summaryrefslogtreecommitdiff
path: root/pfinet/linux-src/net/ipv4/tcp_input.c
blob: 7f5cc4e7ebbc183b12f2acb2632672363f06ea00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
/*
 * INET		An implementation of the TCP/IP protocol suite for the LINUX
 *		operating system.  INET is implemented using the  BSD Socket
 *		interface as the means of communication with the user level.
 *
 *		Implementation of the Transmission Control Protocol(TCP).
 *
 * Version:	$Id: tcp_input.c,v 1.164.2.8 1999/09/23 19:21:23 davem Exp $
 *
 * Authors:	Ross Biro, <bir7@leland.Stanford.Edu>
 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 *		Florian La Roche, <flla@stud.uni-sb.de>
 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 *		Jorge Cwik, <jorge@laser.satlink.net>
 */

/*
 * Changes:
 *		Pedro Roque	:	Fast Retransmit/Recovery.
 *					Two receive queues.
 *					Retransmit queue handled by TCP.
 *					Better retransmit timer handling.
 *					New congestion avoidance.
 *					Header prediction.
 *					Variable renaming.
 *
 *		Eric		:	Fast Retransmit.
 *		Randy Scott	:	MSS option defines.
 *		Eric Schenk	:	Fixes to slow start algorithm.
 *		Eric Schenk	:	Yet another double ACK bug.
 *		Eric Schenk	:	Delayed ACK bug fixes.
 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
 *		David S. Miller	:	Don't allow zero congestion window.
 *		Eric Schenk	:	Fix retransmitter so that it sends
 *					next packet on ack of previous packet.
 *		Andi Kleen	:	Moved open_request checking here
 *					and process RSTs for open_requests.
 *		Andi Kleen	:	Better prune_queue, and other fixes.
 *		Andrey Savochkin:	Fix RTT measurements in the presnce of
 *					timestamps.
 *		Andrey Savochkin:	Check sequence numbers correctly when
 *					removing SACKs due to in sequence incoming
 *					data segments.
 *		Andi Kleen:		Make sure we never ack data there is not
 *					enough room for. Also make this condition
 *					a fatal error if it might still happen.
 *		Andi Kleen:		Add tcp_measure_rcv_mss to make 
 *					connections with MSS<min(MTU,ann. MSS)
 *					work without delayed acks. 
 *		Andi Kleen:		Process packets with PSH set in the
 *					fast path.
 */

#include <linux/config.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <net/tcp.h>
#include <linux/ipsec.h>

#ifdef CONFIG_SYSCTL
#define SYNC_INIT 0 /* let the user enable it */
#else
#define SYNC_INIT 1
#endif

extern int sysctl_tcp_fin_timeout;

/* These are on by default so the code paths get tested.
 * For the final 2.2 this may be undone at our discretion. -DaveM
 */
int sysctl_tcp_timestamps = 1;
int sysctl_tcp_window_scaling = 1;
int sysctl_tcp_sack = 1;

int sysctl_tcp_syncookies = SYNC_INIT; 
int sysctl_tcp_stdurg;
int sysctl_tcp_rfc1337;

static int prune_queue(struct sock *sk);

/* There is something which you must keep in mind when you analyze the
 * behavior of the tp->ato delayed ack timeout interval.  When a
 * connection starts up, we want to ack as quickly as possible.  The
 * problem is that "good" TCP's do slow start at the beginning of data
 * transmission.  The means that until we send the first few ACK's the
 * sender will sit on his end and only queue most of his data, because
 * he can only send snd_cwnd unacked packets at any given time.  For
 * each ACK we send, he increments snd_cwnd and transmits more of his
 * queue.  -DaveM
 */
static void tcp_delack_estimator(struct tcp_opt *tp)
{
	if(tp->ato == 0) {
		tp->lrcvtime = tcp_time_stamp;

		/* Help sender leave slow start quickly,
		 * and also makes sure we do not take this
		 * branch ever again for this connection.
		 */
		tp->ato = 1;
		tcp_enter_quickack_mode(tp);
	} else {
		int m = tcp_time_stamp - tp->lrcvtime;

		tp->lrcvtime = tcp_time_stamp;
		if(m <= 0)
			m = 1;
		if(m > tp->rto)
			tp->ato = tp->rto;
		else {
			/* This funny shift makes sure we
			 * clear the "quick ack mode" bit.
			 */
			tp->ato = ((tp->ato << 1) >> 2) + m;
		}
	}
}

/* 
 * Remember to send an ACK later.
 */
static __inline__ void tcp_remember_ack(struct tcp_opt *tp, struct tcphdr *th, 
					struct sk_buff *skb)
{
	tp->delayed_acks++; 

	/* Tiny-grams with PSH set artifically deflate our
	 * ato measurement, but with a lower bound.
	 */
	if(th->psh && (skb->len < (tp->mss_cache >> 1))) {
		/* Preserve the quickack state. */
		if((tp->ato & 0x7fffffff) > HZ/50)
			tp->ato = ((tp->ato & 0x80000000) |
				   (HZ/50));
	}
} 

/* Called to compute a smoothed rtt estimate. The data fed to this
 * routine either comes from timestamps, or from segments that were
 * known _not_ to have been retransmitted [see Karn/Partridge
 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 * piece by Van Jacobson.
 * NOTE: the next three routines used to be one big routine.
 * To save cycles in the RFC 1323 implementation it was better to break
 * it up into three procedures. -- erics
 */

static __inline__ void tcp_rtt_estimator(struct tcp_opt *tp, __u32 mrtt)
{
	long m = mrtt; /* RTT */

	/*	The following amusing code comes from Jacobson's
	 *	article in SIGCOMM '88.  Note that rtt and mdev
	 *	are scaled versions of rtt and mean deviation.
	 *	This is designed to be as fast as possible 
	 *	m stands for "measurement".
	 *
	 *	On a 1990 paper the rto value is changed to:
	 *	RTO = rtt + 4 * mdev
	 */
	if(m == 0)
		m = 1;
	if (tp->srtt != 0) {
		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
		if (m < 0)
			m = -m;		/* m is now abs(error) */
		m -= (tp->mdev >> 2);   /* similar update on mdev */
		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
	} else {
		/* no previous measure. */
		tp->srtt = m<<3;	/* take the measured time to be rtt */
		tp->mdev = m<<2;	/* make sure rto = 3*rtt */
	}
}

/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 * routine referred to above.
 */

static __inline__ void tcp_set_rto(struct tcp_opt *tp)
{
	tp->rto = (tp->srtt >> 3) + tp->mdev;
	tp->rto += (tp->rto >> 2) + (tp->rto >> (tp->snd_cwnd-1));
}
 

/* Keep the rto between HZ/5 and 120*HZ. 120*HZ is the upper bound
 * on packet lifetime in the internet. We need the HZ/5 lower
 * bound to behave correctly against BSD stacks with a fixed
 * delayed ack.
 * FIXME: It's not entirely clear this lower bound is the best
 * way to avoid the problem. Is it possible to drop the lower
 * bound and still avoid trouble with BSD stacks? Perhaps
 * some modification to the RTO calculation that takes delayed
 * ack bias into account? This needs serious thought. -- erics
 */
static __inline__ void tcp_bound_rto(struct tcp_opt *tp)
{
	if (tp->rto > 120*HZ)
		tp->rto = 120*HZ;
	if (tp->rto < HZ/5)
		tp->rto = HZ/5;
}

/* WARNING: this must not be called if tp->saw_timestamp was false. */
extern __inline__ void tcp_replace_ts_recent(struct sock *sk, struct tcp_opt *tp,
					     __u32 start_seq, __u32 end_seq)
{
	/* It is start_seq <= last_ack_seq combined
	   with in window check. If start_seq<=last_ack_seq<=rcv_nxt,
	   then segment is in window if end_seq>=rcv_nxt.
	 */
	if (!after(start_seq, tp->last_ack_sent) &&
	    !before(end_seq, tp->rcv_nxt)) {
		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
		 * extra check below makes sure this can only happen
		 * for pure ACK frames.  -DaveM
		 *
		 * Plus: expired timestamps.
		 *
		 * Plus: resets failing PAWS.
		 */
		if((s32)(tp->rcv_tsval - tp->ts_recent) >= 0) {
			tp->ts_recent = tp->rcv_tsval;
			tp->ts_recent_stamp = tcp_time_stamp;
		}
	}
}

#define PAWS_24DAYS	(HZ * 60 * 60 * 24 * 24)

extern __inline__ int tcp_paws_discard(struct tcp_opt *tp, struct tcphdr *th, unsigned len)
{
	return ((s32)(tp->rcv_tsval - tp->ts_recent) < 0 &&
		(s32)(tcp_time_stamp - tp->ts_recent_stamp) < PAWS_24DAYS &&
		/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM */
		len != (th->doff * 4));
}


static int __tcp_sequence(struct tcp_opt *tp, u32 seq, u32 end_seq)
{
	u32 end_window = tp->rcv_wup + tp->rcv_wnd;

	if (tp->rcv_wnd &&
	    after(end_seq, tp->rcv_nxt) &&
	    before(seq, end_window))
		return 1;
	if (seq != end_window)
		return 0;
	return (seq == end_seq);
}

/* This functions checks to see if the tcp header is actually acceptable. */
extern __inline__ int tcp_sequence(struct tcp_opt *tp, u32 seq, u32 end_seq)
{
	if (seq == tp->rcv_nxt)
		return (tp->rcv_wnd || (end_seq == seq));

	return __tcp_sequence(tp, seq, end_seq);
}

/* When we get a reset we do this. */
static void tcp_reset(struct sock *sk)
{
	sk->zapped = 1;

	/* We want the right error as BSD sees it (and indeed as we do). */
	switch (sk->state) {
		case TCP_SYN_SENT:
			sk->err = ECONNREFUSED;
			break;
		case TCP_CLOSE_WAIT:
			sk->err = EPIPE;
			break;
		default:
			sk->err = ECONNRESET;
	};
	tcp_set_state(sk, TCP_CLOSE);
	sk->shutdown = SHUTDOWN_MASK;
	if (!sk->dead) 
		sk->state_change(sk);
}

