1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
/// Type tag for Message union.
/// This is the first value in the actual packet sent over the network.
pub const PacketType = enum(u16) {
relay = 0x003C,
file_transfer = 0x8888,
connection = 0x00E9,
_,
};
/// Reserved option values.
/// Currently unused.
pub const ConnectionOptions = packed struct(u8) {
opt1: bool = false,
opt2: bool = false,
opt3: bool = false,
opt4: bool = false,
opt5: bool = false,
opt6: bool = false,
opt7: bool = false,
opt8: bool = false,
};
pub const MessageTypeError = error{
NotImplementedSaprusType,
UnknownSaprusType,
};
pub const MessageParseError = MessageTypeError || error{
InvalidMessage,
};
// ZERO COPY STUFF
// &payload could be a void value that is treated as a pointer to a [*]u8
/// All Saprus messages
pub const Message = packed struct {
const Relay = packed struct {
dest: @Vector(4, u8),
payload: void,
pub fn getPayload(self: *align(1) Relay) []u8 {
const len: *u16 = @ptrFromInt(@intFromPtr(self) - @sizeOf(u16));
return @as([*]u8, @ptrCast(&self.payload))[0 .. len.* - @bitSizeOf(Relay) / 8];
}
};
const Connection = packed struct {
src_port: u16, // random number > 1024
dest_port: u16, // random number > 1024
seq_num: u32 = 0,
msg_id: u32 = 0,
reserved: u8 = 0,
options: ConnectionOptions = .{},
payload: void,
pub fn getPayload(self: *align(1) Connection) []u8 {
const len: *u16 = @ptrFromInt(@intFromPtr(self) - @sizeOf(u16));
return @as([*]u8, @ptrCast(&self.payload))[0 .. len.* - @bitSizeOf(Connection) / 8];
}
fn nativeFromNetworkEndian(self: *align(1) Connection) void {
self.src_port = bigToNative(@TypeOf(self.src_port), self.src_port);
self.dest_port = bigToNative(@TypeOf(self.dest_port), self.dest_port);
self.seq_num = bigToNative(@TypeOf(self.seq_num), self.seq_num);
self.msg_id = bigToNative(@TypeOf(self.msg_id), self.msg_id);
}
fn networkFromNativeEndian(self: *align(1) Connection) void {
self.src_port = nativeToBig(@TypeOf(self.src_port), self.src_port);
self.dest_port = nativeToBig(@TypeOf(self.dest_port), self.dest_port);
self.seq_num = nativeToBig(@TypeOf(self.seq_num), self.seq_num);
self.msg_id = nativeToBig(@TypeOf(self.msg_id), self.msg_id);
}
};
const Self = @This();
const SelfBytes = []align(@alignOf(Self)) u8;
type: PacketType,
length: u16,
bytes: void = {},
/// Takes a byte slice, and returns a Message struct backed by the slice.
/// This properly initializes the top level headers within the slice.
/// This is used for creating new messages. For reading messages from the network,
/// see: networkBytesAsValue.
pub fn init(@"type": PacketType, bytes: []align(@alignOf(Self)) u8) *Self {
std.debug.assert(bytes.len >= @sizeOf(Self));
const res: *Self = @ptrCast(bytes.ptr);
res.type = @"type";
res.length = @intCast(bytes.len - @sizeOf(Self));
return res;
}
/// Compute the number of bytes required to store a given payload size for a given message type.
pub fn calcSize(comptime @"type": PacketType, payload_len: usize) MessageTypeError!u16 {
const header_size = @bitSizeOf(switch (@"type") {
.relay => Relay,
.connection => Connection,
.file_transfer => return MessageTypeError.NotImplementedSaprusType,
else => return MessageTypeError.UnknownSaprusType,
}) / 8;
return @intCast(payload_len + @sizeOf(Self) + header_size);
}
fn getRelay(self: *Self) *align(1) Relay {
return std.mem.bytesAsValue(Relay, &self.bytes);
}
fn getConnection(self: *Self) *align(1) Connection {
return std.mem.bytesAsValue(Connection, &self.bytes);
}
/// Access the message Saprus payload.
pub fn getSaprusTypePayload(self: *Self) MessageTypeError!(union(PacketType) {
relay: *align(1) Relay,
file_transfer: void,
connection: *align(1) Connection,
}) {
return switch (self.type) {
.relay => .{ .relay = self.getRelay() },
.connection => .{ .connection = self.getConnection() },
.file_transfer => MessageTypeError.NotImplementedSaprusType,
else => MessageTypeError.UnknownSaprusType,
};
}
/// Convert the message to native endianness from network endianness in-place.
pub fn nativeFromNetworkEndian(self: *Self) MessageTypeError!void {
self.type = @enumFromInt(bigToNative(
@typeInfo(@TypeOf(self.type)).@"enum".tag_type,
@intFromEnum(self.type),
));
self.length = bigToNative(@TypeOf(self.length), self.length);
errdefer {
// If the payload specific headers fail, revert the top level header values
self.type = @enumFromInt(nativeToBig(
@typeInfo(@TypeOf(self.type)).@"enum".tag_type,
@intFromEnum(self.type),
));
self.length = nativeToBig(@TypeOf(self.length), self.length);
}
switch (try self.getSaprusTypePayload()) {
.relay => {},
.connection => |*con| con.*.nativeFromNetworkEndian(),
// We know other values are unreachable,
// because they would have returned an error from the switch condition.
else => unreachable,
}
}
/// Convert the message to network endianness from native endianness in-place.
