <mach/thread_special_ports.h>
#include <ipc/ipc_port.h>

kern_return_t act_thread_info(Act *act, int flavor,
				 thread_info_t thread_info_out, unsigned *thread_info_count)
{
	return thread_info(act->thread, flavor, thread_info_out, thread_info_count);
}

kern_return_t
act_thread_assign(Act *act, processor_set_t new_pset)
{
	return thread_assign(act->thread, new_pset);
}

kern_return_t
act_thread_assign_default(Act *act)
{
	return thread_assign_default(act->thread);
}

kern_return_t
act_thread_get_assignment(Act *act, processor_set_t *pset)
{
	return thread_get_assignment(act->thread, pset);
}

kern_return_t
act_thread_priority(Act *act, int priority, boolean_t set_max)
{
	return thread_priority(act->thread, priority, set_max);
}

kern_return_t
act_thread_max_priority(Act *act, processor_set_t *pset, int max_priority)
{
	return thread_max_priority(act->thread, pset, max_priority);
}

kern_return_t
act_thread_policy(Act *act, int policy, int data)
{
	return thread_policy(act->thread, policy, data);
}

kern_return_t
act_thread_wire(struct host *host, Act *act, boolean_t wired)
{
	return thread_wire(host, act->thread, wired);
}

kern_return_t
act_thread_depress_abort(Act *act)
{
	return thread_depress_abort(act->thread);
}

/*
 *	Routine:	act_get_special_port [kernel call]
 *	Purpose:
 *		Clones a send right for one of the thread's
 *		special ports.
 *	Conditions:
 *		Nothing locked.
 *	Returns:
 *		KERN_SUCCESS		Extracted a send right.
 *		KERN_INVALID_ARGUMENT	The thread is null.
 *		KERN_FAILURE		The thread is dead.
 *		KERN_INVALID_ARGUMENT	Invalid special port.
 */

kern_return_t
act_get_special_port(Act *act, int which, ipc_port_t *portp)
{
	ipc_port_t *whichp;
	ipc_port_t port;

#if 0
	printf("act_get_special_port\n");
#endif
	if (act == 0)
		return KERN_INVALID_ARGUMENT;

	switch (which) {
	    case THREAD_KERNEL_PORT:
		whichp = &act->self_port;
		break;

	    case THREAD_EXCEPTION_PORT:
		whichp = &act->exception_port;
		break;

	    default:
		return KERN_INVALID_ARGUMENT;
	}

	thread_lock(act->thread);

	if (act->self_port == IP_NULL) {
		thread_unlock(act->thread);
		return KERN_FAILURE;
	}

	port = ipc_port_copy_send(*whichp);
	thread_unlock(act->thread);

	*portp = port;
	return KERN_SUCCESS;
}

/*
 *	Routine:	act_set_special_port [kernel call]
 *	Purpose:
 *		Changes one of the thread's special ports,
 *		setting it to the supplied send right.
 *	Conditions:
 *		Nothing locked.  If successful, consumes
 *		the supplied send right.
 *	Returns:
 *		KERN_SUCCESS		Changed the special port.
 *		KERN_INVALID_ARGUMENT	The thread is null.
 *		KERN_FAILURE		The thread is dead.
 *		KERN_INVALID_ARGUMENT	Invalid special port.
 */

kern_return_t
act_set_special_port(Act *act, int which, ipc_port_t port)
{
	ipc_port_t *whichp;
	ipc_port_t old;

#if 0
	printf("act_set_special_port\n");
#endif
	if (act == 0)
		return KERN_INVALID_ARGUMENT;

	switch (which) {
	    case THREAD_KERNEL_PORT:
		whichp = &act->self_port;
		break;

	    case THREAD_EXCEPTION_PORT:
		whichp = &act->exception_port;
		break;

	    default:
		return KERN_INVALID_ARGUMENT;
	}

	thread_lock(act->thread);
	if (act->self_port == IP_NULL) {
		thread_unlock(act->thread);
		return KERN_FAILURE;
	}

	old = *whichp;
	*whichp = port;
	thread_unlock(act->thread);

	if (IP_VALID(old))
		ipc_port_release_send(old);
	return KERN_SUCCESS;
}

/*
 *	XXX lame, non-blocking ways to get/set state.
 *	Return thread's machine-dependent state.
 */
kern_return_t
act_get_state_immediate(
	Act			*act,
	int			flavor,
	void			*old_state,	/* pointer to OUT array */
	unsigned int		*old_state_count)	/*IN/OUT*/
{
	kern_return_t		ret;

	act_lock(act);
	/* not the top activation, return current state */
	if (act->thread && act->thread->top_act != act) {
		ret = act_machine_get_state(act, flavor,
					    old_state, old_state_count);
		act_unlock(act);
		return ret;
	}
	act_unlock(act);

	/* not sure this makes sense */
	return act_get_state(act, flavor, old_state, old_state_count);
}

/*
 *	Change thread's machine-dependent state.
 */
kern_return_t
act_set_state_immediate(
	Act			*act,
	int			flavor,
	void			*new_state,
	unsigned int		new_state_count)
{
	kern_return_t		ret;

	act_lock(act);
	/* not the top activation, set it now */
	if (act->thread && act->thread->top_act != act) {
		ret = act_machine_set_state(act, flavor,
					    new_state, new_state_count);
		act_unlock(act);
		return ret;
	}
	act_unlock(act);

	/* not sure this makes sense */
	return act_set_state(act, flavor, new_state, new_state_count);
}

void act_count(void)
{
	int i;
	Act *act;
	static int amin = ACT_STATIC_KLUDGE;

	i = 0;
	for (act = act_freelist; act; act = act->ipt_next)
		i++;
	if (i < amin)
		amin = i;
	printf("%d of %d activations in use, %d max\n",
	       ACT_STATIC_KLUDGE-i, ACT_STATIC_KLUDGE, ACT_STATIC_KLUDGE-amin);
}

void dump_act(act)
	Act *act;
{
	act_count();
	kact_count();
	while (act) {
		printf("%08.8x: thread=%x, task=%x, hi=%x, lo=%x, ref=%x\n",
		       act, act->thread, act->task,
		       act->higher, act->lower, act->ref_count);
		printf("\talerts=%x, mask=%x, susp=%x, active=%x\n",
		       act->alerts, act->alert_mask,
		       act->suspend_count, act->active);
		machine_dump_act(&act->mact);
		if (act == act->lower)
			break;
		act = act->lower;
	}
}

#ifdef ACTWATCH
Act *
get_next_act(int sp)
{
	static int i;
	Act *act;

	while (1) {
		if (i == ACT_STATIC_KLUDGE) {
			i = 0;
			return 0;
		}
		act = &free_acts[i];
		i++;
		if (act->mact.space == sp)
			return act;
	}
}
#endif /* ACTWATCH */

#endif /* MIGRATING_THREADS */