summaryrefslogtreecommitdiff
path: root/i386/i386/db_interface.c
blob: e61d2961239191738f379853f278949462410fd2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
/*
 * Mach Operating System
 * Copyright (c) 1993,1992,1991,1990 Carnegie Mellon University
 * All Rights Reserved.
 *
 * Permission to use, copy, modify and distribute this software and its
 * documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie Mellon
 * the rights to redistribute these changes.
 */
/*
 * Interface to new debugger.
 */

#include <string.h>
#include <sys/reboot.h>
#include <vm/pmap.h>

#include <i386/thread.h>
#include <i386/db_machdep.h>
#include <i386/seg.h>
#include <i386/trap.h>
#include <i386/setjmp.h>
#include <i386/pmap.h>
#include <i386/proc_reg.h>
#include <i386/locore.h>
#include "gdt.h"
#include "trap.h"

#include "vm_param.h"
#include <vm/vm_map.h>
#include <vm/vm_fault.h>
#include <kern/cpu_number.h>
#include <kern/printf.h>
#include <kern/thread.h>
#include <kern/task.h>
#include <ddb/db_access.h>
#include <ddb/db_command.h>
#include <ddb/db_output.h>
#include <ddb/db_run.h>
#include <ddb/db_task_thread.h>
#include <ddb/db_trap.h>
#include <ddb/db_watch.h>
#include <machine/db_interface.h>
#include <machine/machspl.h>

#if MACH_KDB
/* Whether the kernel uses any debugging register.  */
static boolean_t kernel_dr;
#endif
/* Whether the current debug registers are zero.  */
static boolean_t zero_dr;

db_regs_t	ddb_regs;

void db_load_context(pcb_t pcb)
{
#if MACH_KDB
	int s = splhigh();

	if (kernel_dr) {
		splx(s);
		return;
	}
#endif
	/* Else set user debug registers, if any */
	unsigned int *dr = pcb->ims.ids.dr;
	boolean_t will_zero_dr = !dr[0] && !dr[1] && !dr[2] && !dr[3] && !dr[7];

	if (!(zero_dr && will_zero_dr))
	{
		set_dr0(dr[0]);
		set_dr1(dr[1]);
		set_dr2(dr[2]);
		set_dr3(dr[3]);
		set_dr7(dr[7]);
		zero_dr = will_zero_dr;
	}

#if MACH_KDB
	splx(s);
#endif
}

void db_get_debug_state(
	pcb_t pcb,
	struct i386_debug_state *state)
{
	*state = pcb->ims.ids;
}

kern_return_t db_set_debug_state(
	pcb_t pcb,
	const struct i386_debug_state *state)
{
	int i;

	for (i = 0; i <= 3; i++)
		if (state->dr[i] < VM_MIN_ADDRESS
	 	 || state->dr[i] >= VM_MAX_ADDRESS)
			return KERN_INVALID_ARGUMENT;

	pcb->ims.ids = *state;

	if (pcb == current_thread()->pcb)
		db_load_context(pcb);

	return KERN_SUCCESS;
}

#if MACH_KDB

struct	 i386_saved_state *i386_last_saved_statep;
struct	 i386_saved_state i386_nested_saved_state;
uintptr_t i386_last_kdb_sp;

extern	thread_t db_default_thread;

static struct i386_debug_state ids;

void db_dr (
	int		num,
	vm_offset_t	linear_addr,
	int		type,
	int		len,
	int		persistence)
{
	int s = splhigh();
	unsigned long dr7;

	if (!kernel_dr) {
	    if (!linear_addr) {
		splx(s);
		return;
	    }
	    kernel_dr = TRUE;
	    /* Clear user debugging registers */
	    set_dr7(0);
	    set_dr0(0);
	    set_dr1(0);
	    set_dr2(0);
	    set_dr3(0);
	}

	ids.dr[num] = linear_addr;
	switch (num) {
	    case 0: set_dr0(linear_addr); break;
	    case 1: set_dr1(linear_addr); break;
	    case 2: set_dr2(linear_addr); break;
	    case 3: set_dr3(linear_addr); break;
	}