/* This tags the retransmission queue when SACKs arrive. */
static void tcp_sacktag_write_queue(struct sock *sk, struct tcp_sack_block *sp, int nsacks)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
	int i = nsacks;

	while(i--) {
		struct sk_buff *skb = skb_peek(&sk->write_queue);
		__u32 start_seq = ntohl(sp->start_seq);
		__u32 end_seq = ntohl(sp->end_seq);
		int fack_count = 0;

		while((skb != NULL) &&
		      (skb != tp->send_head) &&
		      (skb != (struct sk_buff *)&sk->write_queue)) {
			/* The retransmission queue is always in order, so
			 * we can short-circuit the walk early.
			 */
			if(after(TCP_SKB_CB(skb)->seq, end_seq))
				break;

			/* We play conservative, we don't allow SACKS to partially
			 * tag a sequence space.
			 */
			fack_count++;
			if(!after(start_seq, TCP_SKB_CB(skb)->seq) &&
			   !before(end_seq, TCP_SKB_CB(skb)->end_seq)) {
				/* If this was a retransmitted frame, account for it. */
				if((TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) &&
				   tp->retrans_out)
					tp->retrans_out--;
				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;

				/* RULE: All new SACKs will either decrease retrans_out
				 *       or advance fackets_out.
				 */
				if(fack_count > tp->fackets_out)
					tp->fackets_out = fack_count;
			}
			skb = skb->next;
		}
		sp++; /* Move on to the next SACK block. */
	}
}

/* Look for tcp options. Normally only called on SYN and SYNACK packets.
 * But, this can also be called on packets in the established flow when
 * the fast version below fails.
 */
void tcp_parse_options(struct sock *sk, struct tcphdr *th, struct tcp_opt *tp, int no_fancy)
{
	unsigned char *ptr;
	int length=(th->doff*4)-sizeof(struct tcphdr);
	int saw_mss = 0;

	ptr = (unsigned char *)(th + 1);
	tp->saw_tstamp = 0;

	while(length>0) {
	  	int opcode=*ptr++;
		int opsize;

		switch (opcode) {
			case TCPOPT_EOL:
				return;
			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
				length--;
				continue;
			default:
				opsize=*ptr++;
				if (opsize < 2) /* "silly options" */
					return;
				if (opsize > length)
					break;	/* don't parse partial options */
	  			switch(opcode) {
				case TCPOPT_MSS:
					if(opsize==TCPOLEN_MSS && th->syn) {
						u16 in_mss = ntohs(*(__u16 *)ptr);
						if (in_mss == 0)
							in_mss = 536;
						if (tp->mss_clamp > in_mss)
							tp->mss_clamp = in_mss;
						saw_mss = 1;
					}
					break;
				case TCPOPT_WINDOW:
					if(opsize==TCPOLEN_WINDOW && th->syn)
						if (!no_fancy && sysctl_tcp_window_scaling) {
							tp->wscale_ok = 1;
							tp->snd_wscale = *(__u8 *)ptr;
							if(tp->snd_wscale > 14) {
								if(net_ratelimit())
									printk("tcp_parse_options: Illegal window "
									       "scaling value %d >14 received.",
									       tp->snd_wscale);
								tp->snd_wscale = 14;
							}
						}
					break;
				case TCPOPT_TIMESTAMP:
					if(opsize==TCPOLEN_TIMESTAMP) {
						if (sysctl_tcp_timestamps && !no_fancy) {
							tp->tstamp_ok = 1;
							tp->saw_tstamp = 1;
							tp->rcv_tsval = ntohl(*(__u32 *)ptr);
							tp->rcv_tsecr = ntohl(*(__u32 *)(ptr+4));
						}
					}
					break;
				case TCPOPT_SACK_PERM:
					if(opsize==TCPOLEN_SACK_PERM && th->syn) {
						if (sysctl_tcp_sack && !no_fancy) {
							tp->sack_ok = 1;
							tp->num_sacks = 0;
						}
					}
					break;

				case TCPOPT_SACK:
					if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
					   sysctl_tcp_sack && (sk != NULL) && !th->syn) {
						int sack_bytes = opsize - TCPOLEN_SACK_BASE;

						if(!(sack_bytes % TCPOLEN_SACK_PERBLOCK)) {
							int num_sacks = sack_bytes >> 3;
							struct tcp_sack_block *sackp;

							sackp = (struct tcp_sack_block *)ptr;
							tcp_sacktag_write_queue(sk, sackp, num_sacks);
						}
					}
	  			};
	  			ptr+=opsize-2;
	  			length-=opsize;
	  	};
	}
	if(th->syn && saw_mss == 0)
		tp->mss_clamp = 536;
}

/* Fast parse options. This hopes to only see timestamps.
 * If it is wrong it falls back on tcp_parse_options().
 */
static __inline__ int tcp_fast_parse_options(struct sock *sk, struct tcphdr *th, struct tcp_opt *tp)
{
	/* If we didn't send out any options ignore them all. */
	if (tp->tcp_header_len == sizeof(struct tcphdr))
		return 0;
	if (th->doff == sizeof(struct tcphdr)>>2) {
		tp->saw_tstamp = 0;
		return 0;
	} else if (th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
		__u32 *ptr = (__u32 *)(th + 1);
		if (*ptr == __constant_ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
					     | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
			tp->saw_tstamp = 1;
			tp->rcv_tsval = ntohl(*++ptr);
			tp->rcv_tsecr = ntohl(*++ptr);
			return 1;
		}
	}
	tcp_parse_options(sk, th, tp, 0);
	return 1;
}

#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/

static __inline__ void clear_fast_retransmit(struct tcp_opt *tp)
{
	if (tp->dup_acks > 3)
		tp->snd_cwnd = (tp->snd_ssthresh);

	tp->dup_acks = 0;
}

/* NOTE: This code assumes that tp->dup_acks gets cleared when a
 * retransmit timer fires.
 */
static void tcp_fast_retrans(struct sock *sk, u32 ack, int not_dup)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);

	/* Note: If not_dup is set this implies we got a
	 * data carrying packet or a window update.
	 * This carries no new information about possible
	 * lost packets, so we have to ignore it for the purposes
	 * of counting duplicate acks. Ideally this does not imply we
	 * should stop our fast retransmit phase, more acks may come
	 * later without data to help us. Unfortunately this would make
	 * the code below much more complex. For now if I see such
	 * a packet I clear the fast retransmit phase.
	 */
	if (ack == tp->snd_una && tp->packets_out && (not_dup == 0)) {
		/* This is the standard reno style fast retransmit branch. */

                /* 1. When the third duplicate ack is received, set ssthresh 
                 * to one half the current congestion window, but no less 
                 * than two segments. Retransmit the missing segment.
                 */
		if (tp->high_seq == 0 || after(ack, tp->high_seq)) {
			tp->dup_acks++;
			if ((tp->fackets_out > 3) || (tp->dup_acks == 3)) {
                                tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
                                tp->snd_cwnd = (tp->snd_ssthresh + 3);
				tp->high_seq = tp->snd_nxt;
				if(!tp->fackets_out)
					tcp_retransmit_skb(sk,
							   skb_peek(&sk->write_queue));
				else
					tcp_fack_retransmit(sk);
                                tcp_reset_xmit_timer(sk, TIME_RETRANS, tp->rto);
			}
		} else if (++tp->dup_acks > 3) {
			/* 2. Each time another duplicate ACK arrives, increment 
			 * cwnd by the segment size. [...] Transmit a packet...
			 *
			 * Packet transmission will be done on normal flow processing
			 * since we're not in "retransmit mode".  We do not use
			 * duplicate ACKs to artificially inflate the congestion
			 * window when doing FACK.
			 */
			if(!tp->fackets_out) {
				tp->snd_cwnd++;
			} else {
				/* Fill any further holes which may have
				 * appeared.
				 *
				 * We may want to change this to run every
				 * further multiple-of-3 dup ack increments,
				 * to be more robust against out-of-order
				 * packet delivery.  -DaveM
				 */
				tcp_fack_retransmit(sk);
			}
		}
	} else if (tp->high_seq != 0) {
		/* In this branch we deal with clearing the Floyd style
		 * block on duplicate fast retransmits, and if requested
		 * we do Hoe style secondary fast retransmits.
		 */
		if (!before(ack, tp->high_seq) || (not_dup & FLAG_DATA) != 0) {
			/* Once we have acked all the packets up to high_seq
			 * we are done this fast retransmit phase.
			 * Alternatively data arrived. In this case we
			 * Have to abort the fast retransmit attempt.
			 * Note that we do want to accept a window
			 * update since this is expected with Hoe's algorithm.
			 */
			clear_fast_retransmit(tp);

			/* After we have cleared up to high_seq we can
			 * clear the Floyd style block.
			 */
			if (!before(ack, tp->high_seq)) {
				tp->high_seq = 0;
				tp->fackets_out = 0;
			}
		} else if (tp->dup_acks >= 3) {
			if (!tp->fackets_out) {
				/* Hoe Style. We didn't ack the whole
				 * window. Take this as a cue that
				 * another packet was lost and retransmit it.
				 * Don't muck with the congestion window here.
				 * Note that we have to be careful not to
				 * act if this was a window update and it
				 * didn't ack new data, since this does
				 * not indicate a packet left the system.
				 * We can test this by just checking
				 * if ack changed from snd_una, since
				 * the only way to get here without advancing
				 * from snd_una is if this was a window update.
				 */
				if (ack != tp->snd_una && before(ack, tp->high_seq)) {
                                	tcp_retransmit_skb(sk,
							   skb_peek(&sk->write_queue));
                                	tcp_reset_xmit_timer(sk, TIME_RETRANS, tp->rto);
				}
			} else {
				/* FACK style, fill any remaining holes in
				 * receiver's queue.
				 */
				tcp_fack_retransmit(sk);
			}
		}
	}
}

