summaryrefslogtreecommitdiff
path: root/vm
diff options
context:
space:
mode:
authorRichard Braun <rbraun@sceen.net>2016-01-23 19:52:24 +0100
committerRichard Braun <rbraun@sceen.net>2016-01-23 21:24:25 +0100
commite835160b6b95f3b904fbc429392a63be1e4ed6b8 (patch)
tree28c0dd9f3b460b09ce1d9f8e7926b02bb93576b1 /vm
parent451b007174d87aae30872b1269fc922331665b9c (diff)
Use vm_page as the physical memory allocator
This change replaces the historical page allocator with a buddy allocator implemented in vm/vm_page.c. This allocator allows easy contiguous allocations and also manages memory inside segments. In a future change, these segments will be used to service requests with special constraints, such as "usable for 16-bits DMA" or "must be part of the direct physical mapping". * Makefrag.am (libkernel_a_SOURCES): Add vm/vm_page.c. * i386/Makefrag.am (libkernel_a_SOURCES): Add i386/i386at/biosmem.{c,h}. * i386/i386/vm_param.h: Include kern/macros.h. (VM_PAGE_DMA_LIMIT, VM_PAGE_MAX_SEGS, VM_PAGE_DMA32_LIMIT, VM_PAGE_DIRECTMAP_LIMIT, VM_PAGE_HIGHMEM_LIMIT, VM_PAGE_SEG_DMA, VM_PAGE_SEG_DMA32, VM_PAGE_SEG_DIRECTMAP, VM_PAGE_SEG_HIGHMEM): New macros. * i386/i386at/model_dep.c: Include i386at/biosmem.h. (avail_next, avail_remaining): Remove variables. (mem_size_init): Remove function. (i386at_init): Initialize and use the biosmem module for early physical memory management. (pmap_free_pages): Return phys_last_addr instead of avail_remaining. (init_alloc_aligned): Turn into a wrapper for biosmem_bootalloc. (pmap_grab_page): Directly call init_alloc_aligned instead of pmap_next_page. * i386/include/mach/i386/vm_types.h (phys_addr_t): New type. * kern/bootstrap.c (free_bootstrap_pages): New function. (bootstrap_create): Call free_bootstrap_pages instead of vm_page_create. * kern/cpu_number.h (CPU_L1_SIZE): New macro. * kern/slab.h: Include kern/cpu_number.h. (CPU_L1_SIZE): Remove macro, moved to kern/cpu_number.h. * kern/startup.c (setup_main): Change the value of machine_info.memory_size. * linux/dev/glue/glue.h (alloc_contig_mem, free_contig_mem): Update prototypes. * linux/dev/glue/kmem.c (linux_kmem_init): Don't use defunct page queue. * linux/dev/init/main.c (linux_init): Don't free unused memory. (alloc_contig_mem, free_contig_mem): Turn into wrappers for the vm_page allocator. * linux/pcmcia-cs/glue/ds.c (PAGE_SHIFT): Don't undefine. * vm/pmap.h (pmap_startup, pmap_next_page): Remove prototypes. * vm/vm_fault.c (vm_fault_page): Update calls to vm_page_convert. * vm/vm_init.c (vm_mem_init): Call vm_page_info_all. * vm/vm_object.c (vm_object_page_map): Update call to vm_page_init. * vm/vm_page.h (vm_page_queue_free): Remove variable declaration. (vm_page_create, vm_page_release_fictitious, vm_page_release): Remove declarations. (vm_page_convert, vm_page_init): Update prototypes. (vm_page_grab_contig, vm_page_free_contig): New prototypes. * vm/vm_resident.c (vm_page_template, vm_page_queue_free, vm_page_big_pagenum): Remove variables. (vm_page_bootstrap): Update and call vm_page_setup. (pmap_steal_memory): Update and call vm_page_bootalloc. (pmap_startup, vm_page_create, vm_page_grab_contiguous_pages): Remove functions. (vm_page_init_template, vm_page_grab_contig, vm_page_free_contig): New functions. (vm_page_init): Update and call vm_page_init_template. (vm_page_release_fictitious): Make static. (vm_page_more_fictitious): Update call to vm_page_init. (vm_page_convert): Rewrite to comply with vm_page. (vm_page_grab): Update and call vm_page_alloc_pa. (vm_page_release): Update and call vm_page_free_pa.
