/* * Mach Operating System * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University. * Copyright (c) 1993,1994 The University of Utah and * the Computer Systems Laboratory (CSL). * All rights reserved. * * Permission to use, copy, modify and distribute this software and its * documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF * THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie Mellon * the rights to redistribute these changes. */ /* * File: kern/lock.c * Author: Avadis Tevanian, Jr., Michael Wayne Young * Date: 1985 * * Locking primitives implementation */ #include #include #include #include #include #if MACH_KDB #include #include #include #endif #if NCPUS > 1 /* * Module: lock * Function: * Provide reader/writer sychronization. * Implementation: * Simple interlock on a bit. Readers first interlock, * increment the reader count, then let go. Writers hold * the interlock (thus preventing further readers), and * wait for already-accepted readers to go away. */ /* * The simple-lock routines are the primitives out of which * the lock package is built. The implementation is left * to the machine-dependent code. */ #ifdef notdef /* * A sample implementation of simple locks. * assumes: * boolean_t test_and_set(boolean_t *) * indivisibly sets the boolean to TRUE * and returns its old value * and that setting a boolean to FALSE is indivisible. */ /* * simple_lock_init initializes a simple lock. A simple lock * may only be used for exclusive locks. */ void simple_lock_init(simple_lock_t l) { *(boolean_t *)l = FALSE; } void simple_lock(simple_lock_t l) { while (test_and_set((boolean_t *)l)) continue; } void simple_unlock(simple_lock_t l) { *(boolean_t *)l = FALSE; } boolean_t simple_lock_try(simple_lock_t l) { return (!test_and_set((boolean_t *)l)); } #endif /* notdef */ #endif /* NCPUS > 1 */ #if NCPUS > 1 static int lock_wait_time = 100; #else /* NCPUS > 1 */ /* * It is silly to spin on a uni-processor as if we * thought something magical would happen to the * want_write bit while we are executing. */ static int lock_wait_time = 0; #endif /* NCPUS > 1 */ #if MACH_SLOCKS && NCPUS == 1 /* * This code does not protect simple_locks_taken and simple_locks_info. * It works despite the fact that interrupt code does use simple locks. * This is because interrupts use locks in a stack-like manner. * Each interrupt releases all the locks it acquires, so the data * structures end up in the same state after the interrupt as before. * The only precaution necessary is that simple_locks_taken be * incremented first and decremented last, so that interrupt handlers * don't over-write active slots in simple_locks_info. */ unsigned int simple_locks_taken = 0; #define NSLINFO 1000 /* maximum number of locks held */ struct simple_locks_info { simple_lock_t l; const char *expr; const char *loc; } simple_locks_info[NSLINFO]; int do_check_simple_locks = 1; void check_simple_locks(void) { assert(! do_check_simple_locks || simple_locks_taken == 0); } void check_simple_locks_enable(void) { do_check_simple_locks = 1; } void check_simple_locks_disable(void) { do_check_simple_locks = 0; } /* Need simple lock sanity checking code if simple locks are being compiled in, and we are compiling for a uniprocessor. */ void simple_lock_init( simple_lock_t l) { l->lock_data = 0; } void _simple_lock( simple_lock_t l, const char *expression, const char *location) { struct simple_locks_info *info; assert(l->lock_data == 0); l->lock_data = 1; info = &simple_locks_info[simple_locks_taken++]; barrier(); info->l = l; info->expr = expression; info->loc = location; } boolean_t _simple_lock_try( simple_lock_t l, const char *expression, const char *location) { struct simple_locks_info *info; if (l->lock_data != 0) return FALSE; l->lock_data = 1; info = &simple_locks_info[simple_locks_taken++]; barrier(); info->l = l; info->expr = expression; info->loc = location; return TRUE; } void simple_unlock( simple_lock_t l) { assert(l->lock_data != 0); l->lock_data = 0; if (simple_locks_info[simple_locks_taken-1].l != l) { unsigned int i = simple_locks_taken; /* out-of-order unlocking */ do if (i == 0) panic("simple_unlock"); while (simple_locks_info[--i].l != l); simple_locks_info[i] = simple_locks_info[simple_locks_taken-1]; } barrier(); simple_locks_taken--; simple_locks_info[simple_locks_taken] = (struct simple_locks_info) {0}; } #endif /* MACH_SLOCKS && NCPUS == 1 */ /* * Routine: lock_init * Function: * Initialize a lock; required before use. * Note that clients declare the "struct lock" * variables and then initialize them, rather * than getting a new one from this module. */ void lock_init( lock_t l, boolean_t can_sleep) { memset(l, 0, sizeof(lock_data_t)); simple_lock_init(&l->interlock); l->want_write = FALSE; l->want_upgrade = FALSE; l->read_count = 0; l->can_sleep = can_sleep; l->thread = (struct thread *)-1; /* XXX */ l->recursion_depth = 0; } void lock_sleepable( lock_t l, boolean_t can_sleep) { simple_lock(&l->interlock); l->can_sleep = can_sleep; simple_unlock(&l->interlock); } /* * Sleep locks. These use the same data structure and algorithm * as the spin locks, but the process sleeps while it is waiting * for the lock. These work on uniprocessor systems. */ void lock_write( lock_t l) { int i; check_simple_locks(); simple_lock(&l->interlock); if (l->thread == current_thread()) { /* * Recursive lock. */ l->recursion_depth++; simple_unlock(&l->interlock); return; } /* * Try to acquire the want_write bit. */ while (l->want_write) { if ((i = lock_wait_time) > 0) { simple_unlock(&l->interlock); while (--i > 0 && l->want_write) continue; simple_lock(&l->interlock); } if (l->can_sleep && l->want_write) { l->waiting = TRUE; thread_sleep(l, simple_lock_addr(l->interlock), FALSE); simple_lock(&l->interlock); } } l->want_write = TRUE; /* Wait for readers (and upgrades) to finish */ while ((l->read_count != 0) || l->want_upgrade) { if ((i = lock_wait_time) > 0) { simple_unlock(&l->interlock); while (--i > 0 && (l->read_count != 0 || l->want_upgrade)) continue; simple_lock(&l->interlock); } if (l->can_sleep && (l->read_count != 0 || l->want_upgrade)) { l->waiting = TRUE; thread_sleep(l, simple_lock_addr(l->interlock), FALSE); simple_lock(&l->interlock); } } #if MACH_LDEBUG l->writer = current_thread(); #endif /* MACH_LDEBUG */ simple_unlock(&l->interlock); } void lock_done( lock_t l) { simple_lock(&l->interlock); if (l->read_count != 0) l->read_count--; else if (l->recursion_depth != 0) l->recursion_depth--; else if (l->want_upgrade) l->want_upgrade = FALSE; else { l->want_write = FALSE; #if MACH_LDEBUG l->writer = THREAD_NULL; #endif /* MACH_LDEBUG */ } /* * There is no reason to wakeup a waiting thread * if the read-count is non-zero. Consider: * we must be dropping a read lock * threads are waiting only if one wants a write lock * if there are still readers, they can't proceed */ if (l->waiting && (l->read_count == 0)) { l->waiting = FALSE; thread_wakeup(l); } simple_unlock(&l->interlock); } void lock_read( lock_t l) { int i; check_simple_locks(); simple_lock(&l->interlock); if (l->thread == current_thread()) { /* * Recursive lock. */ l->read_count++; simple_unlock(&l->interlock); return; } while (l->want_write || l->want_upgrade) { if ((i = lock_wait_time) > 0) { simple_unlock(&l->interlock); while (--i > 0 && (l->want_write || l->want_upgrade)) continue; simple_lock(&l->interlock); } if (l->can_sleep && (l->want_write || l->want_upgrade)) { l->waiting = TRUE; thread_sleep(l, simple_lock_addr(l->interlock), FALSE); simple_lock(&l->interlock); } } l->read_count++; simple_unlock(&l->interlock); } /* * Routine: lock_read_to_write * Function: * Improves a read-only lock to one with * write permission. If another reader has * already requested an upgrade to a write lock, * no lock is held upon return. * * Returns TRUE if the upgrade *failed*. */ boolean_t lock_read_to_write( lock_t l) { int i; check_simple_locks(); simple_lock(&l->interlock); l->read_count--; if (l->thread == current_thread()) { /* * Recursive lock. */ l->recursion_depth++; simple_unlock(&l->interlock); return(FALSE); } if (l->want_upgrade) { /* * Someone else has requested upgrade. * Since we've released a read lock, wake * him up. */ if (l->waiting && (l->read_count == 0)) { l->waiting = FALSE; thread_wakeup(l); } simple_unlock(&l->interlock); return TRUE; } l->want_upgrade = TRUE; while (l->read_count != 0) { if ((i = lock_wait_time) > 0) { simple_unlock(&l->interlock); while (--i > 0 && l->read_count != 0) continue; simple_lock(&l->interlock); } if (l->can_sleep && l->read_count != 0) { l->waiting = TRUE; thread_sleep(l, simple_lock_addr(l->interlock), FALSE); simple_lock(&l->interlock); } } #if MACH_LDEBUG l->writer = current_thread(); #endif /* MACH_LDEBUG */ simple_unlock(&l->interlock); return FALSE; } void lock_write_to_read( lock_t l) { simple_lock(&l->interlock); #if MACH_LDEBUG assert(l->writer == current_thread()); #endif /* MACH_LDEBUG */ l->read_count++; if (l->recursion_depth != 0) l->recursion_depth--; else if (l->want_upgrade) l->want_upgrade = FALSE; else l->want_write = FALSE; if (l->waiting) { l->waiting = FALSE; thread_wakeup(l); } #if MACH_LDEBUG l->writer = THREAD_NULL; #endif /* MACH_LDEBUG */ simple_unlock(&l->interlock); } /* * Routine: lock_try_write * Function: * Tries to get a write lock. * * Returns FALSE if the lock is not held on return. */ boolean_t lock_try_write( lock_t l) { simple_lock(&l->interlock); if (l->thread == current_thread()) { /* * Recursive lock */ l->recursion_depth++; simple_unlock(&l->interlock); return TRUE; } if (l->want_write || l->want_upgrade || l->read_count) { /* * Can't get lock. */ simple_unlock(&l->interlock); return FALSE; } /* * Have lock. */ l->want_write = TRUE; #if MACH_LDEBUG l->writer = current_thread(); #endif /* MACH_LDEBUG */ simple_unlock(&l->interlock); return TRUE; } /* * Routine: lock_try_read * Function: * Tries to get a read lock. * * Returns FALSE if the lock is not held on return. */ boolean_t lock_try_read( lock_t l) { simple_lock(&l->interlock); if (l->thread == current_thread()) { /* * Recursive lock */ l->read_count++; simple_unlock(&l->interlock); return TRUE; } if (l->want_write || l->want_upgrade) { simple_unlock(&l->interlock); return FALSE; } l->read_count++; simple_unlock(&l->interlock); return TRUE; } /* * Routine: lock_try_read_to_write * Function: * Improves a read-only lock to one with * write permission. If another reader has * already requested an upgrade to a write lock, * the read lock is still held upon return. * * Returns FALSE if the upgrade *failed*. */ boolean_t lock_try_read_to_write( lock_t l) { check_simple_locks(); simple_lock(&l->interlock); if (l->thread == current_thread()) { /* * Recursive lock */ l->read_count--; l->recursion_depth++; simple_unlock(&l->interlock); return TRUE; } if (l->want_upgrade) { simple_unlock(&l->interlock); return FALSE; } l->want_upgrade = TRUE; l->read_count--; while (l->read_count != 0) { l->waiting = TRUE; thread_sleep(l, simple_lock_addr(l->interlock), FALSE); simple_lock(&l->interlock); } #if MACH_LDEBUG l->writer = current_thread(); #endif /* MACH_LDEBUG */ simple_unlock(&l->interlock); return TRUE; } /* * Allow a process that has a lock for write to acquire it * recursively (for read, write, or update). */ void lock_set_recursive( lock_t l) { simple_lock(&l->interlock); #if MACH_LDEBUG assert(l->writer == current_thread()); #endif /* MACH_LDEBUG */ if (!l->want_write) { panic("lock_set_recursive: don't have write lock"); } l->thread = current_thread(); simple_unlock(&l->interlock); } /* * Prevent a lock from being re-acquired. */ void lock_clear_recursive( lock_t l) { simple_lock(&l->interlock); if (l->thread != current_thread()) { panic("lock_clear_recursive: wrong thread"); } if (l->recursion_depth == 0) l->thread = (struct thread *)-1; /* XXX */ simple_unlock(&l->interlock); } #if MACH_KDB #if MACH_SLOCKS && NCPUS == 1 void db_show_all_slocks(void) { int i; struct simple_locks_info *info; simple_lock_t l; for (i = 0; i < simple_locks_taken; i++) { info = &simple_locks_info[i]; db_printf("%d: %s (", i, info->expr); db_printsym(info->l, DB_STGY_ANY); db_printf(") locked by %s\n", info->loc); } } #else /* MACH_SLOCKS && NCPUS == 1 */ void db_show_all_slocks(void) { db_printf("simple lock info not available\n"); } #endif /* MACH_SLOCKS && NCPUS == 1 */ #endif /* MACH_KDB */