summaryrefslogtreecommitdiff
path: root/libstdc++-v3/src/c++17/floating_to_chars.cc
blob: 4599d68a39c04af91f6877ec6e6da6abd17855be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
// std::to_chars implementation for floating-point types -*- C++ -*-

// Copyright (C) 2020-2022 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

#include <charconv>

#include <bit>
#include <cfenv>
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#if __has_include(<langinfo.h>)
# include <langinfo.h> // for nl_langinfo
#endif
#include <optional>
#include <string_view>
#include <type_traits>

#ifdef _GLIBCXX_LONG_DOUBLE_ALT128_COMPAT
#ifndef __LONG_DOUBLE_IBM128__
#error "floating_to_chars.cc must be compiled with -mabi=ibmlongdouble"
#endif
// sprintf for __ieee128
extern "C" int __sprintfieee128(char*, const char*, ...);
#endif

// This implementation crucially assumes float/double have the
// IEEE binary32/binary64 formats.
#if _GLIBCXX_FLOAT_IS_IEEE_BINARY32 && _GLIBCXX_DOUBLE_IS_IEEE_BINARY64 \
    /* And it also assumes that uint64_t POW10_SPLIT_2[3133][3] is valid.  */\
    && __SIZE_WIDTH__ >= 32

// Determine the binary format of 'long double'.

// We support the binary64, float80 (i.e. x86 80-bit extended precision),
// binary128, and ibm128 formats.
#define LDK_UNSUPPORTED 0
#define LDK_BINARY64    1
#define LDK_FLOAT80     2
#define LDK_BINARY128   3
#define LDK_IBM128      4

#if __LDBL_MANT_DIG__ == __DBL_MANT_DIG__
# define LONG_DOUBLE_KIND LDK_BINARY64
#elif __LDBL_MANT_DIG__ == 64
#  define LONG_DOUBLE_KIND LDK_FLOAT80
#elif __LDBL_MANT_DIG__ == 113
# define LONG_DOUBLE_KIND LDK_BINARY128
#elif __LDBL_MANT_DIG__ == 106
# define LONG_DOUBLE_KIND LDK_IBM128
#else
# define LONG_DOUBLE_KIND LDK_UNSUPPORTED
#endif

// For now we only support __float128 when it's the powerpc64 __ieee128 type.
#if defined _GLIBCXX_LONG_DOUBLE_ALT128_COMPAT && __FLT128_MANT_DIG__ == 113
// Define overloads of std::to_chars for __float128.
# define FLOAT128_TO_CHARS 1
#endif

#ifdef FLOAT128_TO_CHARS
using F128_type = __float128;
#else
using F128_type = void;
#endif

namespace
{
#if defined __SIZEOF_INT128__
  using uint128_t = unsigned __int128;
#else
# include "uint128_t.h"
#endif

  namespace ryu
  {
#include "ryu/common.h"
#include "ryu/digit_table.h"
#include "ryu/d2s_intrinsics.h"
#include "ryu/d2s_full_table.h"
#include "ryu/d2fixed_full_table.h"
#include "ryu/f2s_intrinsics.h"
#include "ryu/d2s.c"
#include "ryu/d2fixed.c"
#include "ryu/f2s.c"

    namespace generic128
    {
      // Put the generic Ryu bits in their own namespace to avoid name conflicts.
# include "ryu/generic_128.h"
# include "ryu/ryu_generic_128.h"
# include "ryu/generic_128.c"
    } // namespace generic128

    using generic128::floating_decimal_128;
    using generic128::generic_binary_to_decimal;

    int
    to_chars(const floating_decimal_128 v, char* const result)
    { return generic128::generic_to_chars(v, result); }
  } // namespace ryu