	/* Replace type/len/persistence for DRnum in dr7 */
	dr7 = get_dr7 ();
	dr7 &= ~(0xfUL << (4*num+16)) & ~(0x3UL << (2*num));
	dr7 |= (((len << 2) | type) << (4*num+16)) | (persistence << (2*num));
	set_dr7 (dr7);

	if (kernel_dr) {
	    if (!ids.dr[0] && !ids.dr[1] && !ids.dr[2] && !ids.dr[3]) {
		/* Not used any more, switch back to user debugging registers */
		set_dr7 (0);
		kernel_dr = FALSE;
		zero_dr = TRUE;
		db_load_context(current_thread()->pcb);
	    }
	}
	splx(s);
}

boolean_t
db_set_hw_watchpoint(
	const db_watchpoint_t	watch,
	unsigned		num)
{
	vm_size_t	size = watch->hiaddr - watch->loaddr;
	db_addr_t	addr = watch->loaddr;
	vm_offset_t 	kern_addr;

	if (num >= 4)
	    return FALSE;
	if (size != 1 && size != 2 && size != 4)
	    return FALSE;

	if (addr & (size-1))
	    /* Unaligned */
	    return FALSE;

	if (watch->task) {
	    if (db_user_to_kernel_address(watch->task, addr, &kern_addr, 1) < 0)
		return FALSE;
	    addr = kern_addr;
	}
	addr = kvtolin(addr);

	db_dr (num, addr, I386_DB_TYPE_W, size-1, I386_DB_LOCAL|I386_DB_GLOBAL);

	db_printf("Hardware watchpoint %d set for %x\n", num, addr);
	return TRUE;
}

boolean_t
db_clear_hw_watchpoint(
	unsigned	num)
{
	if (num >= 4)
		return FALSE;

	db_dr (num, 0, 0, 0, 0);
	return TRUE;
}

/*
 * Print trap reason.
 */
void
kdbprinttrap(
	int	type, 
	int	code)
{
	printf("kernel: %s (%d), code=%x\n",
		trap_name(type), type, code);
}

/*
 *  kdb_trap - field a TRACE or BPT trap
 */

extern jmp_buf_t *db_recover;
spl_t saved_ipl[NCPUS];	/* just to know what was IPL before trap */

boolean_t
kdb_trap(
	int	type,
	int	code,
	struct i386_saved_state *regs)
{
	spl_t	s;

	s = splhigh();
	saved_ipl[cpu_number()] = s;

	switch (type) {
	    case T_DEBUG:	/* single_step */
	    {
		int addr;
	    	int status = get_dr6();

		if (status & 0xf) {	/* hmm hdw break */
			addr =	status & 0x8 ? get_dr3() :
				status & 0x4 ? get_dr2() :
				status & 0x2 ? get_dr1() :
					       get_dr0();
			regs->efl |= EFL_RF;
			db_single_step_cmd(addr, 0, 1, "p");
		}
	    }
	    case T_INT3:	/* breakpoint */
	    case T_WATCHPOINT:	/* watchpoint */
	    case -1:	/* keyboard interrupt */
		break;

	    default:
		if (db_recover) {
		    i386_nested_saved_state = *regs;
		    db_printf("Caught %s (%d), code = %x, pc = %x\n",
			trap_name(type), type, code, regs->eip);
		    db_error("");
		    /*NOTREACHED*/
		}
		kdbprinttrap(type, code);
	}

#if	NCPUS > 1
	if (db_enter())
#endif	/* NCPUS > 1 */
	{
	    i386_last_saved_statep = regs;
	    i386_last_kdb_sp = (uintptr_t) &type;

	    /* XXX Should switch to ddb`s own stack here. */

	    ddb_regs = *regs;
	    if ((regs->cs & 0x3) == KERNEL_RING) {
		/*
		 * Kernel mode - esp and ss not saved
		 */
		ddb_regs.uesp = (uintptr_t)&regs->uesp;   /* kernel stack pointer */
		ddb_regs.ss   = KERNEL_DS;
	    }

	    cnpollc(TRUE);
	    db_task_trap(type, code, (regs->cs & 0x3) != 0);
	    cnpollc(FALSE);