Diffstat (limited to 'vm')
-rw-r--r--vm/pmap.h15
-rw-r--r--vm/vm_fault.c4
-rw-r--r--vm/vm_init.c1
-rw-r--r--vm/vm_object.c3
-rw-r--r--vm/vm_page.h14
-rw-r--r--vm/vm_resident.c546
6 files changed, 172 insertions, 411 deletions
diff --git a/vm/pmap.h b/vm/pmap.h
index 134f9c64..9bbcdc32 100644
--- a/vm/pmap.h
+++ b/vm/pmap.h
@@ -67,9 +67,6 @@
extern vm_offset_t pmap_steal_memory(vm_size_t);
/* During VM initialization, report remaining unused physical pages. */
extern unsigned int pmap_free_pages(void);
-/* During VM initialization, use remaining physical pages to allocate page
- * frames. */
-extern void pmap_startup(vm_offset_t *, vm_offset_t *);
/* Initialization, after kernel runs in virtual memory. */
extern void pmap_init(void);
@@ -80,18 +77,14 @@ extern void pmap_init(void);
* Otherwise, it must implement
* pmap_free_pages
* pmap_virtual_space
- * pmap_next_page
* pmap_init
- * and vm/vm_resident.c implements pmap_steal_memory and pmap_startup
- * using pmap_free_pages, pmap_next_page, pmap_virtual_space,
- * and pmap_enter. pmap_free_pages may over-estimate the number
- * of unused physical pages, and pmap_next_page may return FALSE
- * to indicate that there are no more unused pages to return.
+ * and vm/vm_resident.c implements pmap_steal_memory using
+ * pmap_free_pages, pmap_virtual_space, and pmap_enter.
+ *
+ * pmap_free_pages may over-estimate the number of unused physical pages.
* However, for best performance pmap_free_pages should be accurate.
*/
-/* During VM initialization, return the next unused physical page. */
-extern boolean_t pmap_next_page(vm_offset_t *);
/* During VM initialization, report virtual space available for the kernel. */
extern void pmap_virtual_space(vm_offset_t *, vm_offset_t *);
#endif /* MACHINE_PAGES */
diff --git a/vm/vm_fault.c b/vm/vm_fault.c
index 46779f63..4d674174 100644
--- a/vm/vm_fault.c
+++ b/vm/vm_fault.c
@@ -607,7 +607,7 @@ vm_fault_return_t vm_fault_page(
* won't block for pages.
*/
- if (m->fictitious && !vm_page_convert(m, FALSE)) {
+ if (m->fictitious && !vm_page_convert(&m, FALSE)) {
VM_PAGE_FREE(m);
vm_fault_cleanup(object, first_m);
return(VM_FAULT_MEMORY_SHORTAGE);
@@ -725,7 +725,7 @@ vm_fault_return_t vm_fault_page(
assert(m->object == object);
first_m = VM_PAGE_NULL;
- if (m->fictitious && !vm_page_convert(m, !object->internal)) {
+ if (m->fictitious && !vm_page_convert(&m, !object->internal)) {
VM_PAGE_FREE(m);
vm_fault_cleanup(object, VM_PAGE_NULL);
return(VM_FAULT_MEMORY_SHORTAGE);
diff --git a/vm/vm_init.c b/vm/vm_init.c
index 3d1081cc..23d5d46e 100644
--- a/vm/vm_init.c
+++ b/vm/vm_init.c
@@ -83,4 +83,5 @@ void vm_mem_init(void)
{
vm_object_init();
memory_object_proxy_init();
+ vm_page_info_all();
}
diff --git a/vm/vm_object.c b/vm/vm_object.c
index 6666fcba..eda03c65 100644
--- a/vm/vm_object.c
+++ b/vm/vm_object.c
@@ -2891,7 +2891,8 @@ vm_object_page_map(
VM_PAGE_FREE(old_page);
}
- vm_page_init(m, addr);
+ vm_page_init(m);
+ m->phys_addr = addr;
m->private = TRUE; /* don`t free page */
m->wire_count = 1;
vm_page_lock_queues();
diff --git a/vm/vm_page.h b/vm/vm_page.h
index d7450af8..7607aad0 100644
--- a/vm/vm_page.h
+++ b/vm/vm_page.h