  // A traits class that contains pertinent information about the binary
  // format of each of the floating-point types we support.
  template<typename T>
    struct floating_type_traits
    { };

  template<>
    struct floating_type_traits<float>
    {
      static constexpr int mantissa_bits = 23;
      static constexpr int exponent_bits = 8;
      static constexpr bool has_implicit_leading_bit = true;
      using mantissa_t = uint32_t;
      using shortest_scientific_t = ryu::floating_decimal_32;

      static constexpr uint64_t pow10_adjustment_tab[]
	= { 0b0000000000011101011100110101100101101110000000000000000000000000 };
    };

  template<>
    struct floating_type_traits<double>
    {
      static constexpr int mantissa_bits = 52;
      static constexpr int exponent_bits = 11;
      static constexpr bool has_implicit_leading_bit = true;
      using mantissa_t = uint64_t;
      using shortest_scientific_t = ryu::floating_decimal_64;

      static constexpr uint64_t pow10_adjustment_tab[]
	= { 0b0000000000000000000000011000110101110111000001100101110000111100,
	    0b0111100011110101011000011110000000110110010101011000001110011111,
	    0b0101101100000000011100100100111100110110110100010001010101110000,
	    0b0011110010111000101111110101100011101100010001010000000101100111,
	    0b0001010000011001011100100001010000010101101000001101000000000000 };
    };

#if LONG_DOUBLE_KIND == LDK_BINARY128 || defined FLOAT128_TO_CHARS
  // Traits for the IEEE binary128 format.
  struct floating_type_traits_binary128
  {
    static constexpr int mantissa_bits = 112;
    static constexpr int exponent_bits = 15;
    static constexpr bool has_implicit_leading_bit = true;
    using mantissa_t = uint128_t;
    using shortest_scientific_t = ryu::floating_decimal_128;

