/* * Mach Operating System * Copyright (c) 1993-1990 Carnegie Mellon University * All Rights Reserved. * * Permission to use, copy, modify and distribute this software and its * documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie Mellon * the rights to redistribute these changes. */ /* * Author: David B. Golub, Carnegie Mellon University * Date: 7/90 */ #if MACH_KDB /* * Commands to run process. */ #include #include #include #include #include #include #include #include #include #include #include #include int db_run_mode; boolean_t db_sstep_print; int db_loop_count; int db_call_depth; int db_inst_count; int db_last_inst_count; int db_load_count; int db_store_count; boolean_t db_stop_at_pc( boolean_t *is_breakpoint, task_t task) { db_addr_t pc; db_thread_breakpoint_t bkpt; db_clear_task_single_step(DDB_REGS, task); db_clear_breakpoints(); db_clear_watchpoints(); pc = PC_REGS(DDB_REGS); #ifdef FIXUP_PC_AFTER_BREAK if (*is_breakpoint) { /* * Breakpoint trap. Fix up the PC if the * machine requires it. */ FIXUP_PC_AFTER_BREAK pc = PC_REGS(DDB_REGS); } #endif /* FIXUP_PC_AFTER_BREAK */ /* * Now check for a breakpoint at this address. */ bkpt = db_find_thread_breakpoint_here(task, pc); if (bkpt) { if (db_cond_check(bkpt)) { *is_breakpoint = TRUE; return (TRUE); /* stop here */ } } *is_breakpoint = FALSE; if (db_run_mode == STEP_INVISIBLE) { db_run_mode = STEP_CONTINUE; return (FALSE); /* continue */ } if (db_run_mode == STEP_COUNT) { return (FALSE); /* continue */ } if (db_run_mode == STEP_ONCE) { if (--db_loop_count > 0) { if (db_sstep_print) { db_print_loc_and_inst(pc, task); } return (FALSE); /* continue */ } } if (db_run_mode == STEP_RETURN) { /* WARNING: the following assumes an instruction fits an int */ db_expr_t ins = db_get_task_value(pc, sizeof(int), FALSE, task); /* continue until matching return */ if (!inst_trap_return(ins) && (!inst_return(ins) || --db_call_depth != 0)) { if (db_sstep_print) { if (inst_call(ins) || inst_return(ins)) { int i; db_printf("[after %6d /%4d] ", db_inst_count, db_inst_count - db_last_inst_count); db_last_inst_count = db_inst_count; for (i = db_call_depth; --i > 0; ) db_printf(" "); db_print_loc_and_inst(pc, task); db_printf("\n"); } } if (inst_call(ins)) db_call_depth++; return (FALSE); /* continue */ } } if (db_run_mode == STEP_CALLT) { /* WARNING: the following assumes an instruction fits an int */ db_expr_t ins = db_get_task_value(pc, sizeof(int), FALSE, task); /* continue until call or return */ if (!inst_call(ins) && !inst_return(ins) && !inst_trap_return(ins)) { return (FALSE); /* continue */ } } if (db_find_breakpoint_here(task, pc)) return(FALSE); db_run_mode = STEP_NONE; return (TRUE); } void db_restart_at_pc( boolean_t watchpt, task_t task) { db_addr_t pc = PC_REGS(DDB_REGS); if ((db_run_mode == STEP_COUNT) || (db_run_mode == STEP_RETURN) || (db_run_mode == STEP_CALLT)) { /* * We are about to execute this instruction, * so count it now. */ db_get_task_value(pc, sizeof(int), FALSE, task); db_inst_count++; db_load_count += inst_load(ins); db_store_count += inst_store(ins); #ifdef SOFTWARE_SSTEP db_addr_t brpc; /* Account for instructions in delay slots */ brpc = next_instr_address(pc, 1, task); if ((brpc != pc) && (inst_branch(ins) || inst_call(ins))) { /* Note: this ~assumes an instruction <= sizeof(int) */ db_get_task_value(brpc, sizeof(int), FALSE, task); db_inst_count++; db_load_count += inst_load(ins); db_store_count += inst_store(ins); } #endif /* SOFTWARE_SSTEP */ } if (db_run_mode == STEP_CONTINUE) { if (watchpt || db_find_breakpoint_here(task, pc)) { /* * Step over breakpoint/watchpoint. */ db_run_mode = STEP_INVISIBLE; db_set_task_single_step(DDB_REGS, task); } else { db_set_breakpoints(); db_set_watchpoints(); } } else { db_set_task_single_step(DDB_REGS, task); } } void db_single_step( db_regs_t *regs, task_t task) { if (db_run_mode == STEP_CONTINUE) { db_run_mode = STEP_INVISIBLE; db_set_task_single_step(regs, task); } } #ifdef SOFTWARE_SSTEP /* * Software implementation of single-stepping. * If your machine does not have a trace mode * similar to the vax or sun ones you can use * this implementation, done for the mips. * Just define the above conditional and provide * the functions/macros defined below. * * extern boolean_t * inst_branch(), returns true if the instruction might branch * extern unsigned * branch_taken(), return the address the instruction might * branch