	    regs->eip    = ddb_regs.eip;
	    regs->efl    = ddb_regs.efl;
	    regs->eax    = ddb_regs.eax;
	    regs->ecx    = ddb_regs.ecx;
	    regs->edx    = ddb_regs.edx;
	    regs->ebx    = ddb_regs.ebx;
	    if ((regs->cs & 0x3) != KERNEL_RING) {
		/*
		 * user mode - saved esp and ss valid
		 */
		regs->uesp = ddb_regs.uesp;		/* user stack pointer */
		regs->ss   = ddb_regs.ss & 0xffff;	/* user stack segment */
	    }
	    regs->ebp    = ddb_regs.ebp;
	    regs->esi    = ddb_regs.esi;
	    regs->edi    = ddb_regs.edi;
	    regs->es     = ddb_regs.es & 0xffff;
	    regs->cs     = ddb_regs.cs & 0xffff;
	    regs->ds     = ddb_regs.ds & 0xffff;
	    regs->fs     = ddb_regs.fs & 0xffff;
	    regs->gs     = ddb_regs.gs & 0xffff;

	    if ((type == T_INT3) &&
		(db_get_task_value(regs->eip, BKPT_SIZE, FALSE, TASK_NULL)
								 == BKPT_INST))
		regs->eip += BKPT_SIZE;
	}
#if	NCPUS > 1
	db_leave();
#endif	/* NCPUS > 1 */

	splx(s);
	return 1;
}

/*
 *	Enter KDB through a keyboard trap.
 *	We show the registers as of the keyboard interrupt
 *	instead of those at its call to KDB.
 */
struct int_regs {
#ifdef __i386__
	long	edi;
	long	esi;
#endif
	long	ebp;
	long	ebx;
	struct i386_interrupt_state *is;
};

void
kdb_kentry(
	struct int_regs	*int_regs)
{
	struct i386_interrupt_state *is = int_regs->is;
	spl_t	s = splhigh();

#if	NCPUS > 1
	if (db_enter())
#endif	/* NCPUS > 1 */
	{
	    if ((is->cs & 0x3) != KERNEL_RING) {
		ddb_regs.uesp = *(uintptr_t *)(is+1);
		ddb_regs.ss   = *(int *)((uintptr_t *)(is+1)+1);
	    }
	    else {
		ddb_regs.ss  = KERNEL_DS;
		ddb_regs.uesp= (uintptr_t)(is+1);
	    }
	    ddb_regs.efl = is->efl;
	    ddb_regs.cs  = is->cs;
	    ddb_regs.eip = is->eip;
	    ddb_regs.eax = is->eax;
	    ddb_regs.ecx = is->ecx;
	    ddb_regs.edx = is->edx;
	    ddb_regs.ebx = int_regs->ebx;
	    ddb_regs.ebp = int_regs->ebp;
#ifdef __i386__
	    ddb_regs.esi = int_regs->esi;
	    ddb_regs.edi = int_regs->edi;
#endif
#ifdef __x86_64__
	    ddb_regs.esi = is->rsi;
	    ddb_regs.edi = is->rdi;
#endif
	    ddb_regs.ds  = is->ds;
	    ddb_regs.es  = is->es;
	    ddb_regs.fs  = is->fs;
	    ddb_regs.gs  = is->gs;

	    cnpollc(TRUE);
	    db_task_trap(-1, 0, (ddb_regs.cs & 0x3) != 0);
	    cnpollc(FALSE);

	    if ((ddb_regs.cs & 0x3) != KERNEL_RING) {
		((int *)(is+1))[0] = ddb_regs.uesp;
		((int *)(is+1))[1] = ddb_regs.ss & 0xffff;
	    }
	    is->efl = ddb_regs.efl;
	    is->cs  = ddb_regs.cs & 0xffff;
	    is->eip = ddb_regs.eip;
	    is->eax = ddb_regs.eax;
	    is->ecx = ddb_regs.ecx;
	    is->edx = ddb_regs.edx;
	    int_regs->ebx = ddb_regs.ebx;
	    int_regs->ebp = ddb_regs.ebp;
#ifdef __i386__
	    int_regs->esi = ddb_regs.esi;
	    int_regs->edi = ddb_regs.edi;
#endif
#ifdef __x86_64__
	    is->rsi = ddb_regs.esi;
	    is->rdi = ddb_regs.edi;
#endif
	    is->ds  = ddb_regs.ds & 0xffff;
	    is->es  = ddb_regs.es & 0xffff;
	    is->fs  = ddb_regs.fs & 0xffff;
	    is->gs  = ddb_regs.gs & 0xffff;
	}
#if	NCPUS > 1
	db_leave();
#endif	/* NCPUS > 1 */