    static constexpr uint64_t pow10_adjustment_tab[]
      = { 0b0000000000000000000000000000000000000000000000000100000010000000,
	  0b1011001111110100000100010101101110011100100110000110010110011000,
	  0b1010100010001101111111000000001101010010100010010000111011110111,
	  0b1011111001110001111000011111000010110111000111110100101010100101,
	  0b0110100110011110011011000011000010011001110001001001010011100011,
	  0b0000011111110010101111101011101010000110011111100111001110100111,
	  0b0100010101010110000010111011110100000010011001001010001110111101,
	  0b1101110111000010001101100000110100000111001001101011000101011011,
	  0b0100111011101101010000001101011000101100101110010010110000101011,
	  0b0100000110111000000110101000010011101000110100010110000011101101,
	  0b1011001101001000100001010001100100001111011101010101110001010110,
	  0b1000000001000000101001110010110010001111101101010101001100000110,
	  0b0101110110100110000110000001001010111110001110010000111111010011,
	  0b1010001111100111000100011100100100111100100101000001011001000111,
	  0b1010011000011100110101100111001011100101111111100001110100000100,
	  0b1100011100100010100000110001001010000000100000001001010111011101,
	  0b0101110000100011001111101101000000100110000010010111010001111010,
	  0b0100111100011010110111101000100110000111001001101100000001111100,
	  0b1100100100111110101011000100000101011010110111000111110100110101,
	  0b0110010000010111010100110011000000111010000010111011010110000100,
	  0b0101001001010010110111010111000101011100000111100111000001110010,
	  0b1101111111001011101010110001000111011010111101001011010110100100,
	  0b0001000100110000011111101011001101110010110110010000000011100100,
	  0b0001000000000101001001001000000000011000100011001110101001001110,
	  0b0010010010001000111010011011100001000110011011011110110100111000,
	  0b0000100110101100000111100010100100011100110111011100001111001100,
	  0b1011111010001110001100000011110111111111100000001011111111101100,
	  0b0000011100001111010101110000100110111100101101110111101001000001,
	  0b1100010001110110111100001001001101101000011100000010110101001011,
	  0b0100101001101011111001011110101101100011011111011100101010101111,
	  0b0001101001111001110000101101101100001011010001011110011101000010,
	  0b1111000000101001101111011010110011101110100001011011001011100010,
	  0b0101001010111101101100001111100010010110001101001000001101100100,
	  0b0101100101011110001100101011111000111001111001001001101101100001,
	  0b1111001101010010100100011011000110110010001111000111010001001101,
	  0b0001110010011000000001000110110111011000011100001000011001110111,
	  0b0100001011011011011011110011101100100101111111101100101000001110,
	  0b0101011110111101010111100111101111000101111111111110100011011010,
	  0b1110101010001001110100000010110111010111111010111110100110010110,
	  0b1010001111100001001100101000110100001100011100110010000011010111,
	  0b1111111101101111000100111100000101011000001110011011101010111001,
	  0b1111101100001110100101111101011001000100000101110000110010100011,
	  0b1001010110110101101101000101010001010000101011011111010011010000,
	  0b0111001110110011101001100111000001000100001010110000010000001101,
	  0b0101111100111110100111011001111001111011011110010111010011101010,
	  0b1110111000000001100100111001100100110001011011001110101111110111,
	  0b0001010001001101010111101010011111000011110001101101011001111111,
	  0b0101000011100011010010001101100001011101011010100110101100100010,
	  0b0001000101011000100101111100110110000101101101111000110001001011,
	  0b0101100101001011011000010101000000010100011100101101000010011111,
	  0b1000010010001011101001011010100010111011110100110011011000100111,
	  0b1000011011100001010111010111010011101100100010010010100100101001,
	  0b1001001001010111110101000010111010000000101111010100001010010010,
	  0b0011011110110010010101111011000001000000000011011111000011111011,
	  0b1011000110100011001110000001000100000001011100010111010010011110,
	  0b0111101110110101110111110000011000000100011100011000101101101110,
	  0b1001100101111011011100011110101011001111100111101010101010110111,
	  0b1100110010010001100011001111010000000100011101001111011101001111,
	  0b1000111001111010100101000010000100000001001100101010001011001101,
	  0b0011101011110000110010100101010100110010100001000010101011111101,
	  0b1100000000000110000010101011000000011101000110011111100010111111,
	  0b0010100110000011011100010110111100010110101100110011101110001101,
	  0b0010111101010011111000111001111100110111111100100011110001101110,
	  0b1001110111001001101001001001011000010100110001000000100011010110,
	  0b0011110101100111011011111100001000011001010100111100100101111010,
	  0b0010001101000011000010100101110000010101101000100110000100001010,
	  0b0010000010100110010101100101110011101111000111111111001001100001,
	  0b0100111111011011011011100111111011000010011101101111011111110110,
	  0b1111111111010110101011101000100101110100001110001001101011100111,
	  0b1011111101000101110000111100100010111010100001010000010010110010,
	  0b1111010101001011101011101010000100110110001110111100100110111111,
	  0b1011001101000001001101000010101010010110010001100001011100011010,
	  0b0101001011011101010001110100010000010001111100100100100001001101,
	  0b0010100000111001100011000101100101000001111100111001101000000010,
	  0b1011001111010101011001000100100110100100110111110100000110111000,
	  0b0101011111010011100011010010111101110010100001111111100010001001,
	  0b0010111011101100100000000000001111111010011101100111100001001101,
	  0b1101000000000000000000000000000000000000000000000000000000000000 };
  };

# ifdef FLOAT128_TO_CHARS
  template<>
    struct floating_type_traits<__float128> : floating_type_traits_binary128
    { };
# endif
#endif

#if LONG_DOUBLE_KIND == LDK_BINARY64
  // When long double is equivalent to double, we just forward the long double
  // overloads to the double overloads, so we don't need to define a
  // floating_type_traits<long double> specialization in this case.
#elif LONG_DOUBLE_KIND == LDK_FLOAT80
  template<>
    struct floating_type_traits<long double>
    {
      static constexpr int mantissa_bits = 64;
      static constexpr int exponent_bits = 15;
      static constexpr bool has_implicit_leading_bit = false;
      using mantissa_t = uint64_t;
      using shortest_scientific_t = ryu::floating_decimal_128;

