/* * Mach Operating System * Copyright (c) 1991,1990,1989 Carnegie Mellon University * All Rights Reserved. * * Permission to use, copy, modify and distribute this software and its * documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie Mellon * the rights to redistribute these changes. */ /* * Copyright (c) 1987, 1988 Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. The name of the Laboratory may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)disklabel.h 7.10 (Berkeley) 6/27/88 */ #ifndef _DISK_STATUS_H_ #define _DISK_STATUS_H_ /* * Each disk has a label which includes information about the hardware * disk geometry, filesystem partitions, and drive specific information. * The label is in block 0 or 1, possibly offset from the beginning * to leave room for a bootstrap, etc. */ #define LABELSECTOR 0 /* sector containing label */ #define LABELOFFSET 64 /* offset of label in sector */ #define DISKMAGIC ((unsigned int) 0x82564557U) /* The disk magic number */ #ifndef MAXPARTITIONS #define MAXPARTITIONS 8 #endif #ifndef LOCORE struct disklabel { unsigned int d_magic; /* the magic number */ short d_type; /* drive type */ short d_subtype; /* controller/d_type specific */ char d_typename[16]; /* type name, e.g. "eagle" */ /* * d_packname contains the pack identifier and is returned when * the disklabel is read off the disk or in-core copy. * d_boot0 and d_boot1 are the (optional) names of the * primary (block 0) and secondary (block 1-15) bootstraps * as found in /usr/mdec. These are returned when using * getdiskbyname(3) to retrieve the values from /etc/disktab. */ #if defined(MACH_KERNEL) || defined(STANDALONE) char d_packname[16]; /* pack identifier */ #else union { char un_d_packname[16]; /* pack identifier */ struct { char *un_d_boot0; /* primary bootstrap name */ char *un_d_boot1; /* secondary bootstrap name */ } un_b; } d_un; #define d_packname d_un.un_d_packname #define d_boot0 d_un.un_b.un_d_boot0 #define d_boot1 d_un.un_b.un_d_boot1 #endif /* ! MACH_KERNEL or STANDALONE */ /* disk geometry: */ unsigned int d_secsize; /* # of bytes per sector */ unsigned int d_nsectors; /* # of data sectors per track */ unsigned int d_ntracks; /* # of tracks per cylinder */ unsigned int d_ncylinders; /* # of data cylinders per unit */ unsigned int d_secpercyl; /* # of data sectors per cylinder */ unsigned int d_secperunit; /* # of data sectors per unit */ /* * Spares (bad sector replacements) below * are not counted in d_nsectors or d_secpercyl. * Spare sectors are assumed to be physical sectors * which occupy space at the end of each track and/or cylinder. */ unsigned short d_sparespertrack; /* # of spare sectors per track */ unsigned short d_sparespercyl; /* # of spare sectors per cylinder */ /* * Alternate cylinders include maintenance, replacement, * configuration description areas, etc. */ unsigned int d_acylinders; /* # of alt. cylinders per unit */ /* hardware characteristics: */ /* * d_interleave, d_trackskew and d_cylskew describe perturbations * in the media format used to compensate for a slow controller. * Interleave is physical sector interleave, set up by the formatter * or controller when formatting. When interleaving is in use, * logically adjacent sectors are not physically contiguous, * but instead are separated by some number of sectors. * It is specified as the ratio of physical sectors traversed * per logical sector. Thus an interleave of 1:1 implies contiguous * layout, while 2:1 implies that logical sector 0 is separated * by one sector from logical sector 1. * d_trackskew is the offset of sector 0 on track N * relative to sector 0 on track N-1 on the same cylinder. * Finally, d_cylskew is the offset of sector 0 on cylinder N * relative to sector 0 on cylinder N-1. */ unsigned short d_rpm; /* rotational speed */ unsigned short d_interleave; /* hardware sector interleave */ unsigned short d_trackskew; /* sector 0 skew, per track */ unsigned short d_cylskew; /* sector 0 skew, per cylinder */ unsigned int d_headswitch; /* head switch time, usec */ unsigned int d_trkseek; /* track-to-track seek, usec */ unsigned int d_flags; /* generic flags */ #define NDDATA 5 unsigned int d_drivedata[NDDATA]; /* drive-type specific information */ #define NSPARE 5 unsigned int d_spare[NSPARE]; /* reserved for future use */ unsigned int d_magic2; /* the magic number (again) */ unsigned short d_checksum; /* xor of data incl. partitions */ /* filesystem and partition information: */ unsigned short d_npartitions; /* number of partitions in following */ unsigned int d_bbsize; /* size of boot area at sn0, bytes */ unsigned int d_sbsize; /* max size of fs superblock, bytes */ struct partition { /* the partition table */ unsigned int p_size; /* number of sectors in partition */ unsigned int p_offset; /* starting sector */ unsigned int p_fsize; /* filesystem basic fragment size */ unsigned char p_fstype; /* filesystem type, see below */ unsigned char p_frag; /* filesystem fragments per block */ unsigned short p_cpg; /* filesystem cylinders per group */ } d_partitions[MAXPARTITIONS+1]; /* actually may be more */ #if defined(alpha) && defined(MACH_KERNEL) /* * Disgusting hack. If this structure contains a pointer, * as it does for non-kernel, then the compiler rounds * the size to make it pointer-sized properly (arrays of..). * But if I define the pointer for the kernel then instances * of this structure better be aligned otherwise picking * up a short might be done by too-smart compilers (GCC) with * a load-long instruction expecting the short to be aligned. * I bet the OSF folks stomped into this too, since they use * the same disgusting hack below.. [whatelse can I do ??] */ int bugfix; #endif }; #else /* LOCORE */ /* * offsets for asm boot files. */ .set d_secsize,40 .set d_nsectors,44 .set d_ntracks,48 .set d_ncylinders,52 .set d_secpercyl,56 .set d_secperunit,60 .set d_end_,276 /* size of disk label */ #endif /* LOCORE */ /* d_type values: */ #define DTYPE_SMD 1 /* SMD, XSMD; VAX hp/up */ #define DTYPE_MSCP 2 /* MSCP */ #define DTYPE_DEC 3 /* other DEC (rk, rl) */ #define DTYPE_SCSI 4 /* SCSI */ #define DTYPE_ESDI 5 /* ESDI interface */ #define DTYPE_ST506 6 /* ST506 etc. */ #define DTYPE_FLOPPY 10 /* floppy */ #ifdef DKTYPENAMES static char *dktypenames[] = { "unknown", "SMD", "MSCP", "old DEC", "SCSI", "ESDI", "type 6", "type 7", "type 8", "type 9", "floppy", 0 }; #define DKMAXTYPES (sizeof(dktypenames) / sizeof(dktypenames[0]) - 1) #endif /* * Filesystem type and version. * Used to interpret other filesystem-specific * per-partition information. */ #define FS_UNUSED 0 /* unused */ #define FS_SWAP 1 /* swap */ #define FS_V6 2 /* Sixth Edition */ #define FS_V7 3 /* Seventh Edition */ #define FS_SYSV 4 /* System V */ #define FS_V71K 5 /* V7 with 1K blocks (4.1, 2.9) */ #define FS_V8 6 /* Eighth Edition, 4K blocks */ #define FS_BSDFFS 7 /* 4.2BSD fast file system */ #define FS_LINUXFS 8 /* Linux file system */ #ifdef DKTYPENAMES static char *fstypenames[] = { "unused", "swap", "Version 6", "Version 7", "System V", "4.1BSD", "Eighth Edition", "4.2BSD", "Linux", 0 }; #define FSMAXTYPES (sizeof(fstypenames) / sizeof(fstypenames[0]) - 1) #endif /* * flags shared by various drives: */ #define D_REMOVABLE 0x01 /* removable media */ #define D_ECC 0x02 /* supports ECC */ #define D_BADSECT 0x04 /* supports bad sector forw. */ #define D_RAMDISK 0x08 /* disk emulator */ #define D_CHAIN 0x10 /* can do back-back transfers */ /* * Drive data for SMD. */ #define d_smdflags d_drivedata[0] #define D_SSE 0x1 /* supports skip sectoring */ #define d_mindist d_drivedata[1] #define d_maxdist d_drivedata[2] #define d_sdist d_drivedata[3] /* * Drive data for ST506. */ #define d_precompcyl d_drivedata[0] #define d_gap3 d_drivedata[1] /* used only when formatting */ /* * IBM controller info (d_precompcyl used, too) */ #define d_step d_drivedata[2] #ifndef LOCORE /* * Structure used to perform a format * or other raw operation, returning data * and/or register values. * Register identification and format * are device- and driver-dependent. */ struct format_op { char *df_buf; int df_count; /* value-result */ recnum_t df_startblk; int df_reg[8]; /* result */ }; /* * Disk-specific ioctls. */ /* get and set disklabel; DIOCGPART used internally */ #define DIOCGDINFO _IOR('d', 101, struct disklabel)/* get */ #define DIOCSDINFO _IOW('d', 102, struct disklabel)/* set */ #define DIOCWDINFO _IOW('d', 103, struct disklabel)/* set, update disk */ /* do format operation, read or write */ #define DIOCRFORMAT _IOWR('d', 105, struct format_op) #define DIOCWFORMAT _IOWR('d', 106, struct format_op) #define DIOCSSTEP _IOW('d', 107, int) /* set step rate */ #define DIOCSRETRIES _IOW('d', 108, int) /* set # of retries */ #define DIOCWLABEL _IOW('d', 109, int) /* write en/disable label */ #define DIOCSBAD _IOW('d', 110, struct dkbad) /* set kernel dkbad */ #endif /* LOCORE */ #endif /* _DISK_STATUS_H_ */