/* This is Jacobson's slow start and congestion avoidance. 
 * SIGCOMM '88, p. 328.
 */
static __inline__ void tcp_cong_avoid(struct tcp_opt *tp)
{
        if (tp->snd_cwnd <= tp->snd_ssthresh) {
                /* In "safe" area, increase. */
                tp->snd_cwnd++;
	} else {
                /* In dangerous area, increase slowly.
		 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
		 */
		if (tp->snd_cwnd_cnt >= tp->snd_cwnd) {
			tp->snd_cwnd++;
			tp->snd_cwnd_cnt=0;
		} else
			tp->snd_cwnd_cnt++;
        }       
}

/* Remove acknowledged frames from the retransmission queue. */
static int tcp_clean_rtx_queue(struct sock *sk, __u32 ack,
			       __u32 *seq, __u32 *seq_rtt)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
	struct sk_buff *skb;
	__u32 now = tcp_time_stamp;
	int acked = 0;

	/* If we are retransmitting, and this ACK clears up to
	 * the retransmit head, or further, then clear our state.
	 */
	if (tp->retrans_head != NULL &&
	    !before(ack, TCP_SKB_CB(tp->retrans_head)->end_seq))
		tp->retrans_head = NULL;

	while((skb=skb_peek(&sk->write_queue)) && (skb != tp->send_head)) {
		struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 
		__u8 sacked = scb->sacked;
		
		/* If our packet is before the ack sequence we can
		 * discard it as it's confirmed to have arrived at
		 * the other end.
		 */
		if (after(scb->end_seq, ack))
			break;

		/* Initial outgoing SYN's get put onto the write_queue
		 * just like anything else we transmit.  It is not
		 * true data, and if we misinform our callers that
		 * this ACK acks real data, we will erroneously exit
		 * connection startup slow start one packet too
		 * quickly.  This is severely frowned upon behavior.
		 */
		if((sacked & TCPCB_SACKED_RETRANS) && tp->retrans_out)
			tp->retrans_out--;
		if(!(scb->flags & TCPCB_FLAG_SYN)) {
			acked |= FLAG_DATA_ACKED;
			if(sacked & TCPCB_SACKED_RETRANS)
				acked |= FLAG_RETRANS_DATA_ACKED;
			if(tp->fackets_out)
				tp->fackets_out--;
		} else {
			/* This is pure paranoia. */
			tp->retrans_head = NULL;
		}		
		tp->packets_out--;
		*seq = scb->seq;
		*seq_rtt = now - scb->when;
		__skb_unlink(skb, skb->list);
		kfree_skb(skb);
	}
	return acked;
}

static void tcp_ack_probe(struct sock *sk, __u32 ack)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
	
	/* Our probe was answered. */
	tp->probes_out = 0;
	
	/* Was it a usable window open? */

	/* should always be non-null */
	if (tp->send_head != NULL &&
	    !before (ack + tp->snd_wnd, TCP_SKB_CB(tp->send_head)->end_seq)) {
		tp->backoff = 0;
		tp->pending = 0;
		tcp_clear_xmit_timer(sk, TIME_PROBE0);
	} else {
		tcp_reset_xmit_timer(sk, TIME_PROBE0,
				     min(tp->rto << tp->backoff, 120*HZ));
	}
}
 
/* Should we open up the congestion window? */
static __inline__ int should_advance_cwnd(struct tcp_opt *tp, int flag)
{
	/* Data must have been acked. */
	if ((flag & FLAG_DATA_ACKED) == 0)
		return 0;

	/* Some of the data acked was retransmitted somehow? */
	if ((flag & FLAG_RETRANS_DATA_ACKED) != 0) {
		/* We advance in all cases except during
		 * non-FACK fast retransmit/recovery.
		 */
		if (tp->fackets_out != 0 ||
		    tp->retransmits != 0)
			return 1;

		/* Non-FACK fast retransmit does it's own
		 * congestion window management, don't get
		 * in the way.
		 */
		return 0;
	}

	/* New non-retransmitted data acked, always advance.  */
	return 1;
}

/* Read draft-ietf-tcplw-high-performance before mucking
 * with this code. (Superceeds RFC1323)
 */
static void tcp_ack_saw_tstamp(struct sock *sk, struct tcp_opt *tp,
			       u32 seq, u32 ack, int flag)
{
	__u32 seq_rtt;

	/* RTTM Rule: A TSecr value received in a segment is used to
	 * update the averaged RTT measurement only if the segment
	 * acknowledges some new data, i.e., only if it advances the
	 * left edge of the send window.
	 *
	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
	 */
	if (!(flag & FLAG_DATA_ACKED))
		return;

	seq_rtt = tcp_time_stamp - tp->rcv_tsecr;
	tcp_rtt_estimator(tp, seq_rtt);
	if (tp->retransmits) {
		if (tp->packets_out == 0) {
			tp->retransmits = 0;
			tp->fackets_out = 0;
			tp->retrans_out = 0;
			tp->backoff = 0;
			tcp_set_rto(tp);
		} else {
			/* Still retransmitting, use backoff */
			tcp_set_rto(tp);
			tp->rto = tp->rto << tp->backoff;
		}
	} else {
		tcp_set_rto(tp);
	}

	tcp_bound_rto(tp);
}

static __inline__ void tcp_ack_packets_out(struct sock *sk, struct tcp_opt *tp)
{
	struct sk_buff *skb = skb_peek(&sk->write_queue);

	/* Some data was ACK'd, if still retransmitting (due to a
	 * timeout), resend more of the retransmit queue.  The
	 * congestion window is handled properly by that code.
	 */
	if (tp->retransmits) {
		tcp_xmit_retransmit_queue(sk);
		tcp_reset_xmit_timer(sk, TIME_RETRANS, tp->rto);
	} else {
		__u32 when = tp->rto - (tcp_time_stamp - TCP_SKB_CB(skb)->when);
		if ((__s32)when < 0)
			when = 1;
		tcp_reset_xmit_timer(sk, TIME_RETRANS, when);
	}
}

/* This routine deals with incoming acks, but not outgoing ones. */
static int tcp_ack(struct sock *sk, struct tcphdr *th, 
		   u32 ack_seq, u32 ack, int len)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
	int flag = 0;
	u32 seq = 0;
	u32 seq_rtt = 0;

	if(sk->zapped)
		return(1);	/* Dead, can't ack any more so why bother */

	if (tp->pending == TIME_KEEPOPEN)
	  	tp->probes_out = 0;

	tp->rcv_tstamp = tcp_time_stamp;

	/* If the ack is newer than sent or older than previous acks
	 * then we can probably ignore it.
	 */
	if (after(ack, tp->snd_nxt) || before(ack, tp->snd_una))
		goto uninteresting_ack;

	/* If there is data set flag 1 */
	if (len != th->doff*4) {
		flag |= FLAG_DATA;
		tcp_delack_estimator(tp);
	}

	/* Update our send window. */

	/* This is the window update code as per RFC 793
	 * snd_wl{1,2} are used to prevent unordered
	 * segments from shrinking the window 
	 */
	if (before(tp->snd_wl1, ack_seq) ||
	    (tp->snd_wl1 == ack_seq && !after(tp->snd_wl2, ack))) {
		u32 nwin = ntohs(th->window) << tp->snd_wscale;

		if ((tp->snd_wl2 != ack) || (nwin > tp->snd_wnd)) {
			flag |= FLAG_WIN_UPDATE;
			tp->snd_wnd = nwin;

			tp->snd_wl1 = ack_seq;
			tp->snd_wl2 = ack;

			if (nwin > tp->max_window)
				tp->max_window = nwin;
		}
	}

	/* We passed data and got it acked, remove any soft error
	 * log. Something worked...
	 */
	sk->err_soft = 0;

	/* If this ack opens up a zero window, clear backoff.  It was
	 * being used to time the probes, and is probably far higher than
	 * it needs to be for normal retransmission.
	 */
	if (tp->pending == TIME_PROBE0)
		tcp_ack_probe(sk, ack);

	/* See if we can take anything off of the retransmit queue. */
	flag |= tcp_clean_rtx_queue(sk, ack, &seq, &seq_rtt);

	/* We must do this here, before code below clears out important
	 * state contained in tp->fackets_out and tp->retransmits.  -DaveM
	 */
	if (should_advance_cwnd(tp, flag))
		tcp_cong_avoid(tp);

	/* If we have a timestamp, we always do rtt estimates. */
	if (tp->saw_tstamp) {
		tcp_ack_saw_tstamp(sk, tp, seq, ack, flag);
	} else {
		/* If we were retransmiting don't count rtt estimate. */
		if (tp->retransmits) {
			if (tp->packets_out == 0) {
				tp->retransmits = 0;
				tp->fackets_out = 0;
				tp->retrans_out = 0;
			}
		} else {
			/* We don't have a timestamp. Can only use
			 * packets that are not retransmitted to determine
			 * rtt estimates. Also, we must not reset the
			 * backoff for rto until we get a non-retransmitted
			 * packet. This allows us to deal with a situation
			 * where the network delay has increased suddenly.
			 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
			 */
			if (flag & FLAG_DATA_ACKED) {
				if(!(flag & FLAG_RETRANS_DATA_ACKED)) {
					tp->backoff = 0;
					tcp_rtt_estimator(tp, seq_rtt);
					tcp_set_rto(tp);
					tcp_bound_rto(tp);
				}
			}
		}
	}

	if (tp->packets_out) {
		if (flag & FLAG_DATA_ACKED)
			tcp_ack_packets_out(sk, tp);
	} else {
		tcp_clear_xmit_timer(sk, TIME_RETRANS);
	}

	flag &= (FLAG_DATA | FLAG_WIN_UPDATE);
	if ((ack == tp->snd_una	&& tp->packets_out && flag == 0) ||
	    (tp->high_seq != 0)) {
		tcp_fast_retrans(sk, ack, flag);
	} else {
		/* Clear any aborted fast retransmit starts. */
		tp->dup_acks = 0;
	}
	/* It is not a brain fart, I thought a bit now. 8)
	 *
	 * Forward progress is indicated, if:
	 *   1. the ack acknowledges new data.
	 *   2. or the ack is duplicate, but it is caused by new segment
	 *      arrival. This case is filtered by:
	 *      - it contains no data, syn or fin.
	 *      - it does not update window.
	 *   3. or new SACK. It is difficult to check, so that we ignore it.
	 *
	 * Forward progress is also indicated by arrival new data,
	 * which was caused by window open from our side. This case is more
	 * difficult and it is made (alas, incorrectly) in tcp_data_queue().
	 *                                              --ANK (990513)
	 */
	if (ack != tp->snd_una || (flag == 0 && !th->fin))
		dst_confirm(sk->dst_cache);