      static constexpr uint64_t pow10_adjustment_tab[]
	= { 0b0000000000000000000000000000110101011111110100010100110000011101,
	    0b1001100101001111010011011111101000101111110001011001011101110000,
	    0b0000101111111011110010001000001010111101011110111111010100011001,
	    0b0011100000011111001101101011111001111100100010000101001111101001,
	    0b0100100100000000100111010010101110011000110001101101110011001010,
	    0b0111100111100010100000010011000010010110101111110101000011110100,
	    0b1010100111100010011110000011011101101100010110000110101010101010,
	    0b0000001111001111000000101100111011011000101000110011101100110010,
	    0b0111000011100100101101010100001101111110101111001000010011111111,
	    0b0010111000100110100100100010101100111010110001101010010111001000,
	    0b0000100000010110000011001001000111000001111010100101101000001111,
	    0b0010101011101000111100001011000010011101000101010010010000101111,
	    0b1011111011101101110010101011010001111000101000101101011001100011,
	    0b1010111011011011110111110011001010000010011001110100101101000101,
	    0b0011000001110110011010010000011100100011001011001100001101010110,
	    0b0100011111011000111111101000011110000010111110101001000000001001,
	    0b1110000001110001001101101110011000100000001010000111100010111010,
	    0b1110001001010011101000111000001000010100110000010110100011110000,
	    0b0000011010110000110001111000011111000011001101001101001001000110,
	    0b1010010111001000101001100101010110100100100010010010000101000010,
	    0b1011001110000111100010100110000011100011111001110111001100000101,
	    0b0110101001001000010110001000010001010101110101100001111100011001,
	    0b1111100011110101011110011010101001010010100011000010110001101001,
	    0b0100000100001000111101011100010011011111011001000000001100011000,
	    0b1110111111000111100101110111110000000011001110011100011011011001,
	    0b1100001100100000010001100011011000111011110000110011010101000011,
	    0b1111111011100111011101001111111000010000001111010111110010000100,
	    0b1110111001111110101111000101000000001010001110011010001000111010,
	    0b1000010001011000101111111010110011111101110101101001111000111010,
	    0b0100000111101001000111011001101000001010111011101001101111000100,
	    0b0000011100110001000111011100111100110001101111111010110111100000,
	    0b0000011101011100100110010011110101010100010011110010010111010000,
	    0b0011011001100111110101111100001001101110101101001110110011110110,
	    0b1011000101000001110100111001100100111100110011110000000001101000,
	    0b1011100011110100001001110101010110111001000000001011101001011110,
	    0b1111001010010010100000010110101010101011101000101000000000001100,
	    0b1000001111100100111001110101100001010011111111000001000011110000,
	    0b0001011101001000010000101101111000001110101100110011001100110111,
	    0b1110011100000010101011011111001010111101111110100000011100000011,
	    0b1001110110011100101010011110100010110001001110110000101011100110,
	    0b1001101000100011100111010000011011100001000000110101100100001001,
	    0b1010111000101000101101010111000010001100001010100011111100000100,
	    0b0111101000100011000101101011111011100010001101110111001111001011,
	    0b1110100111010110001110110110000000010110100011110000010001111100,
	    0b1100010100011010001011001000111001010101011110100101011001000000,
	    0b0000110001111001100110010110111010101101001101000000000010010101,
	    0b0001110111101000001111101010110010010000111110111100000111110100,
	    0b0111110111001001111000110001101101001010101110110101111110000100,
	    0b0000111110111010101111100010111010011100010110011011011001000001,
	    0b1010010100100100101110111111111000101100000010111111101101000110,
	    0b1000100111111101100011001101000110001000000100010101010100001101,
	    0b1100101010101000111100101100001000110001110010100000000010110101,
	    0b1010000100111101100100101010010110100010000000110101101110000100,
	    0b1011111011110001110000100100000000001010111010001101100000100100,
	    0b0111101101100011001110011100000001000101101101111000100111011111,
	    0b0100111010010011011001010011110100001100111010010101111111100011,
	    0b0010001001011000111000001100110111110111110010100011000110110110,
	    0b0101010110000000010000100000110100111011111101000100000111010010,
	    0b0110000011011101000001010100110101101110011100110101000000001001,
	    0b1101100110100000011000001111000100100100110001100110101010101100,
	    0b0010100101010110010010001010101000011111111111001011001010001111,
	    0b0111001010001111001100111001010101001000110101000011110000001000,
	    0b0110010011001001001111110001010010001011010010001101110110110011,
	    0b0110010100111011000100111000001001101011111001110010111110111111,
	    0b0101110111001001101100110100101001110010101110011001101110001000,
	    0b0100110101010111011010001100010111100011010011111001010100111000,
	    0b0111000110110111011110100100010111000110000110110110110001111110,
	    0b1000101101010100100100111110100011110110110010011001110011110101,
	    0b1001101110101001010100111101101011000101000010110101101111110000,
	    0b0100100101001011011001001011000010001101001010010001010110101000,
	    0b0010100001001011100110101000010110000111000111000011100101011011,
	    0b0110111000011001111101101011111010001000000010101000101010011110,
	    0b1000110110100001111011000001111100001001000000010110010100100100,
	    0b1001110100011111100111101011010000010101011100101000010010100110,
	    0b0001010110101110100010101010001110110110100011101010001001111100,
	    0b1010100101101100000010110011100110100010010000100100001110000100,
	    0b0001000000010000001010000010100110000001110100111001110111101101,
	    0b1100000000000000000000000000000000000000000000000000000000000000 };
    };
#elif LONG_DOUBLE_KIND == LDK_BINARY128
  template<>
    struct floating_type_traits<long double> : floating_type_traits_binary128
    { };
#elif LONG_DOUBLE_KIND == LDK_IBM128
  template<>
    struct floating_type_traits<long double>
    {
      static constexpr int mantissa_bits = 105;
      static constexpr int exponent_bits = 11;
      static constexpr bool has_implicit_leading_bit = true;
      using mantissa_t = uint128_t;
      using shortest_scientific_t = ryu::floating_decimal_128;