@@ -155,8 +155,6 @@ struct vm_page {
*/
extern
-vm_page_t vm_page_queue_free; /* memory free queue */
-extern
vm_page_t vm_page_queue_fictitious; /* fictitious free queue */
extern
queue_head_t vm_page_queue_active; /* active memory queue */
@@ -211,25 +209,21 @@ extern void vm_page_bootstrap(
vm_offset_t *endp);
extern void vm_page_module_init(void);
-extern void vm_page_create(
- vm_offset_t start,
- vm_offset_t end);
extern vm_page_t vm_page_lookup(
vm_object_t object,
vm_offset_t offset);
extern vm_page_t vm_page_grab_fictitious(void);
-extern void vm_page_release_fictitious(vm_page_t);
-extern boolean_t vm_page_convert(vm_page_t, boolean_t);
+extern boolean_t vm_page_convert(vm_page_t *, boolean_t);
extern void vm_page_more_fictitious(void);
extern vm_page_t vm_page_grab(boolean_t);
-extern void vm_page_release(vm_page_t, boolean_t);
+extern vm_page_t vm_page_grab_contig(vm_size_t, unsigned int);
+extern void vm_page_free_contig(vm_page_t, vm_size_t);
extern void vm_page_wait(void (*)(void));
extern vm_page_t vm_page_alloc(
vm_object_t object,
vm_offset_t offset);
extern void vm_page_init(
- vm_page_t mem,
- vm_offset_t phys_addr);
+ vm_page_t mem);
extern void vm_page_free(vm_page_t);
extern void vm_page_activate(vm_page_t);
extern void vm_page_deactivate(vm_page_t);
diff --git a/vm/vm_resident.c b/vm/vm_resident.c
index c70fa734..9fd64918 100644
--- a/vm/vm_resident.c
+++ b/vm/vm_resident.c
@@ -72,7 +72,7 @@
/*
* These variables record the values returned by vm_page_bootstrap,
* for debugging purposes. The implementation of pmap_steal_memory
- * and pmap_startup here also uses them internally.
+ * here also uses them internally.
*/
vm_offset_t virtual_space_start;
@@ -95,21 +95,6 @@ vm_page_bucket_t *vm_page_buckets; /* Array of buckets */
unsigned int vm_page_bucket_count = 0; /* How big is array? */
unsigned int vm_page_hash_mask; /* Mask for hash function */
-/*
- * Resident page structures are initialized from
- * a template (see vm_page_alloc).
- *
- * When adding a new field to the virtual memory
- * object structure, be sure to add initialization
- * (see vm_page_bootstrap).
- */
-struct vm_page vm_page_template;
-
-/*
- * Resident pages that represent real memory
- * are allocated from a free list.
- */
-vm_page_t vm_page_queue_free;
vm_page_t vm_page_queue_fictitious;
decl_simple_lock_data(,vm_page_queue_free_lock)
unsigned int vm_page_free_wanted;
@@ -192,48 +177,15 @@ void vm_page_bootstrap(
vm_offset_t *startp,
vm_offset_t *endp)
{
- vm_page_t m;
int i;
/*
- * Initialize the vm_page template.
- */
-
- m = &vm_page_template;
- m->object = VM_OBJECT_NULL; /* reset later */
- m->offset = 0; /* reset later */
- m->wire_count = 0;
-
- m->inactive = FALSE;
- m->active = FALSE;
- m->laundry = FALSE;
- m->free = FALSE;
- m->external = FALSE;
-
- m->busy = TRUE;
- m->wanted = FALSE;
- m->tabled = FALSE;
- m->fictitious = FALSE;
- m->private = FALSE;
- m->absent = FALSE;
- m->error = FALSE;
- m->dirty = FALSE;
- m->precious = FALSE;
- m->reference = FALSE;
-
- m->phys_addr = 0; /* reset later */
-
- m->page_lock = VM_PROT_NONE;
- m->unlock_request = VM_PROT_NONE;
-
- /*
* Initialize the page queues.