	/* Remember the highest ack received. */
	tp->snd_una = ack;
	return 1;

uninteresting_ack:
	SOCK_DEBUG(sk, "Ack ignored %u %u\n", ack, tp->snd_nxt);
	return 0;
}

/* New-style handling of TIME_WAIT sockets. */
extern void tcp_tw_schedule(struct tcp_tw_bucket *tw);
extern void tcp_tw_reschedule(struct tcp_tw_bucket *tw);
extern void tcp_tw_deschedule(struct tcp_tw_bucket *tw);

void tcp_timewait_kill(struct tcp_tw_bucket *tw)
{
	struct tcp_bind_bucket *tb = tw->tb;

	/* Disassociate with bind bucket. */
	if(tw->bind_next)
		tw->bind_next->bind_pprev = tw->bind_pprev;
	*(tw->bind_pprev) = tw->bind_next;
	if (tb->owners == NULL) {
		if (tb->next)
			tb->next->pprev = tb->pprev;
		*(tb->pprev) = tb->next;
		kmem_cache_free(tcp_bucket_cachep, tb);
	}

	/* Unlink from established hashes. */
	if(tw->next)
		tw->next->pprev = tw->pprev;
	*tw->pprev = tw->next;

	/* We decremented the prot->inuse count when we entered TIME_WAIT
	 * and the sock from which this came was destroyed.
	 */
	tw->sklist_next->sklist_prev = tw->sklist_prev;
	tw->sklist_prev->sklist_next = tw->sklist_next;

	/* Ok, now free it up. */
	kmem_cache_free(tcp_timewait_cachep, tw);
}

/* We come here as a special case from the AF specific TCP input processing,
 * and the SKB has no owner.  Essentially handling this is very simple,
 * we just keep silently eating rx'd packets, acking them if necessary,
 * until none show up for the entire timeout period. 
 *
 * Return 0, TCP_TW_ACK, TCP_TW_RST
 */
enum tcp_tw_status 
tcp_timewait_state_process(struct tcp_tw_bucket *tw, struct sk_buff *skb,
			       struct tcphdr *th, unsigned len)
{
	/*	RFC 1122:
	 *	"When a connection is [...] on TIME-WAIT state [...]
	 *	[a TCP] MAY accept a new SYN from the remote TCP to
	 *	reopen the connection directly, if it:
	 *	
	 *	(1)  assigns its initial sequence number for the new
	 *	connection to be larger than the largest sequence
	 *	number it used on the previous connection incarnation,
	 *	and
	 *
	 *	(2)  returns to TIME-WAIT state if the SYN turns out 
	 *	to be an old duplicate".
	 */
	if(th->syn && !th->rst && after(TCP_SKB_CB(skb)->seq, tw->rcv_nxt)) {
		struct sock *sk;
		struct tcp_func *af_specific = tw->af_specific;
		__u32 isn;

		isn = tw->snd_nxt + 128000;
		if(isn == 0)
			isn++;
		tcp_tw_deschedule(tw);
		tcp_timewait_kill(tw);
		sk = af_specific->get_sock(skb, th);
		if(sk == NULL ||
		   !ipsec_sk_policy(sk,skb) ||
		   atomic_read(&sk->sock_readers) != 0)
			return 0;
		skb_set_owner_r(skb, sk);
		af_specific = sk->tp_pinfo.af_tcp.af_specific;
		if(af_specific->conn_request(sk, skb, isn) < 0)
			return TCP_TW_RST; /* Toss a reset back. */
		return 0; /* Discard the frame. */
	}

	/* Check RST or SYN */
	if(th->rst || th->syn) {
		/* This is TIME_WAIT assasination, in two flavors.
		 * Oh well... nobody has a sufficient solution to this
		 * protocol bug yet.
		 */
		if(sysctl_tcp_rfc1337 == 0) {
			tcp_tw_deschedule(tw);
			tcp_timewait_kill(tw);
		}
		if(!th->rst)
			return TCP_TW_RST; /* toss a reset back */
		return 0;
	} else {
		/* In this case we must reset the TIMEWAIT timer. */
		if(th->ack)
			tcp_tw_reschedule(tw);
	}
	/* Ack old packets if necessary */ 
	if (!after(TCP_SKB_CB(skb)->end_seq, tw->rcv_nxt) &&
	    (th->doff * 4) > len)
		return TCP_TW_ACK; 
	return 0; 
}

/* Enter the time wait state.  This is always called from BH
 * context.  Essentially we whip up a timewait bucket, copy the
 * relevant info into it from the SK, and mess with hash chains
 * and list linkage.
 */
static __inline__ void tcp_tw_hashdance(struct sock *sk, struct tcp_tw_bucket *tw)
{
	struct sock **head, *sktw;

	/* Step 1: Remove SK from established hash. */
	if(sk->next)
		sk->next->pprev = sk->pprev;
	*sk->pprev = sk->next;
	sk->pprev = NULL;
	tcp_reg_zap(sk);

	/* Step 2: Put TW into bind hash where SK was. */
	tw->tb = (struct tcp_bind_bucket *)sk->prev;
	if((tw->bind_next = sk->bind_next) != NULL)
		sk->bind_next->bind_pprev = &tw->bind_next;
	tw->bind_pprev = sk->bind_pprev;
	*sk->bind_pprev = (struct sock *)tw;
	sk->prev = NULL;

	/* Step 3: Same for the protocol sklist. */
	(tw->sklist_next = sk->sklist_next)->sklist_prev = (struct sock *)tw;
	(tw->sklist_prev = sk->sklist_prev)->sklist_next = (struct sock *)tw;
	sk->sklist_next = NULL;
	sk->prot->inuse--;

	/* Step 4: Hash TW into TIMEWAIT half of established hash table. */
	head = &tcp_ehash[sk->hashent + (tcp_ehash_size/2)];
	sktw = (struct sock *)tw;
	if((sktw->next = *head) != NULL)
		(*head)->pprev = &sktw->next;
	*head = sktw;
	sktw->pprev = head;
}

void tcp_time_wait(struct sock *sk)
{
	struct tcp_tw_bucket *tw;

	tw = kmem_cache_alloc(tcp_timewait_cachep, SLAB_ATOMIC);
	if(tw != NULL) {
		/* Give us an identity. */
		tw->daddr	= sk->daddr;
		tw->rcv_saddr	= sk->rcv_saddr;
		tw->bound_dev_if= sk->bound_dev_if;
		tw->num		= sk->num;
		tw->state	= TCP_TIME_WAIT;
		tw->sport	= sk->sport;
		tw->dport	= sk->dport;
		tw->family	= sk->family;
		tw->reuse	= sk->reuse;
		tw->rcv_nxt	= sk->tp_pinfo.af_tcp.rcv_nxt;
		tw->snd_nxt     = sk->tp_pinfo.af_tcp.snd_nxt;
		tw->window	= tcp_select_window(sk);
		tw->af_specific	= sk->tp_pinfo.af_tcp.af_specific;

#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
		if(tw->family == PF_INET6) {
			memcpy(&tw->v6_daddr,
			       &sk->net_pinfo.af_inet6.daddr,
			       sizeof(struct in6_addr));
			memcpy(&tw->v6_rcv_saddr,
			       &sk->net_pinfo.af_inet6.rcv_saddr,
			       sizeof(struct in6_addr));
		}
#endif
		/* Linkage updates. */
		tcp_tw_hashdance(sk, tw);

		/* Get the TIME_WAIT timeout firing. */
		tcp_tw_schedule(tw);

		/* CLOSE the SK. */
		if(sk->state == TCP_ESTABLISHED)
			tcp_statistics.TcpCurrEstab--;
		sk->state = TCP_CLOSE;
		net_reset_timer(sk, TIME_DONE,
				min(sk->tp_pinfo.af_tcp.srtt * 2, TCP_DONE_TIME));
	} else {
		/* Sorry, we're out of memory, just CLOSE this
		 * socket up.  We've got bigger problems than
		 * non-graceful socket closings.
		 */
		tcp_set_state(sk, TCP_CLOSE);
	}

	/* Prevent rcvmsg/sndmsg calls, and wake people up. */
	sk->shutdown = SHUTDOWN_MASK;
	if(!sk->dead)
		sk->state_change(sk);
}

/*
 * 	Process the FIN bit. This now behaves as it is supposed to work
 *	and the FIN takes effect when it is validly part of sequence
 *	space. Not before when we get holes.
 *
 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
 *	TIME-WAIT)
 *
 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
 *	close and we go into CLOSING (and later onto TIME-WAIT)
 *
 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
 */
 
static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
{
	sk->tp_pinfo.af_tcp.fin_seq = TCP_SKB_CB(skb)->end_seq;

	tcp_send_ack(sk);

	if (!sk->dead) {
		sk->state_change(sk);
		sock_wake_async(sk->socket, 1);
	}

	switch(sk->state) {
		case TCP_SYN_RECV:
		case TCP_ESTABLISHED:
			/* Move to CLOSE_WAIT */
			tcp_set_state(sk, TCP_CLOSE_WAIT);
			if (th->rst)
				sk->shutdown = SHUTDOWN_MASK;
			break;

		case TCP_CLOSE_WAIT:
		case TCP_CLOSING:
			/* Received a retransmission of the FIN, do
			 * nothing.
			 */
			break;
		case TCP_LAST_ACK:
			/* RFC793: Remain in the LAST-ACK state. */
			break;

		case TCP_FIN_WAIT1:
			/* This case occurs when a simultaneous close
			 * happens, we must ack the received FIN and
			 * enter the CLOSING state.
			 *
			 * This causes a WRITE timeout, which will either
			 * move on to TIME_WAIT when we timeout, or resend
			 * the FIN properly (maybe we get rid of that annoying
			 * FIN lost hang). The TIME_WRITE code is already 
			 * correct for handling this timeout.
			 */
			tcp_set_state(sk, TCP_CLOSING);
			break;
		case TCP_FIN_WAIT2:
			/* Received a FIN -- send ACK and enter TIME_WAIT. */
			tcp_time_wait(sk);
			break;
		default:
			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
			 * cases we should never reach this piece of code.
			 */
			printk("tcp_fin: Impossible, sk->state=%d\n", sk->state);
			break;
	};
}