	(void) splx(s);
}

boolean_t db_no_vm_fault = TRUE;

int
db_user_to_kernel_address(
	const task_t	task,
	vm_offset_t	addr,
	vm_offset_t	*kaddr,
	int		flag)
{
	pt_entry_t *ptp;
	boolean_t	faulted = FALSE;

	retry:
	ptp = pmap_pte(task->map->pmap, addr);
	if (ptp == PT_ENTRY_NULL || (*ptp & INTEL_PTE_VALID) == 0) {
	    if (!faulted && !db_no_vm_fault) {
		kern_return_t	err;

		faulted = TRUE;
		err = vm_fault( task->map,
				trunc_page(addr),
				VM_PROT_READ,
				FALSE, FALSE, 0);
		if (err == KERN_SUCCESS)
		    goto retry;
	    }
	    if (flag) {
		db_printf("\nno memory is assigned to address %08x\n", addr);
	    }
	    return(-1);
	}
	*kaddr = ptetokv(*ptp) + (addr & (INTEL_PGBYTES-1));
	return(0);
}

/*
 * Read bytes from kernel address space for debugger.
 */

boolean_t
db_read_bytes(
	vm_offset_t	addr,
	int		size,
	char		*data,
	task_t		task)
{
	char		*src;
	int		n;
	vm_offset_t	kern_addr;

	src = (char *)addr;
	if ((addr >= VM_MIN_KERNEL_ADDRESS && addr < VM_MAX_KERNEL_ADDRESS) || task == TASK_NULL) {
	    if (task == TASK_NULL)
	        task = db_current_task();
	    while (--size >= 0) {
		if (addr < VM_MIN_KERNEL_ADDRESS && task == TASK_NULL) {
		    db_printf("\nbad address %x\n", addr);
		    return FALSE;
		}
		addr++;
		*data++ = *src++;
	    }
	    return TRUE;
	}
	while (size > 0) {
	    if (db_user_to_kernel_address(task, addr, &kern_addr, 1) < 0)
		return FALSE;
	    src = (char *)kern_addr;
	    n = intel_trunc_page(addr+INTEL_PGBYTES) - addr;
	    if (n > size)
		n = size;
	    size -= n;
	    addr += n;
	    while (--n >= 0)
		*data++ = *src++;
	}
	return TRUE;
}

/*
 * Write bytes to kernel address space for debugger.
 */
void
db_write_bytes(
	vm_offset_t	addr,
	int		size,
	char		*data,
	task_t		task)
{
	char		*dst;

	pt_entry_t *ptep0 = 0;
	pt_entry_t	oldmap0 = 0;
	vm_offset_t	addr1;
	pt_entry_t *ptep1 = 0;
	pt_entry_t	oldmap1 = 0;
	extern char	etext;

	if ((addr < VM_MIN_KERNEL_ADDRESS) ^
	    ((addr + size) <= VM_MIN_KERNEL_ADDRESS)) {
	    db_error("\ncannot write data into mixed space\n");
	    /* NOTREACHED */
	}
	if (addr < VM_MIN_KERNEL_ADDRESS) {
	    if (task) {
		db_write_bytes_user_space(addr, size, data, task);
		return;
	    } else if (db_current_task() == TASK_NULL) {
		db_printf("\nbad address %x\n", addr);
		db_error(0);
		/* NOTREACHED */
	    }
	}

	if (addr >= VM_MIN_KERNEL_ADDRESS &&
	    addr <= (vm_offset_t)&etext)
	{
	    ptep0 = pmap_pte(kernel_pmap, addr);
	    oldmap0 = *ptep0;
	    *ptep0 |= INTEL_PTE_WRITE;

	    addr1 = i386_trunc_page(addr + size - 1);
	    if (i386_trunc_page(addr) != addr1) {
		/* data crosses a page boundary */