to * db_getreg_val(); return the value of a user register, * as indicated in the hardware instruction * encoding, e.g. 8 for r8 * * next_instr_address(pc,bd,task) returns the address of the first * instruction following the one at "pc", * which is either in the taken path of * the branch (bd==1) or not. This is * for machines (mips) with branch delays. * * A single-step may involve at most 2 breakpoints - * one for branch-not-taken and one for branch taken. * If one of these addresses does not already have a breakpoint, * we allocate a breakpoint and save it here. * These breakpoints are deleted on return. */ db_breakpoint_t db_not_taken_bkpt = 0; db_breakpoint_t db_taken_bkpt = 0; db_breakpoint_t __attribute__ ((pure)) db_find_temp_breakpoint(task, addr) const task_t task; db_addr_t addr; { if (db_taken_bkpt && (db_taken_bkpt->address == addr) && db_taken_bkpt->task == task) return db_taken_bkpt; if (db_not_taken_bkpt && (db_not_taken_bkpt->address == addr) && db_not_taken_bkpt->task == task) return db_not_taken_bkpt; return 0; } void db_set_task_single_step( db_regs_t *regs, task_t task) { db_addr_t pc = PC_REGS(regs), brpc; unsigned int inst; boolean_t unconditional; /* * User was stopped at pc, e.g. the instruction * at pc was not executed. */ inst = db_get_task_value(pc, sizeof(int), FALSE, task); if (inst_branch(inst) || inst_call(inst)) { extern db_expr_t getreg_val(); brpc = branch_taken(inst, pc, getreg_val, regs); if (brpc != pc) { /* self-branches are hopeless */ db_taken_bkpt = db_set_temp_breakpoint(task, brpc); } else db_taken_bkpt = 0; pc = next_instr_address(pc,1,task); } /* check if this control flow instruction is an unconditional transfer */ unconditional = inst_unconditional_flow_transfer(inst); pc = next_instr_address(pc,0,task); /* We only set the sequential breakpoint if previous instruction was not an unconditional change of flow of control. If the previous instruction is an unconditional change of flow of control, setting a breakpoint in the next sequential location may set a breakpoint in data or in another routine, which could screw up either the program or the debugger. (Consider, for instance, that the next sequential instruction is the start of a routine needed by the debugger.) */ if (!unconditional && db_find_breakpoint_here(task, pc) == 0) { db_not_taken_bkpt = db_set_temp_breakpoint(task, pc); } else db_not_taken_bkpt = 0; } void db_clear_task_single_step(regs, task) const db_regs_t *regs; task_t task; { if (db_taken_bkpt != 0) { db_delete_temp_breakpoint(task, db_taken_bkpt); db_taken_bkpt = 0; } if (db_not_taken_bkpt != 0) { db_delete_temp_breakpoint(task, db_not_taken_bkpt); db_not_taken_bkpt = 0; } } #endif /* SOFTWARE_SSTEP */ extern int db_cmd_loop_done; /* single-step */ /*ARGSUSED*/ void db_single_step_cmd(addr, have_addr, count, modif) db_expr_t addr; int have_addr; db_expr_t count; const char * modif; { boolean_t print = FALSE; if (count == -1) count = 1; if (modif[0] == 'p') print = TRUE; db_run_mode = STEP_ONCE; db_loop_count = count; db_sstep_print = print; db_inst_count = 0; db_last_inst_count = 0; db_load_count = 0; db_store_count = 0; db_cmd_loop_done = 1; } /* trace and print until call/return */ /*ARGSUSED*/ void db_trace_until_call_cmd(addr, have_addr, count, modif) db_expr_t addr; int have_addr; db_expr_t count; const char * modif; { boolean_t print = FALSE; if (modif[0] == 'p') print = TRUE; db_run_mode = STEP_CALLT; db_sstep_print = print; db_inst_count = 0; db_last_inst_count = 0; db_load_count = 0; db_store_count = 0; db_cmd_loop_done = 1; } /*ARGSUSED*/ void db_trace_until_matching_cmd(addr, have_addr, count, modif) db_expr_t addr; int have_addr; db_expr_t count; const char * modif; { boolean_t print = FALSE; if (modif[0] == 'p') print = TRUE; db_run_mode = STEP_RETURN; db_call_depth = 1; db_sstep_print = print; db_inst_count = 0; db_last_inst_count = 0; db_load_count = 0; db_store_count = 0; db_cmd_loop_done = 1; } /* continue */ /*ARGSUSED*/ void db_continue_cmd(addr, have_addr, count, modif) db_expr_t addr; int have_addr; db_expr_t count; const char * modif; { if (modif[0] == 'c') db_run_mode = STEP_COUNT; else db_run_mode = STEP_CONTINUE; db_inst_count = 0; db_last_inst_count = 0; db_load_count = 0; db_store_count = 0; db_cmd_loop_done = 1; } boolean_t db_in_single_step(void) { return(db_run_mode != STEP_NONE && db_run_mode != STEP_CONTINUE); } #endif /* MACH_KDB */