/* These routines update the SACK block as out-of-order packets arrive or
 * in-order packets close up the sequence space.
 */
static void tcp_sack_maybe_coalesce(struct tcp_opt *tp, struct tcp_sack_block *sp)
{
	int this_sack, num_sacks = tp->num_sacks;
	struct tcp_sack_block *swalk = &tp->selective_acks[0];

	/* If more than one SACK block, see if the recent change to SP eats into
	 * or hits the sequence space of other SACK blocks, if so coalesce.
	 */
	if(num_sacks != 1) {
		for(this_sack = 0; this_sack < num_sacks; this_sack++, swalk++) {
			if(swalk == sp)
				continue;

			/* First case, bottom of SP moves into top of the
			 * sequence space of SWALK.
			 */
			if(between(sp->start_seq, swalk->start_seq, swalk->end_seq)) {
				sp->start_seq = swalk->start_seq;
				goto coalesce;
			}
			/* Second case, top of SP moves into bottom of the
			 * sequence space of SWALK.
			 */
			if(between(sp->end_seq, swalk->start_seq, swalk->end_seq)) {
				sp->end_seq = swalk->end_seq;
				goto coalesce;
			}
		}
	}
	/* SP is the only SACK, or no coalescing cases found. */
	return;

coalesce:
	/* Zap SWALK, by moving every further SACK up by one slot.
	 * Decrease num_sacks.
	 */
	for(; this_sack < num_sacks-1; this_sack++, swalk++) {
		struct tcp_sack_block *next = (swalk + 1);
		swalk->start_seq = next->start_seq;
		swalk->end_seq = next->end_seq;
	}
	tp->num_sacks--;
}

static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
{
	__u32 tmp;

	tmp = sack1->start_seq;
	sack1->start_seq = sack2->start_seq;
	sack2->start_seq = tmp;

	tmp = sack1->end_seq;
	sack1->end_seq = sack2->end_seq;
	sack2->end_seq = tmp;
}

static void tcp_sack_new_ofo_skb(struct sock *sk, struct sk_buff *skb)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
	struct tcp_sack_block *sp = &tp->selective_acks[0];
	int cur_sacks = tp->num_sacks;

	if (!cur_sacks)
		goto new_sack;

	/* Optimize for the common case, new ofo frames arrive
	 * "in order". ;-)  This also satisfies the requirements
	 * of RFC2018 about ordering of SACKs.
	 */
	if(sp->end_seq == TCP_SKB_CB(skb)->seq) {
		sp->end_seq = TCP_SKB_CB(skb)->end_seq;
		tcp_sack_maybe_coalesce(tp, sp);
	} else if(sp->start_seq == TCP_SKB_CB(skb)->end_seq) {
		/* Re-ordered arrival, in this case, can be optimized
		 * as well.
		 */
		sp->start_seq = TCP_SKB_CB(skb)->seq;
		tcp_sack_maybe_coalesce(tp, sp);
	} else {
		struct tcp_sack_block *swap = sp + 1;
		int this_sack, max_sacks = (tp->tstamp_ok ? 3 : 4);

		/* Oh well, we have to move things around.
		 * Try to find a SACK we can tack this onto.
		 */

		for(this_sack = 1; this_sack < cur_sacks; this_sack++, swap++) {
			if((swap->end_seq == TCP_SKB_CB(skb)->seq) ||
			   (swap->start_seq == TCP_SKB_CB(skb)->end_seq)) {
				if(swap->end_seq == TCP_SKB_CB(skb)->seq)
					swap->end_seq = TCP_SKB_CB(skb)->end_seq;
				else
					swap->start_seq = TCP_SKB_CB(skb)->seq;
				tcp_sack_swap(sp, swap);
				tcp_sack_maybe_coalesce(tp, sp);
				return;
			}
		}

		/* Could not find an adjacent existing SACK, build a new one,
		 * put it at the front, and shift everyone else down.  We
		 * always know there is at least one SACK present already here.
		 *
		 * If the sack array is full, forget about the last one.
		 */
		if (cur_sacks >= max_sacks) {
			cur_sacks--;
			tp->num_sacks--;
		}
		while(cur_sacks >= 1) {
			struct tcp_sack_block *this = &tp->selective_acks[cur_sacks];
			struct tcp_sack_block *prev = (this - 1);
			this->start_seq = prev->start_seq;
			this->end_seq = prev->end_seq;
			cur_sacks--;
		}

	new_sack:
		/* Build the new head SACK, and we're done. */
		sp->start_seq = TCP_SKB_CB(skb)->seq;
		sp->end_seq = TCP_SKB_CB(skb)->end_seq;
		tp->num_sacks++;
	}
}

static void tcp_sack_remove_skb(struct tcp_opt *tp, struct sk_buff *skb)
{
	struct tcp_sack_block *sp = &tp->selective_acks[0];
	int num_sacks = tp->num_sacks;
	int this_sack;

	/* This is an in order data segment _or_ an out-of-order SKB being
	 * moved to the receive queue, so we know this removed SKB will eat
	 * from the front of a SACK.
	 */
	for(this_sack = 0; this_sack < num_sacks; this_sack++, sp++) {
		/* Check if the start of the sack is covered by skb. */
		if(!before(sp->start_seq, TCP_SKB_CB(skb)->seq) &&
		   before(sp->start_seq, TCP_SKB_CB(skb)->end_seq))
			break;
	}

	/* This should only happen if so many SACKs get built that some get
	 * pushed out before we get here, or we eat some in sequence packets
	 * which are before the first SACK block.
	 */
	if(this_sack >= num_sacks)
		return;

	sp->start_seq = TCP_SKB_CB(skb)->end_seq;
	if(!before(sp->start_seq, sp->end_seq)) {
		/* Zap this SACK, by moving forward any other SACKS. */
		for(this_sack += 1; this_sack < num_sacks; this_sack++, sp++) {
			struct tcp_sack_block *next = (sp + 1);
			sp->start_seq = next->start_seq;
			sp->end_seq = next->end_seq;
		}
		tp->num_sacks--;
	}
}

static void tcp_sack_extend(struct tcp_opt *tp, struct sk_buff *old_skb, struct sk_buff *new_skb)
{
	struct tcp_sack_block *sp = &tp->selective_acks[0];
	int num_sacks = tp->num_sacks;
	int this_sack;

	for(this_sack = 0; this_sack < num_sacks; this_sack++, sp++) {
		if(sp->end_seq == TCP_SKB_CB(old_skb)->end_seq)
			break;
	}
	if(this_sack >= num_sacks)
		return;
	sp->end_seq = TCP_SKB_CB(new_skb)->end_seq;
}

/* This one checks to see if we can put data from the
 * out_of_order queue into the receive_queue.
 */
static void tcp_ofo_queue(struct sock *sk)
{
	struct sk_buff *skb;
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);

	while ((skb = skb_peek(&tp->out_of_order_queue))) {
		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
			break;

		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
			SOCK_DEBUG(sk, "ofo packet was already received \n");
			__skb_unlink(skb, skb->list);
			kfree_skb(skb);
			continue;
		}
		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
			   TCP_SKB_CB(skb)->end_seq);

		if(tp->sack_ok)
			tcp_sack_remove_skb(tp, skb);
		__skb_unlink(skb, skb->list);
		__skb_queue_tail(&sk->receive_queue, skb);
		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
		if(skb->h.th->fin)
			tcp_fin(skb, sk, skb->h.th);
	}
}

static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
{
	struct sk_buff *skb1;
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);

	/*  Queue data for delivery to the user.
	 *  Packets in sequence go to the receive queue.
	 *  Out of sequence packets to the out_of_order_queue.
	 */
	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
		/* Ok. In sequence. */
	queue_and_out:
		dst_confirm(sk->dst_cache);
		__skb_queue_tail(&sk->receive_queue, skb);
		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
		if(skb->h.th->fin) {
			tcp_fin(skb, sk, skb->h.th);
		} else {
			tcp_remember_ack(tp, skb->h.th, skb); 
		}
		/* This may have eaten into a SACK block. */
		if(tp->sack_ok && tp->num_sacks)
			tcp_sack_remove_skb(tp, skb);
		tcp_ofo_queue(sk);

		/* Turn on fast path. */ 
		if (skb_queue_len(&tp->out_of_order_queue) == 0)
			tp->pred_flags = htonl(((tp->tcp_header_len >> 2) << 28) |
					       (0x10 << 16) |
					       tp->snd_wnd);
		return;
	}
	
	/* An old packet, either a retransmit or some packet got lost. */
	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
		/* A retransmit, 2nd most common case.  Force an imediate ack. */
		SOCK_DEBUG(sk, "retransmit received: seq %X\n", TCP_SKB_CB(skb)->seq);
		tcp_enter_quickack_mode(tp);
		kfree_skb(skb);
		return;
	}

	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
		/* Partial packet, seq < rcv_next < end_seq */
		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
			   TCP_SKB_CB(skb)->end_seq);

		goto queue_and_out;
	}

	/* Ok. This is an out_of_order segment, force an ack. */
	tp->delayed_acks++;
	tcp_enter_quickack_mode(tp);

	/* Disable header prediction. */
	tp->pred_flags = 0;

	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);

	if (skb_peek(&tp->out_of_order_queue) == NULL) {
		/* Initial out of order segment, build 1 SACK. */
		if(tp->sack_ok) {
			tp->num_sacks = 1;
			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
			tp->selective_acks[0].end_seq = TCP_SKB_CB(skb)->end_seq;
		}
		__skb_queue_head(&tp->out_of_order_queue,skb);
	} else {
		for(skb1=tp->out_of_order_queue.prev; ; skb1 = skb1->prev) {
			/* Already there. */
			if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb1)->seq) {
				if (skb->len >= skb1->len) {
					if(tp->sack_ok)
						tcp_sack_extend(tp, skb1, skb);
					__skb_append(skb1, skb);
					__skb_unlink(skb1, skb1->list);
					kfree_skb(skb1);
				} else {
					/* A duplicate, smaller than what is in the
					 * out-of-order queue right now, toss it.
					 */
					kfree_skb(skb);
				}
				break;
			}
			
			if (after(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) {
				__skb_append(skb1, skb);
				if(tp->sack_ok)
					tcp_sack_new_ofo_skb(sk, skb);
				break;
			}