*/
simple_lock_init(&vm_page_queue_free_lock);
simple_lock_init(&vm_page_queue_lock);
- vm_page_queue_free = VM_PAGE_NULL;
vm_page_queue_fictitious = VM_PAGE_NULL;
queue_init(&vm_page_queue_active);
queue_init(&vm_page_queue_inactive);
@@ -280,15 +232,8 @@ void vm_page_bootstrap(
simple_lock_init(&bucket->lock);
}
- /*
- * Machine-dependent code allocates the resident page table.
- * It uses vm_page_init to initialize the page frames.
- * The code also returns to us the virtual space available
- * to the kernel. We don't trust the pmap module
- * to get the alignment right.
- */
+ vm_page_setup();
- pmap_startup(&virtual_space_start, &virtual_space_end);
virtual_space_start = round_page(virtual_space_start);
virtual_space_end = trunc_page(virtual_space_end);
@@ -301,8 +246,8 @@ void vm_page_bootstrap(
#ifndef MACHINE_PAGES
/*
- * We implement pmap_steal_memory and pmap_startup with the help
- * of two simpler functions, pmap_virtual_space and pmap_next_page.
+ * We implement pmap_steal_memory with the help
+ * of two simpler functions, pmap_virtual_space and vm_page_bootalloc.
*/
vm_offset_t pmap_steal_memory(
@@ -310,11 +255,7 @@ vm_offset_t pmap_steal_memory(
{
vm_offset_t addr, vaddr, paddr;
- /*
- * We round the size to an integer multiple.
- */
-
- size = (size + 3) &~ 3;
+ size = round_page(size);
/*
* If this is the first call to pmap_steal_memory,
@@ -347,8 +288,7 @@ vm_offset_t pmap_steal_memory(
for (vaddr = round_page(addr);
vaddr < addr + size;
vaddr += PAGE_SIZE) {
- if (!pmap_next_page(&paddr))
- panic("pmap_steal_memory");
+ paddr = vm_page_bootalloc(PAGE_SIZE);
/*
* XXX Logically, these mappings should be wired,
@@ -361,64 +301,6 @@ vm_offset_t pmap_steal_memory(
return addr;
}
-
-void pmap_startup(
- vm_offset_t *startp,
- vm_offset_t *endp)
-{
- unsigned int i, npages, pages_initialized;
- vm_page_t pages;
- vm_offset_t paddr;
-
- /*
- * We calculate how many page frames we will have
- * and then allocate the page structures in one chunk.
- */
-
- npages = ((PAGE_SIZE * pmap_free_pages() +
- (round_page(virtual_space_start) - virtual_space_start)) /
- (PAGE_SIZE + sizeof *pages));
-
- pages = (vm_page_t) pmap_steal_memory(npages * sizeof *pages);
-
- /*
- * Initialize the page frames.
- */
-
- for (i = 0, pages_initialized = 0; i < npages; i++) {
- if (!pmap_next_page(&paddr))
- break;
-
- vm_page_init(&pages[i], paddr);
- pages_initialized++;
- }
- i = 0;
- while (pmap_next_page(&paddr))
- i++;
- if (i)
- printf("%u memory page(s) left away\n", i);
-
- /*
- * Release pages in reverse order so that physical pages
- * initially get allocated in ascending addresses. This keeps
- * the devices (which must address physical memory) happy if
- * they require several consecutive pages.
- */
-
- for (i = pages_initialized; i > 0; i--) {
- vm_page_release(&pages[i - 1], FALSE);
- }
-
- /*
- * We have to re-align virtual_space_start,
- * because pmap_steal_memory has been using it.
- */
-
- virtual_space_start = round_page(virtual_space_start);
-
- *startp = virtual_space_start;
- *endp = virtual_space_end;
-}
#endif /* MACHINE_PAGES */
/*
@@ -434,34 +316,6 @@ void vm_page_module_init(void)
}
/*
- * Routine: vm_page_create
- * Purpose:
- * After the VM system is up, machine-dependent code
- * may stumble across more physical memory. For example,
- * memory that it was reserving for a frame buffer.