		ptep1 = pmap_pte(kernel_pmap, addr1);
		oldmap1 = *ptep1;
		*ptep1 |= INTEL_PTE_WRITE;
	    }
	    if (CPU_HAS_FEATURE(CPU_FEATURE_PGE))
		set_cr4(get_cr4() & ~CR4_PGE);
	    flush_tlb();
	}

	dst = (char *)addr;

	while (--size >= 0)
	    *dst++ = *data++;

	if (ptep0) {
	    *ptep0 = oldmap0;
	    if (ptep1) {
		*ptep1 = oldmap1;
	    }
	    flush_tlb();
	    if (CPU_HAS_FEATURE(CPU_FEATURE_PGE))
		set_cr4(get_cr4() | CR4_PGE);
	}
}

void
db_write_bytes_user_space(
	vm_offset_t	addr,
	int		size,
	char		*data,
	task_t		task)
{
	char		*dst;
	int		n;
	vm_offset_t	kern_addr;

	while (size > 0) {
	    if (db_user_to_kernel_address(task, addr, &kern_addr, 1) < 0)
		return;
	    dst = (char *)kern_addr;
	    n = intel_trunc_page(addr+INTEL_PGBYTES) - addr;
	    if (n > size)
		n = size;
	    size -= n;
	    addr += n;
	    while (--n >= 0)
		*dst++ = *data++;
	}
}

boolean_t
db_check_access(
	vm_offset_t	addr,
	int		size,
	task_t		task)
{
	int	n;
	vm_offset_t	kern_addr;

	if (addr >= VM_MIN_KERNEL_ADDRESS) {
	    if (kernel_task == TASK_NULL)
	        return TRUE;
	    task = kernel_task;
	} else if (task == TASK_NULL) {
	    if (current_thread() == THREAD_NULL)
		return FALSE;
	    task = current_thread()->task;
	}
	while (size > 0) {
	    if (db_user_to_kernel_address(task, addr, &kern_addr, 0) < 0)
		return FALSE;
	    n = intel_trunc_page(addr+INTEL_PGBYTES) - addr;
	    if (n > size)
		n = size;
	    size -= n;
	    addr += n;
	}
	return TRUE;
}

boolean_t
db_phys_eq(
	task_t		task1,
	vm_offset_t	addr1,
	const task_t	task2,
	vm_offset_t	addr2)
{
	vm_offset_t	kern_addr1, kern_addr2;

	if (addr1 >= VM_MIN_KERNEL_ADDRESS || addr2 >= VM_MIN_KERNEL_ADDRESS)
	    return FALSE;
	if ((addr1 & (INTEL_PGBYTES-1)) != (addr2 & (INTEL_PGBYTES-1)))
	    return FALSE;
	if (task1 == TASK_NULL) {
	    if (current_thread() == THREAD_NULL)
		return FALSE;
	    task1 = current_thread()->task;
	}
	if (db_user_to_kernel_address(task1, addr1, &kern_addr1, 0) < 0
		|| db_user_to_kernel_address(task2, addr2, &kern_addr2, 0) < 0)
	    return FALSE;
	return(kern_addr1 == kern_addr2);
}

#define DB_USER_STACK_ADDR		(VM_MIN_KERNEL_ADDRESS)
#define DB_NAME_SEARCH_LIMIT		(DB_USER_STACK_ADDR-(INTEL_PGBYTES*3))

#define GNU

#ifndef GNU
static boolean_t
db_search_null(
	const task_t	task,
	vm_offset_t	*svaddr,
	vm_offset_t	evaddr,
	vm_offset_t	*skaddr,
	int		flag)
{
	unsigned vaddr;
	unsigned *kaddr;

	kaddr = (unsigned *)*skaddr;
	for (vaddr = *svaddr; vaddr > evaddr; ) {
	    if (vaddr % INTEL_PGBYTES == 0) {
		vaddr -= sizeof(unsigned);
		if (db_user_to_kernel_address(task, vaddr, skaddr, 0) < 0)
		    return FALSE;
		kaddr = (vm_offset_t *)*skaddr;
	    } else {
		vaddr -= sizeof(unsigned);
		kaddr--;
	    }
	    if ((*kaddr == 0) ^ (flag  == 0)) {
		*svaddr = vaddr;
		*skaddr = (unsigned)kaddr;
		return TRUE;
	    }
	}
	return FALSE;
}
#endif /* GNU */