                        /* See if we've hit the start. If so insert. */
			if (skb1 == skb_peek(&tp->out_of_order_queue)) {
				__skb_queue_head(&tp->out_of_order_queue,skb);
				if(tp->sack_ok)
					tcp_sack_new_ofo_skb(sk, skb);
				break;
			}
		}
	}
}


/*
 *	This routine handles the data.  If there is room in the buffer,
 *	it will be have already been moved into it.  If there is no
 *	room, then we will just have to discard the packet.
 */

static int tcp_data(struct sk_buff *skb, struct sock *sk, unsigned int len)
{
	struct tcphdr *th;
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);

	th = skb->h.th;
	skb_pull(skb, th->doff*4);
	skb_trim(skb, len - (th->doff*4));

        if (skb->len == 0 && !th->fin)
		return(0);

	/* 
	 *	If our receive queue has grown past its limits shrink it.
	 *	Make sure to do this before moving snd_nxt, otherwise
	 *	data might be acked for that we don't have enough room.
	 */
	if (atomic_read(&sk->rmem_alloc) > sk->rcvbuf) { 
		if (prune_queue(sk) < 0) { 
			/* Still not enough room. That can happen when
			 * skb->true_size differs significantly from skb->len.
			 */
			return 0;
		}
	}

	tcp_data_queue(sk, skb);

	if (before(tp->rcv_nxt, tp->copied_seq)) {
		printk(KERN_DEBUG "*** tcp.c:tcp_data bug acked < copied\n");
		tp->rcv_nxt = tp->copied_seq;
	}

	/* Above, tcp_data_queue() increments delayed_acks appropriately.
	 * Now tell the user we may have some data.
	 */
	if (!sk->dead) {
		sk->data_ready(sk,0);
	}
	return(1);
}

static void __tcp_data_snd_check(struct sock *sk, struct sk_buff *skb)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);

	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd) &&
	    tcp_packets_in_flight(tp) < tp->snd_cwnd) {
		/* Put more data onto the wire. */
		tcp_write_xmit(sk);
	} else if (tp->packets_out == 0 && !tp->pending) {
		/* Start probing the receivers window. */
		tcp_reset_xmit_timer(sk, TIME_PROBE0, tp->rto);
	}
}

static __inline__ void tcp_data_snd_check(struct sock *sk)
{
	struct sk_buff *skb = sk->tp_pinfo.af_tcp.send_head;

	if (skb != NULL)
		__tcp_data_snd_check(sk, skb); 
}

/* 
 * Adapt the MSS value used to make delayed ack decision to the 
 * real world. 
 */ 
static __inline__ void tcp_measure_rcv_mss(struct sock *sk, struct sk_buff *skb)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
	unsigned int len = skb->len, lss; 

	if (len > tp->rcv_mss) 
		tp->rcv_mss = len; 
	lss = tp->last_seg_size; 
	tp->last_seg_size = 0; 
	if (len >= 536) {
		if (len == lss) 
			tp->rcv_mss = len; 
		tp->last_seg_size = len; 
	}
}

/*
 * Check if sending an ack is needed.
 */
static __inline__ void __tcp_ack_snd_check(struct sock *sk)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);

	/* This also takes care of updating the window.
	 * This if statement needs to be simplified.
	 *
	 * Rules for delaying an ack:
	 *      - delay time <= 0.5 HZ
	 *      - we don't have a window update to send
	 *      - must send at least every 2 full sized packets
	 *	- must send an ACK if we have any out of order data
	 *
	 * With an extra heuristic to handle loss of packet
	 * situations and also helping the sender leave slow
	 * start in an expediant manner.
	 */

	    /* Two full frames received or... */
	if (((tp->rcv_nxt - tp->rcv_wup) >= tp->rcv_mss * MAX_DELAY_ACK) ||
	    /* We will update the window "significantly" or... */
	    tcp_raise_window(sk) ||
	    /* We entered "quick ACK" mode or... */
	    tcp_in_quickack_mode(tp) ||
	    /* We have out of order data */
	    (skb_peek(&tp->out_of_order_queue) != NULL)) {
		/* Then ack it now */
		tcp_send_ack(sk);
	} else {
		/* Else, send delayed ack. */
		tcp_send_delayed_ack(tp, HZ/2);
	}
}

static __inline__ void tcp_ack_snd_check(struct sock *sk)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
	if (tp->delayed_acks == 0) {
		/* We sent a data segment already. */
		return;
	}
	__tcp_ack_snd_check(sk);
}


/*
 *	This routine is only called when we have urgent data
 *	signalled. Its the 'slow' part of tcp_urg. It could be
 *	moved inline now as tcp_urg is only called from one
 *	place. We handle URGent data wrong. We have to - as
 *	BSD still doesn't use the correction from RFC961.
 *	For 1003.1g we should support a new option TCP_STDURG to permit
 *	either form (or just set the sysctl tcp_stdurg).
 */
 
static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
	u32 ptr = ntohs(th->urg_ptr);

	if (ptr && !sysctl_tcp_stdurg)
		ptr--;
	ptr += ntohl(th->seq);

	/* Ignore urgent data that we've already seen and read. */
	if (after(tp->copied_seq, ptr))
		return;

	/* Do we already have a newer (or duplicate) urgent pointer? */
	if (tp->urg_data && !after(ptr, tp->urg_seq))
		return;

	/* Tell the world about our new urgent pointer. */
	if (sk->proc != 0) {
		if (sk->proc > 0)
			kill_proc(sk->proc, SIGURG, 1);
		else
			kill_pg(-sk->proc, SIGURG, 1);
	}

	/* We may be adding urgent data when the last byte read was
	 * urgent. To do this requires some care. We cannot just ignore
	 * tp->copied_seq since we would read the last urgent byte again
	 * as data, nor can we alter copied_seq until this data arrives
	 * or we break the sematics of SIOCATMARK (and thus sockatmark())
	 */
	if (tp->urg_seq == tp->copied_seq)
		tp->copied_seq++;	/* Move the copied sequence on correctly */
	tp->urg_data = URG_NOTYET;
	tp->urg_seq = ptr;

	/* Disable header prediction. */
	tp->pred_flags = 0;
}

/* This is the 'fast' part of urgent handling. */
static inline void tcp_urg(struct sock *sk, struct tcphdr *th, unsigned long len)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);

	/* Check if we get a new urgent pointer - normally not. */
	if (th->urg)
		tcp_check_urg(sk,th);

	/* Do we wait for any urgent data? - normally not... */
	if (tp->urg_data == URG_NOTYET) {
		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff*4);

		/* Is the urgent pointer pointing into this packet? */	 
		if (ptr < len) {
			tp->urg_data = URG_VALID | *(ptr + (unsigned char *) th);
			if (!sk->dead)
				sk->data_ready(sk,0);
		}
	}
}

/* Clean the out_of_order queue if we can, trying to get
 * the socket within its memory limits again.
 *
 * Return less than zero if we should start dropping frames
 * until the socket owning process reads some of the data
 * to stabilize the situation.
 */
static int prune_queue(struct sock *sk)
{
	struct tcp_opt *tp = &sk->tp_pinfo.af_tcp; 
	struct sk_buff * skb;

	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);

	net_statistics.PruneCalled++; 

	/* First, purge the out_of_order queue. */
	skb = __skb_dequeue_tail(&tp->out_of_order_queue);
	if(skb != NULL) {
		/* Free it all. */
		do {	net_statistics.OfoPruned += skb->len; 
			kfree_skb(skb);
			skb = __skb_dequeue_tail(&tp->out_of_order_queue);
		} while(skb != NULL);

		/* Reset SACK state.  A conforming SACK implementation will
		 * do the same at a timeout based retransmit.  When a connection
		 * is in a sad state like this, we care only about integrity
		 * of the connection not performance.
		 */
		if(tp->sack_ok)
			tp->num_sacks = 0;
	}
	
	/* If we are really being abused, tell the caller to silently
	 * drop receive data on the floor.  It will get retransmitted
	 * and hopefully then we'll have sufficient space.
	 *
	 * We used to try to purge the in-order packets too, but that
	 * turns out to be deadly and fraught with races.  Consider:
	 *
	 * 1) If we acked the data, we absolutely cannot drop the
	 *    packet.  This data would then never be retransmitted.
	 * 2) It is possible, with a proper sequence of events involving
	 *    delayed acks and backlog queue handling, to have the user
	 *    read the data before it gets acked.  The previous code
	 *    here got this wrong, and it lead to data corruption.
	 * 3) Too much state changes happen when the FIN arrives, so once
	 *    we've seen that we can't remove any in-order data safely.
	 *
	 * The net result is that removing in-order receive data is too
	 * complex for anyones sanity.  So we don't do it anymore.  But
	 * if we are really having our buffer space abused we stop accepting
	 * new receive data.
	 */
	if(atomic_read(&sk->rmem_alloc) < (sk->rcvbuf << 1))
		return 0;

	/* Massive buffer overcommit. */
	return -1;
}

/*
 *	TCP receive function for the ESTABLISHED state. 
 *
 *	It is split into a fast path and a slow path. The fast path is 
 * 	disabled when:
 *	- A zero window was announced from us - zero window probing
 *        is only handled properly in the slow path. 
 *      - Out of order segments arrived.
 *	- Urgent data is expected.
 *	- There is no buffer space left
 *	- Unexpected TCP flags/window values/header lengths are received
 *	  (detected by checking the TCP header against pred_flags) 
 *	- Data is sent in both directions. Fast path only supports pure senders
 *	  or pure receivers (this means either the sequence number or the ack
 *	  value must stay constant)
 *
 *	When these conditions are not satisfied it drops into a standard 
 *	receive procedure patterned after RFC793 to handle all cases.
 *	The first three cases are guaranteed by proper pred_flags setting,
 *	the rest is checked inline. Fast processing is turned on in 
 *	tcp_data_queue when everything is OK.
 */
int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
			struct tcphdr *th, unsigned len)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
	int queued;
	u32 flg;