- * vm_page_create turns this memory into available pages.
- */
-
-void vm_page_create(
- vm_offset_t start,
- vm_offset_t end)
-{
- vm_offset_t paddr;
- vm_page_t m;
-
- for (paddr = round_page(start);
- paddr < trunc_page(end);
- paddr += PAGE_SIZE) {
- m = (vm_page_t) kmem_cache_alloc(&vm_page_cache);
- if (m == VM_PAGE_NULL)
- panic("vm_page_create");
-
- vm_page_init(m, paddr);
- vm_page_release(m, FALSE);
- }
-}
-
-/*
* vm_page_hash:
*
* Distributes the object/offset key pair among hash buckets.
@@ -750,6 +604,33 @@ void vm_page_rename(
vm_page_unlock_queues();
}
+static void vm_page_init_template(vm_page_t m)
+{
+ m->object = VM_OBJECT_NULL; /* reset later */
+ m->offset = 0; /* reset later */
+ m->wire_count = 0;
+
+ m->inactive = FALSE;
+ m->active = FALSE;
+ m->laundry = FALSE;
+ m->free = FALSE;
+ m->external = FALSE;
+
+ m->busy = TRUE;
+ m->wanted = FALSE;
+ m->tabled = FALSE;
+ m->fictitious = FALSE;
+ m->private = FALSE;
+ m->absent = FALSE;
+ m->error = FALSE;
+ m->dirty = FALSE;
+ m->precious = FALSE;
+ m->reference = FALSE;
+
+ m->page_lock = VM_PROT_NONE;
+ m->unlock_request = VM_PROT_NONE;
+}
+
/*
* vm_page_init:
*
@@ -758,11 +639,9 @@ void vm_page_rename(
* so that it can be given to vm_page_release or vm_page_insert.
*/
void vm_page_init(
- vm_page_t mem,
- vm_offset_t phys_addr)
+ vm_page_t mem)
{
- *mem = vm_page_template;
- mem->phys_addr = phys_addr;
+ vm_page_init_template(mem);
}
/*
@@ -794,7 +673,7 @@ vm_page_t vm_page_grab_fictitious(void)
* Release a fictitious page to the free list.
*/
-void vm_page_release_fictitious(
+static void vm_page_release_fictitious(
vm_page_t m)
{
simple_lock(&vm_page_queue_free_lock);
@@ -826,7 +705,8 @@ void vm_page_more_fictitious(void)
if (m == VM_PAGE_NULL)
panic("vm_page_more_fictitious");
- vm_page_init(m, vm_page_fictitious_addr);
+ vm_page_init(m);
+ m->phys_addr = vm_page_fictitious_addr;
m->fictitious = TRUE;
vm_page_release_fictitious(m);
}
@@ -836,25 +716,46 @@ void vm_page_more_fictitious(void)
* vm_page_convert:
*
* Attempt to convert a fictitious page into a real page.
+ *
+ * The object referenced by *MP must be locked.