#ifdef GNU
static boolean_t
looks_like_command(
	const task_t	task,
	char*		kaddr)
{
	char *c;

	assert(!((vm_offset_t) kaddr & (INTEL_PGBYTES-1)));

	/*
	 * Must be the environment.
	 */
	if (!memcmp(kaddr, "PATH=", 5) || !memcmp(kaddr, "TERM=", 5) || !memcmp(kaddr, "SHELL=", 6) || !memcmp(kaddr, "LOCAL_PART=", 11) || !memcmp(kaddr, "LC_ALL=", 7))
		return FALSE;

	/*
	 * This is purely heuristical but works quite nicely.
	 * We know that it should look like words separated by \0, and
	 * eventually only \0s.
	 */
	c = kaddr;
	while (c < kaddr + INTEL_PGBYTES) {
		if (!*c) {
			if (c == kaddr)
				/* Starts by \0.  */
				return FALSE;
			break;
		}
		while (c < kaddr + INTEL_PGBYTES && *c)
			c++;
		if (c < kaddr + INTEL_PGBYTES)
			c++;	/* Skip \0 */
	}
	/*
	 * Check that the remainder is just \0s.
	 */
	while (c < kaddr + INTEL_PGBYTES)
		if (*c++)
			return FALSE;

	return TRUE;
}
#endif /* GNU */

void
db_task_name(
	const task_t task)
{
	char *p;
	int n;
	vm_offset_t vaddr, kaddr;
	unsigned sp;

	if (task->name[0]) {
		db_printf("%s", task->name);
		return;
	}

#ifdef GNU
	/*
	 * GNU Hurd-specific heuristics.
	 */

	/* Heuristical address first.  */
	vaddr = 0x1026000;
	if (db_user_to_kernel_address(task, vaddr, &kaddr, 0) >= 0 &&
		looks_like_command(task, (char*) kaddr))
			goto ok;

	/* Try to catch SP of the main thread.  */
	thread_t thread;

	task_lock(task);
	thread = (thread_t) queue_first(&task->thread_list);
	if (!thread) {
		task_unlock(task);
		db_printf(DB_NULL_TASK_NAME);
		return;
	}
	sp = thread->pcb->iss.uesp;
	task_unlock(task);

	vaddr = (sp & ~(INTEL_PGBYTES - 1)) + INTEL_PGBYTES;
	while (1) {
		if (db_user_to_kernel_address(task, vaddr, &kaddr, 0) < 0)
			return;
		if (looks_like_command(task, (char*) kaddr))
			break;
		vaddr += INTEL_PGBYTES;
	}
#else /* GNU */
	vaddr = DB_USER_STACK_ADDR;
	kaddr = 0;

	/*
	 * skip nulls at the end
	 */
	if (!db_search_null(task, &vaddr, DB_NAME_SEARCH_LIMIT, &kaddr, 0)) {
	    db_printf(DB_NULL_TASK_NAME);
	    return;
	}
	/*
	 * search start of args
	 */
	if (!db_search_null(task, &vaddr, DB_NAME_SEARCH_LIMIT, &kaddr, 1)) {
	    db_printf(DB_NULL_TASK_NAME);
	    return;
	}
#endif /* GNU */

ok:
	n = DB_TASK_NAME_LEN-1;
#ifdef GNU
	p = (char *)kaddr;
	for (; n > 0; vaddr++, p++, n--) {
#else /* GNU */
	p = (char *)kaddr + sizeof(unsigned);
	for (vaddr += sizeof(int); vaddr < DB_USER_STACK_ADDR && n > 0;
							vaddr++, p++, n--) {
#endif  /* GNU */
	    if (vaddr % INTEL_PGBYTES == 0) {
		(void)db_user_to_kernel_address(task, vaddr, &kaddr, 0);
		p = (char*)kaddr;
	    }
	    db_printf("%c", (*p < ' ' || *p > '~')? ' ': *p);
	}
	while (n-- >= 0)	/* compare with >= 0 for one more space */
	    db_printf(" ");
}

#endif /* MACH_KDB */