	/*
	 *	Header prediction.
	 *	The code follows the one in the famous 
	 *	"30 instruction TCP receive" Van Jacobson mail.
	 *	
	 *	Van's trick is to deposit buffers into socket queue 
	 *	on a device interrupt, to call tcp_recv function
	 *	on the receive process context and checksum and copy
	 *	the buffer to user space. smart...
	 *
	 *	Our current scheme is not silly either but we take the 
	 *	extra cost of the net_bh soft interrupt processing...
	 *	We do checksum and copy also but from device to kernel.
	 */

	/*
	 * RFC1323: H1. Apply PAWS check first.
	 */
	if (tcp_fast_parse_options(sk, th, tp)) {
		if (tp->saw_tstamp) {
			if (tcp_paws_discard(tp, th, len)) {
				tcp_statistics.TcpInErrs++;
				if (!th->rst) {
					tcp_send_ack(sk);
					goto discard;
				}
			}
			tcp_replace_ts_recent(sk, tp,
					      TCP_SKB_CB(skb)->seq,
					      TCP_SKB_CB(skb)->end_seq);
		}
	}

	flg = *(((u32 *)th) + 3) & ~htonl(0xFC8 << 16);

	/*	pred_flags is 0xS?10 << 16 + snd_wnd
	 *	if header_predition is to be made
	 *	'S' will always be tp->tcp_header_len >> 2
	 *	'?' will be 0 else it will be !0
	 *	(when there are holes in the receive 
	 *	 space for instance)
	 *	PSH flag is ignored.
         */

	if (flg == tp->pred_flags && TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
		if (len <= th->doff*4) {
			/* Bulk data transfer: sender */
			if (len == th->doff*4) {
				tcp_ack(sk, th, TCP_SKB_CB(skb)->seq,
					TCP_SKB_CB(skb)->ack_seq, len); 
				kfree_skb(skb); 
				tcp_data_snd_check(sk);
				return 0;
			} else { /* Header too small */
				tcp_statistics.TcpInErrs++;
				goto discard;
			}
		} else if (TCP_SKB_CB(skb)->ack_seq == tp->snd_una &&
			   atomic_read(&sk->rmem_alloc) <= sk->rcvbuf) {
			/* Bulk data transfer: receiver */
			__skb_pull(skb,th->doff*4);

			tcp_measure_rcv_mss(sk, skb); 

			/* DO NOT notify forward progress here.
			 * It saves dozen of CPU instructions in fast path. --ANK
			 */
			__skb_queue_tail(&sk->receive_queue, skb);
			tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;

			/* FIN bit check is not done since if FIN is set in
			 * this frame, the pred_flags won't match up. -DaveM
			 */
			sk->data_ready(sk, 0);
			tcp_delack_estimator(tp);

			tcp_remember_ack(tp, th, skb); 

			__tcp_ack_snd_check(sk);
			return 0;
		}
	}

	/*
	 *	Standard slow path.
	 */

	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
		/* RFC793, page 37: "In all states except SYN-SENT, all reset
		 * (RST) segments are validated by checking their SEQ-fields."
		 * And page 69: "If an incoming segment is not acceptable,
		 * an acknowledgment should be sent in reply (unless the RST bit
		 * is set, if so drop the segment and return)".
		 */
		if (th->rst)
			goto discard;
		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
			SOCK_DEBUG(sk, "seq:%d end:%d wup:%d wnd:%d\n",
				   TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
				   tp->rcv_wup, tp->rcv_wnd);
		}
		tcp_send_ack(sk);
		goto discard;
	}

	if(th->syn && TCP_SKB_CB(skb)->seq != tp->syn_seq) {
		SOCK_DEBUG(sk, "syn in established state\n");
		tcp_statistics.TcpInErrs++;
		tcp_reset(sk);
		return 1;
	}
	
	if(th->rst) {
		tcp_reset(sk);
		goto discard;
	}

	if(th->ack)
		tcp_ack(sk, th, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->ack_seq, len);
	
	/* Process urgent data. */
	tcp_urg(sk, th, len);

	/* step 7: process the segment text */
	queued = tcp_data(skb, sk, len);

	/* This must be after tcp_data() does the skb_pull() to
	 * remove the header size from skb->len.
	 *
	 * Dave!!! Phrase above (and all about rcv_mss) has 
	 * nothing to do with reality. rcv_mss must measure TOTAL
	 * size, including sacks, IP options etc. Hence, measure_rcv_mss
	 * must occure before pulling etc, otherwise it will flap
	 * like hell. Even putting it before tcp_data is wrong,
	 * it should use skb->tail - skb->nh.raw instead.
	 *					--ANK (980805)
	 * 
	 * BTW I broke it. Now all TCP options are handled equally
	 * in mss_clamp calculations (i.e. ignored, rfc1122),
	 * and mss_cache does include all of them (i.e. tstamps)
	 * except for sacks, to calulate effective mss faster.
	 * 					--ANK (980805)
	 */
	tcp_measure_rcv_mss(sk, skb); 

	/* Be careful, tcp_data() may have put this into TIME_WAIT. */
	if(sk->state != TCP_CLOSE) {
		tcp_data_snd_check(sk);
		tcp_ack_snd_check(sk);
	}

	if (!queued) {
	discard:
		kfree_skb(skb);
	}

	return 0;
}

/* 
 *	Process an incoming SYN or SYN-ACK for SYN_RECV sockets represented
 *	as an open_request. 
 */

struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 
			   struct open_request *req)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
	u32 flg;

	/*	assumption: the socket is not in use.
	 *	as we checked the user count on tcp_rcv and we're
	 *	running from a soft interrupt.
	 */

	/* Check for syn retransmission */
	flg = *(((u32 *)skb->h.th) + 3);
	
	flg &= __constant_htonl(0x00170000);
	/* Only SYN set? */
	if (flg == __constant_htonl(0x00020000)) {
		if (TCP_SKB_CB(skb)->seq == req->rcv_isn) {
			/*	retransmited syn.
			 */
			req->class->rtx_syn_ack(sk, req); 
			return NULL;
		} else {
			return sk; /* Pass new SYN to the listen socket. */
		}
	}

	/* We know it's an ACK here */	
	if (req->sk) {
		/*	socket already created but not
		 *	yet accepted()...
		 */
		sk = req->sk;
	} else {
		/* In theory the packet could be for a cookie, but
		 * TIME_WAIT should guard us against this. 
		 * XXX: Nevertheless check for cookies?
		 * This sequence number check is done again later,
		 * but we do it here to prevent syn flood attackers
		 * from creating big SYN_RECV sockets.
		 */ 
		if (!between(TCP_SKB_CB(skb)->ack_seq, req->snt_isn, req->snt_isn+1) ||
		    !between(TCP_SKB_CB(skb)->seq, req->rcv_isn, 
			     req->rcv_isn+1+req->rcv_wnd)) {
			req->class->send_reset(skb);
			return NULL;
		}
	
		sk = tp->af_specific->syn_recv_sock(sk, skb, req, NULL);
		tcp_dec_slow_timer(TCP_SLT_SYNACK);
		if (sk == NULL)
			return NULL;
		
		req->expires = 0UL;
		req->sk = sk;
	}
	skb_orphan(skb); 
	skb_set_owner_r(skb, sk);
	return sk; 
}

/*
 *	This function implements the receiving procedure of RFC 793 for
 *	all states except ESTABLISHED and TIME_WAIT. 
 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
 *	address independent.
 */
	
int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
			  struct tcphdr *th, unsigned len)
{
	struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
	int queued = 0;

	switch (sk->state) {
	case TCP_CLOSE:
		/* When state == CLOSED, hash lookup always fails.
		 *
		 * But, there is a back door, the backlog queue.
		 * If we have a sequence of packets in the backlog
		 * during __release_sock() which have a sequence such
		 * that:
		 *	packet X	causes entry to TCP_CLOSE state
		 *	...
		 *	packet X + N	has FIN bit set
		 *
		 * We report a (luckily) harmless error in this case.
		 * The issue is that backlog queue processing bypasses
		 * any hash lookups (we know which socket packets are for).
		 * The correct behavior here is what 2.0.x did, since
		 * a TCP_CLOSE socket does not exist.  Drop the frame
		 * and send a RST back to the other end.
		 */
		return 1;

	case TCP_LISTEN:
		/* These use the socket TOS.. 
		 * might want to be the received TOS 
		 */
		if(th->ack)
			return 1;
		
		if(th->syn) {
			if(tp->af_specific->conn_request(sk, skb, 0) < 0)
				return 1;

			/* Now we have several options: In theory there is 
			 * nothing else in the frame. KA9Q has an option to 
			 * send data with the syn, BSD accepts data with the
			 * syn up to the [to be] advertised window and 
			 * Solaris 2.1 gives you a protocol error. For now 
			 * we just ignore it, that fits the spec precisely 
			 * and avoids incompatibilities. It would be nice in
			 * future to drop through and process the data.
			 *
			 * Now that TTCP is starting to be used we ought to 
			 * queue this data.
			 * But, this leaves one open to an easy denial of
		 	 * service attack, and SYN cookies can't defend
			 * against this problem. So, we drop the data
			 * in the interest of security over speed.
			 */
			goto discard;
		}
		
		goto discard;
		break;

	case TCP_SYN_SENT:
		/* SYN sent means we have to look for a suitable ack and 
		 * either reset for bad matches or go to connected. 
		 * The SYN_SENT case is unusual and should
		 * not be in line code. [AC]
		 */
		if(th->ack) {
			/* rfc793:
			 * "If the state is SYN-SENT then
			 *    first check the ACK bit
			 *      If the ACK bit is set
			 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
			 *        a reset (unless the RST bit is set, if so drop
			 *        the segment and return)"
			 *
			 *  I cite this place to emphasize one essential
			 *  detail, this check is different of one
			 *  in established state: SND.UNA <= SEG.ACK <= SND.NXT.
			 *  SEG_ACK == SND.UNA == ISS is invalid in SYN-SENT,
			 *  because we have no previous data sent before SYN.
			 *                                        --ANK(990513)
			 *
			 *  We do not send data with SYN, so that RFC-correct
			 *  test reduces to:
			 */
			if (sk->zapped ||
			    TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
				return 1;