*/
boolean_t vm_page_convert(
- vm_page_t m,
+ struct vm_page **mp,
boolean_t external)
{
- vm_page_t real_m;
+ struct vm_page *real_m, *fict_m;
+ vm_object_t object;
+ vm_offset_t offset;
+
+ fict_m = *mp;
+
+ assert(fict_m->fictitious);
+ assert(fict_m->phys_addr == vm_page_fictitious_addr);
+ assert(!fict_m->active);
+ assert(!fict_m->inactive);
real_m = vm_page_grab(external);
if (real_m == VM_PAGE_NULL)
return FALSE;
- m->phys_addr = real_m->phys_addr;
- m->fictitious = FALSE;
+ object = fict_m->object;
+ offset = fict_m->offset;
+ vm_page_remove(fict_m);
+
+ memcpy(&real_m->vm_page_header,
+ &fict_m->vm_page_header,
+ sizeof(*fict_m) - VM_PAGE_HEADER_SIZE);
+ real_m->fictitious = FALSE;
- real_m->phys_addr = vm_page_fictitious_addr;
- real_m->fictitious = TRUE;
+ vm_page_insert(real_m, object, offset);
- vm_page_release_fictitious(real_m);
+ assert(real_m->phys_addr != vm_page_fictitious_addr);
+ assert(fict_m->fictitious);
+ assert(fict_m->phys_addr == vm_page_fictitious_addr);
+
+ vm_page_release_fictitious(fict_m);
+ *mp = real_m;
return TRUE;
}
@@ -886,15 +787,16 @@ vm_page_t vm_page_grab(
return VM_PAGE_NULL;
}
- if (vm_page_queue_free == VM_PAGE_NULL)
+ mem = vm_page_alloc_pa(0, VM_PAGE_SEL_DIRECTMAP, VM_PT_KERNEL);
+
+ if (mem == NULL)
panic("vm_page_grab");
if (--vm_page_free_count < vm_page_free_count_minimum)
vm_page_free_count_minimum = vm_page_free_count;
if (external)
vm_page_external_count++;
- mem = vm_page_queue_free;
- vm_page_queue_free = (vm_page_t) mem->pageq.next;
+
mem->free = FALSE;
mem->extcounted = mem->external = external;
simple_unlock(&vm_page_queue_free_lock);
@@ -928,208 +830,97 @@ vm_offset_t vm_page_grab_phys_addr(void)
}
/*
- * vm_page_grab_contiguous_pages:
- *
- * Take N pages off the free list, the pages should
- * cover a contiguous range of physical addresses.
- * [Used by device drivers to cope with DMA limitations]
+ * vm_page_release:
*
- * Returns the page descriptors in ascending order, or
- * Returns KERN_RESOURCE_SHORTAGE if it could not.
+ * Return a page to the free list.
*/
-/* Biggest phys page number for the pages we handle in VM */
-
-vm_size_t vm_page_big_pagenum = 0; /* Set this before call! */
-
-kern_return_t
-vm_page_grab_contiguous_pages(
- int npages,
- vm_page_t pages[],
- natural_t *bits,
- boolean_t external)
+static void vm_page_release(
+ vm_page_t mem,
+ boolean_t external)
{
- int first_set;
- int size, alloc_size;
- kern_return_t ret;
- vm_page_t mem, *prevmemp;
+ simple_lock(&vm_page_queue_free_lock);
+ if (mem->free)
+ panic("vm_page_release");
+ mem->free = TRUE;
+ vm_page_free_pa(mem, 0);
+ vm_page_free_count++;
+ if (external)
+ vm_page_external_count--;
-#ifndef NBBY
-#define NBBY 8 /* size in bits of sizeof()`s unity */
-#endif
+ /*
+ * Check if we should wake up someone waiting for page.
+ * But don't bother waking them unless they can allocate.
+ *
+ * We wakeup only one thread, to prevent starvation.
+ * Because the scheduling system handles wait queues FIFO,
+ * if we wakeup all waiting threads, one greedy thread
+ * can starve multiple niceguy threads. When the threads
+ * all wakeup, the greedy threads runs first, grabs the page,
+ * and waits for another page. It will be the first to run
+ * when the next page is freed.
+ *
+ * However, there is a slight danger here.
+ * The thread we wake might not use the free page.
+ * Then the other threads could wait indefinitely
+ * while the page goes unused. To forestall this,
+ * the pageout daemon will keep making free pages
+ * as long as vm_page_free_wanted is non-zero.
+ */
-#define NBPEL (sizeof(natural_t)*NBBY)
+ if ((vm_page_free_wanted > 0) &&
+ (vm_page_free_count >= vm_page_free_reserved)) {
+ vm_page_free_wanted--;
+ thread_wakeup_one((event_t) &vm_page_free_count);
+ }
- size = (vm_page_big_pagenum + NBPEL - 1)
- & ~(NBPEL - 1); /* in bits */
+ simple_unlock(&vm_page_queue_free_lock);
+}
- size = size / NBBY; /* in bytes */
+/*
+ * vm_page_grab_contig:
+ *
+ * Remove a block of contiguous pages from the free list.
+ * Returns VM_PAGE_NULL if the request fails.