pub fn networkFromNativeEndian(self: *Self) MessageTypeError!void {
try switch (try self.getSaprusTypePayload()) {
.relay => {},
.connection => |*con| con.*.networkFromNativeEndian(),
.file_transfer => MessageTypeError.NotImplementedSaprusType,
else => MessageTypeError.UnknownSaprusType,
};
self.type = @enumFromInt(nativeToBig(
@typeInfo(@TypeOf(self.type)).@"enum".tag_type,
@intFromEnum(self.type),
));
self.length = nativeToBig(@TypeOf(self.length), self.length);
}
/// Convert network endian bytes to a native endian value in-place.
pub fn networkBytesAsValue(bytes: SelfBytes) MessageParseError!*Self {
const res = std.mem.bytesAsValue(Self, bytes);
try res.nativeFromNetworkEndian();
return .bytesAsValue(bytes);
}
/// Create a structured view of the bytes without initializing the length or type,
/// and without converting the endianness.
pub fn bytesAsValue(bytes: SelfBytes) MessageParseError!*Self {
const res = std.mem.bytesAsValue(Self, bytes);
return switch (res.type) {
.relay, .connection => if (bytes.len == res.length + @sizeOf(Self))
res
else
MessageParseError.InvalidMessage,
.file_transfer => MessageParseError.NotImplementedSaprusType,
else => MessageParseError.UnknownSaprusType,
};
}
/// Deprecated.
/// If I need the bytes, I should just pass around the slice that is backing this to begin with.
pub fn asBytes(self: *Self) SelfBytes {
const size = @sizeOf(Self) + self.length;
return @as([*]align(@alignOf(Self)) u8, @ptrCast(self))[0..size];
}
};
test "testing variable length zero copy struct" {
{
// Relay test
const payload = "Hello darkness my old friend";
var msg_bytes: [try Message.calcSize(.relay, payload.len)]u8 align(@alignOf(Message)) = undefined;
// Create a view of the byte slice as a Message
const msg: *Message = .init(.relay, &msg_bytes);
{
// Set the message values
{
// These are both set by the init call.
// msg.type = .relay;
// msg.length = payload_len;
}
const relay = (try msg.getSaprusTypePayload()).relay;
relay.dest = .{ 1, 2, 3, 4 };
@memcpy(relay.getPayload(), payload);
}
{
// Print the message as hex using the network byte order
try msg.networkFromNativeEndian();
// We know the error from nativeFromNetworkEndian is unreachable because
// it would have returned an error from networkFromNativeEndian.
defer msg.nativeFromNetworkEndian() catch unreachable;
std.debug.print("relay network bytes: {x}\n", .{msg_bytes});
std.debug.print("bytes len: {d}\n", .{msg_bytes.len});
}
if (false) {
// Illegal behavior
std.debug.print("{any}\n", .{(try msg.getSaprusTypePayload()).connection});
}
try std.testing.expectEqualDeep(msg, try Message.bytesAsValue(msg.asBytes()));
}
{
// Connection test
const payload = "Hello darkness my old friend";
var msg_bytes: [try Message.calcSize(.connection, payload.len)]u8 align(@alignOf(Message)) = undefined;
// Create a view of the byte slice as a Message
const msg: *Message = .init(.connection, &msg_bytes);
{
// Initializing connection header values
const connection = (try msg.getSaprusTypePayload()).connection;
connection.src_port = 1;
connection.dest_port = 2;
connection.seq_num = 3;
connection.msg_id = 4;
connection.reserved = 5;
connection.options = @bitCast(@as(u8, 6));
@memcpy(connection.getPayload(), payload);
}
{
// Print the message as hex using the network byte order
try msg.networkFromNativeEndian();
// We know the error from nativeFromNetworkEndian is unreachable because
// it would have returned an error from networkFromNativeEndian.
defer msg.nativeFromNetworkEndian() catch unreachable;
std.debug.print("connection network bytes: {x}\n", .{msg_bytes});
std.debug.print("bytes len: {d}\n", .{msg_bytes.len});
}
}
}
const std = @import("std");
const Allocator = std.mem.Allocator;
const asBytes = std.mem.asBytes;
const nativeToBig = std.mem.nativeToBig;
const bigToNative = std.mem.bigToNative;
test "Round trip Relay toBytes and fromBytes" {
if (false) {
const gpa = std.testing.allocator;
const msg = Message{
.relay = .{
.header = .{ .dest = .{ 255, 255, 255, 255 } },
.payload = "Hello darkness my old friend",
},
};
const to_bytes = try msg.toBytes(gpa);
defer gpa.free(to_bytes);
const from_bytes = try Message.fromBytes(to_bytes, gpa);
defer from_bytes.deinit(gpa);
try std.testing.expectEqualDeep(msg, from_bytes);
}
return error.SkipZigTest;
}
test "Round trip Connection toBytes and fromBytes" {
if (false) {
const gpa = std.testing.allocator;
const msg = Message{
.connection = .{
.header = .{
.src_port = 0,
.dest_port = 0,
},
.payload = "Hello darkness my old friend",
},
};
const to_bytes = try msg.toBytes(gpa);
defer gpa.free(to_bytes);
const from_bytes = try Message.fromBytes(to_bytes, gpa);
defer from_bytes.deinit(gpa);
try std.testing.expectEqualDeep(msg, from_bytes);
}
return error.SkipZigTest;
}
test {
std.testing.refAllDeclsRecursive(@This());
}
|