			/* Now ACK is acceptable.
			 *
			 * "If the RST bit is set
			 *    If the ACK was acceptable then signal the user "error:
			 *    connection reset", drop the segment, enter CLOSED state,
			 *    delete TCB, and return."
			 */

			if (th->rst) {
				tcp_reset(sk);
				goto discard;
			}

			/* rfc793:
			 *   "fifth, if neither of the SYN or RST bits is set then
			 *    drop the segment and return."
			 *
			 *    See note below!
			 *                                        --ANK(990513)
		         */
			
			if (!th->syn)
				goto discard;

			/* rfc793:
			 *   "If the SYN bit is on ...
			 *    are acceptable then ...
			 *    (our SYN has been ACKed), change the connection
			 *    state to ESTABLISHED..."
			 *
			 * Do you see? SYN-less ACKs in SYN-SENT state are
			 * completely ignored.
			 *
			 * The bug causing stalled SYN-SENT sockets
			 * was here: tcp_ack advanced snd_una and canceled
			 * retransmit timer, so that bare ACK received
			 * in SYN-SENT state (even with invalid ack==ISS,
			 * because tcp_ack check is too weak for SYN-SENT)
			 * causes moving socket to invalid semi-SYN-SENT,
			 * semi-ESTABLISHED state and connection hangs.
			 *
			 * There exist buggy stacks, which really send
			 * such ACKs: f.e. 202.226.91.94 (okigate.oki.co.jp)
			 * Actually, if this host did not try to get something
			 * from ftp.inr.ac.ru I'd never find this bug 8)
			 *
			 *                                     --ANK (990514)
			 */

			tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
			tcp_ack(sk,th, TCP_SKB_CB(skb)->seq,
				TCP_SKB_CB(skb)->ack_seq, len);

			/* Ok.. it's good. Set up sequence numbers and
			 * move to established.
			 */
			tp->rcv_nxt = TCP_SKB_CB(skb)->seq+1;
			tp->rcv_wup = TCP_SKB_CB(skb)->seq+1;

			/* RFC1323: The window in SYN & SYN/ACK segments is
			 * never scaled.
			 */
			tp->snd_wnd = htons(th->window);
			tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
			tp->snd_wl2 = TCP_SKB_CB(skb)->ack_seq;
			tp->fin_seq = TCP_SKB_CB(skb)->seq;

			tcp_set_state(sk, TCP_ESTABLISHED);
			tcp_parse_options(sk, th, tp, 0);

        		if (tp->wscale_ok == 0) {
                		tp->snd_wscale = tp->rcv_wscale = 0;
                		tp->window_clamp = min(tp->window_clamp,65535);
        		}

			if (tp->tstamp_ok) {
				tp->tcp_header_len =
					sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
			} else
				tp->tcp_header_len = sizeof(struct tcphdr);
			if (tp->saw_tstamp) {
				tp->ts_recent = tp->rcv_tsval;
				tp->ts_recent_stamp = tcp_time_stamp;
			}

			/* Can't be earlier, doff would be wrong. */
			tcp_send_ack(sk);

			sk->dport = th->source;
			tp->copied_seq = tp->rcv_nxt;

			if(!sk->dead) {
				sk->state_change(sk);
				sock_wake_async(sk->socket, 0);
			}
		} else {
			if(th->syn && !th->rst) {
				/* The previous version of the code
				 * checked for "connecting to self"
				 * here. that check is done now in
				 * tcp_connect.
				 */
				tcp_set_state(sk, TCP_SYN_RECV);
				tcp_parse_options(sk, th, tp, 0);
				if (tp->saw_tstamp) {
					tp->ts_recent = tp->rcv_tsval;
					tp->ts_recent_stamp = tcp_time_stamp;
				}
				
				tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
				tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;

				/* RFC1323: The window in SYN & SYN/ACK segments is
				 * never scaled.
				 */
				tp->snd_wnd = htons(th->window);
				tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
				
				tcp_send_synack(sk);
			} else
				break; 
		}

		/* tp->tcp_header_len and tp->mss_clamp
		   probably changed, synchronize mss.
		   */
		tcp_sync_mss(sk, tp->pmtu_cookie);
		tp->rcv_mss = tp->mss_cache;

		if (sk->state == TCP_SYN_RECV)
			goto discard;
		
		goto step6; 
	}

	/*   Parse the tcp_options present on this header.
	 *   By this point we really only expect timestamps.
	 *   Note that this really has to be here and not later for PAWS
	 *   (RFC1323) to work.
	 */
	if (tcp_fast_parse_options(sk, th, tp)) {
		/* NOTE: assumes saw_tstamp is never set if we didn't
		 * negotiate the option. tcp_fast_parse_options() must
		 * guarantee this.
		 */
		if (tp->saw_tstamp) {
			if (tcp_paws_discard(tp, th, len)) {
				tcp_statistics.TcpInErrs++;
				if (!th->rst) {
					tcp_send_ack(sk);
					goto discard;
				}
			}
			tcp_replace_ts_recent(sk, tp,
					      TCP_SKB_CB(skb)->seq,
					      TCP_SKB_CB(skb)->end_seq);
		}
	}

	/* The silly FIN test here is necessary to see an advancing ACK in
	 * retransmitted FIN frames properly.  Consider the following sequence:
	 *
	 *	host1 --> host2		FIN XSEQ:XSEQ(0) ack YSEQ
	 *	host2 --> host1		FIN YSEQ:YSEQ(0) ack XSEQ
	 *	host1 --> host2		XSEQ:XSEQ(0) ack YSEQ+1
	 *	host2 --> host1		FIN YSEQ:YSEQ(0) ack XSEQ+1	(fails tcp_sequence test)
	 *
	 * At this point the connection will deadlock with host1 believing
	 * that his FIN is never ACK'd, and thus it will retransmit it's FIN
	 * forever.  The following fix is from Taral (taral@taral.net).
	 */

	/* step 1: check sequence number */
	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq) &&
	    !(th->fin && TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)) {
		if (!th->rst) {
			tcp_send_ack(sk);
		}
		goto discard;
	}

	/* step 2: check RST bit */
	if(th->rst) {
		tcp_reset(sk);
		goto discard;
	}

	/* step 3: check security and precedence [ignored] */

	/*	step 4:
	 *
	 *	Check for a SYN, and ensure it matches the SYN we were
	 *	first sent. We have to handle the rather unusual (but valid)
	 *	sequence that KA9Q derived products may generate of
	 *
	 *	SYN
	 *				SYN|ACK Data
	 *	ACK	(lost)
	 *				SYN|ACK Data + More Data
	 *	.. we must ACK not RST...
	 *
	 *	We keep syn_seq as the sequence space occupied by the 
	 *	original syn. 
	 */

	if (th->syn && TCP_SKB_CB(skb)->seq != tp->syn_seq) {
		tcp_reset(sk);
		return 1;
	}

	/* step 5: check the ACK field */
	if (th->ack) {
		int acceptable = tcp_ack(sk, th, TCP_SKB_CB(skb)->seq,
					 TCP_SKB_CB(skb)->ack_seq, len);
		
		switch(sk->state) {
		case TCP_SYN_RECV:
			if (acceptable) {
				tcp_set_state(sk, TCP_ESTABLISHED);
				sk->dport = th->source;
				tp->copied_seq = tp->rcv_nxt;

				if(!sk->dead)
					sk->state_change(sk);		

				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
				tp->snd_wnd = htons(th->window) << tp->snd_wscale;
				tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
				tp->snd_wl2 = TCP_SKB_CB(skb)->ack_seq;

			} else {
				SOCK_DEBUG(sk, "bad ack\n");
				return 1;
			}
			break;

		case TCP_FIN_WAIT1:
			if (tp->snd_una == tp->write_seq) {
				sk->shutdown |= SEND_SHUTDOWN;
				tcp_set_state(sk, TCP_FIN_WAIT2);
				if (!sk->dead)
					sk->state_change(sk);
				else
					tcp_reset_msl_timer(sk, TIME_CLOSE, sysctl_tcp_fin_timeout);
			}
			break;

		case TCP_CLOSING:	
			if (tp->snd_una == tp->write_seq) {
				tcp_time_wait(sk);
				goto discard;
			}
			break;

		case TCP_LAST_ACK:
			if (tp->snd_una == tp->write_seq) {
				sk->shutdown = SHUTDOWN_MASK;
				tcp_set_state(sk,TCP_CLOSE);
				if (!sk->dead)
					sk->state_change(sk);
				goto discard;
			}
			break;
		}
	} else
		goto discard;

step6:
	/* step 6: check the URG bit */
	tcp_urg(sk, th, len);

	/* step 7: process the segment text */
	switch (sk->state) {
	case TCP_CLOSE_WAIT:
	case TCP_CLOSING:
		if (!before(TCP_SKB_CB(skb)->seq, tp->fin_seq))
			break;
	
	case TCP_FIN_WAIT1:
	case TCP_FIN_WAIT2:
		/* RFC 793 says to queue data in these states,
		 * RFC 1122 says we MUST send a reset. 
		 * BSD 4.4 also does reset.
		 */
		if ((sk->shutdown & RCV_SHUTDOWN) && sk->dead) {
			if (after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
				tcp_reset(sk);
				return 1;
			}
		}
		
	case TCP_ESTABLISHED: 
		queued = tcp_data(skb, sk, len);

		/* This must be after tcp_data() does the skb_pull() to
		 * remove the header size from skb->len.
		 */
		tcp_measure_rcv_mss(sk, skb); 
		break;
	}

	tcp_data_snd_check(sk);
	tcp_ack_snd_check(sk);

	if (!queued) { 
discard:
		kfree_skb(skb);
	}
	return 0;
}