+ */
- /*
- * If we are called before the VM system is fully functional
- * the invoker must provide us with the work space. [one bit
- * per page starting at phys 0 and up to vm_page_big_pagenum]
- */
- if (bits == 0) {
- alloc_size = round_page(size);
- if (kmem_alloc_wired(kernel_map,
- (vm_offset_t *)&bits,
- alloc_size)
- != KERN_SUCCESS)
- return KERN_RESOURCE_SHORTAGE;
- } else
- alloc_size = 0;
+vm_page_t vm_page_grab_contig(
+ vm_size_t size,
+ unsigned int selector)
+{
+ unsigned int i, order, nr_pages;
+ vm_page_t mem;
- memset(bits, 0, size);
+ order = vm_page_order(size);
+ nr_pages = 1 << order;
- /*
- * A very large granularity call, its rare so that is ok
- */
simple_lock(&vm_page_queue_free_lock);
/*
- * Do not dip into the reserved pool.
+ * Only let privileged threads (involved in pageout)
+ * dip into the reserved pool or exceed the limit
+ * for externally-managed pages.
*/
- if ((vm_page_free_count < vm_page_free_reserved)
- || (vm_page_external_count >= vm_page_external_limit)) {
- printf_once("no more room for vm_page_grab_contiguous_pages");
+ if (((vm_page_free_count - nr_pages) <= vm_page_free_reserved)
+ && !current_thread()->vm_privilege) {
simple_unlock(&vm_page_queue_free_lock);
- return KERN_RESOURCE_SHORTAGE;
- }
-
- /*
- * First pass through, build a big bit-array of
- * the pages that are free. It is not going to
- * be too large anyways, in 4k we can fit info
- * for 32k pages.
- */
- mem = vm_page_queue_free;
- while (mem) {
- int word_index, bit_index;
-
- bit_index = (mem->phys_addr >> PAGE_SHIFT);
- word_index = bit_index / NBPEL;
- bit_index = bit_index - (word_index * NBPEL);
- bits[word_index] |= 1 << bit_index;
-
- mem = (vm_page_t) mem->pageq.next;
+ return VM_PAGE_NULL;
}
- /*
- * Second loop. Scan the bit array for NPAGES
- * contiguous bits. That gives us, if any,
- * the range of pages we will be grabbing off
- * the free list.
- */
- {
- int bits_so_far = 0, i;
-
- first_set = 0;
-
- for (i = 0; i < size; i += sizeof(natural_t)) {
-
- natural_t v = bits[i / sizeof(natural_t)];
- int bitpos;
-
- /*
- * Bitscan this one word
- */
- if (v) {
- /*
- * keep counting them beans ?
- */
- bitpos = 0;
-
- if (bits_so_far) {
-count_ones:
- while (v & 1) {
- bitpos++;
- /*
- * got enough beans ?
- */
- if (++bits_so_far == npages)
- goto found_em;
- v >>= 1;
- }
- /* if we are being lucky, roll again */
- if (bitpos == NBPEL)
- continue;
- }
-
- /*
- * search for beans here
- */
- bits_so_far = 0;
- while ((bitpos < NBPEL) && ((v & 1) == 0)) {
- bitpos++;
- v >>= 1;
- }
- if (v & 1) {
- first_set = (i * NBBY) + bitpos;
- goto count_ones;
- }
- }
- /*
- * No luck
- */
- bits_so_far = 0;
- }
- }
+ mem = vm_page_alloc_pa(order, selector, VM_PT_KERNEL);
- /*
- * We could not find enough contiguous pages.
- */
- simple_unlock(&vm_page_queue_free_lock);
+ if (mem == NULL)
+ panic("vm_page_grab_contig");
- printf_once("no contiguous room for vm_page_grab_contiguous_pages");
- ret = KERN_RESOURCE_SHORTAGE;
- goto out;
+ vm_page_free_count -= nr_pages;
- /*
- * Final pass. Now we know which pages we want.
- * Scan the list until we find them all, grab
- * pages as we go. FIRST_SET tells us where
- * in the bit-array our pages start.
- */
-found_em:
- vm_page_free_count -= npages;
if (vm_page_free_count < vm_page_free_count_minimum)
vm_page_free_count_minimum = vm_page_free_count;
- if (external)
- vm_page_external_count += npages;
- {
- vm_offset_t first_phys, last_phys;
-
- /* cache values for compare */
- first_phys = first_set << PAGE_SHIFT;
- last_phys = first_phys + (npages << PAGE_SHIFT);/* not included */
-
- /* running pointers */
- mem = vm_page_queue_free;
- prevmemp = &vm_page_queue_free;
-
- while (mem) {
-
- vm_offset_t addr;
-
- addr = mem->phys_addr;
-
- if ((addr >= first_phys) &&
- (addr < last_phys)) {
- *prevmemp = (vm_page_t) mem->pageq.next;
- pages[(addr - first_phys) >> PAGE_SHIFT] = mem;
- mem->free = FALSE;
- mem->extcounted = mem->external = external;
- /*
- * Got them all ?
- */
- if (--npages == 0) break;
- } else
- prevmemp = (vm_page_t *) &mem->pageq.next;
-
- mem = (vm_page_t) mem->pageq.next;
- }
+
+ for (i = 0; i < nr_pages; i++) {
+ mem[i].free = FALSE;
+ mem[i].extcounted = mem[i].external = 0;
}
simple_unlock(&vm_page_queue_free_lock);
@@ -1148,55 +939,35 @@ found_em:
if ((vm_page_free_count < vm_page_free_min) ||
((vm_page_free_count < vm_page_free_target) &&
(vm_page_inactive_count < vm_page_inactive_target)))
- thread_wakeup(&vm_page_free_wanted);
-
- ret = KERN_SUCCESS;
-out:
- if (alloc_size)
- kmem_free(kernel_map, (vm_offset_t) bits, alloc_size);
+ thread_wakeup((event_t) &vm_page_free_wanted);
- return ret;
+ return mem;
}
/*
- * vm_page_release:
+ * vm_page_free_contig:
*
- * Return a page to the free list.
+ * Return a block of contiguous pages to the free list.
*/
-void vm_page_release(
- vm_page_t mem,
- boolean_t external)
+void vm_page_free_contig(vm_page_t mem, vm_size_t size)
{
+ unsigned int i, order, nr_pages;
+
+ order = vm_page_order(size);
+ nr_pages = 1 << order;
+
simple_lock(&vm_page_queue_free_lock);
- if (mem->free)
- panic("vm_page_release");
- mem->free = TRUE;
- mem->pageq.next = (queue_entry_t) vm_page_queue_free;
- vm_page_queue_free = mem;
- vm_page_free_count++;
- if (external)
- vm_page_external_count--;
- /*
- * Check if we should wake up someone waiting for page.
- * But don't bother waking them unless they can allocate.
- *
- * We wakeup only one thread, to prevent starvation.
- * Because the scheduling system handles wait queues FIFO,
- * if we wakeup all waiting threads, one greedy thread
- * can starve multiple niceguy threads. When the threads
- * all wakeup, the greedy threads runs first, grabs the page,
- * and waits for another page. It will be the first to run
- * when the next page is freed.
- *
- * However, there is a slight danger here.
- * The thread we wake might not use the free page.
- * Then the other threads could wait indefinitely
- * while the page goes unused. To forestall this,
- * the pageout daemon will keep making free pages
- * as long as vm_page_free_wanted is non-zero.
- */
+ for (i = 0; i < nr_pages; i++) {
+ if (mem[i].free)
+ panic("vm_page_free_contig");
+
+ mem[i].free = TRUE;
+ }
+
+ vm_page_free_pa(mem, order);
+ vm_page_free_count += nr_pages;
if ((vm_page_free_wanted > 0) &&
(vm_page_free_count >= vm_page_free_reserved)) {
@@ -1310,12 +1081,13 @@ void vm_page_free(
*/
if (mem->private || mem->fictitious) {
- vm_page_init(mem, vm_page_fictitious_addr);
+ vm_page_init(mem);
+ mem->phys_addr = vm_page_fictitious_addr;
mem->fictitious = TRUE;
vm_page_release_fictitious(mem);
} else {
int external = mem->external && mem->extcounted;
- vm_page_init(mem, mem->phys_addr);
+ vm_page_init(mem);
vm_page_release(mem, external);
}
}