      static constexpr uint64_t pow10_adjustment_tab[]
	= { 0b0000000000000000000000000000000000000000000000001000000100000000,
	    0b0000000000000000000100000000000000000000001000000000000000000010,
	    0b0000100000000000000000001001000000000000000001100100000000000000,
	    0b0011000000000000000000000000000001110000010000000000000000000000,
	    0b0000100000000000001000000000000000000000000000100000000000000000 };
    };
#endif

  // An IEEE-style decomposition of a floating-point value of type T.
  template<typename T>
    struct ieee_t
    {
      typename floating_type_traits<T>::mantissa_t mantissa;
      uint32_t biased_exponent;
      bool sign;
    };

  // Decompose the floating-point value into its IEEE components.
  template<typename T>
    ieee_t<T>
    get_ieee_repr(const T value)
    {
      using mantissa_t = typename floating_type_traits<T>::mantissa_t;
      constexpr int mantissa_bits = floating_type_traits<T>::mantissa_bits;
      constexpr int exponent_bits = floating_type_traits<T>::exponent_bits;
      constexpr int total_bits = mantissa_bits + exponent_bits + 1;

      constexpr auto get_uint_t = [] {
	if constexpr (total_bits <= 32)
	  return uint32_t{};
	else if constexpr (total_bits <= 64)
	  return uint64_t{};
	else if constexpr (total_bits <= 128)
	  return uint128_t{};
      };
      using uint_t = decltype(get_uint_t());
      uint_t value_bits = 0;
      memcpy(&value_bits, &value, sizeof(value));

      ieee_t<T> ieee_repr;
      ieee_repr.mantissa
	= static_cast<mantissa_t>(value_bits & ((uint_t{1} << mantissa_bits) - 1u));
      value_bits >>= mantissa_bits;
      ieee_repr.biased_exponent
	= static_cast<uint32_t>(value_bits & ((uint_t{1} << exponent_bits) - 1u));
      value_bits >>= exponent_bits;
      ieee_repr.sign = (value_bits & 1) != 0;
      return ieee_repr;
    }

#if LONG_DOUBLE_KIND == LDK_IBM128
  template<>
    ieee_t<long double>
    get_ieee_repr(const long double value)
    {
      // The layout of __ibm128 isn't compatible with the standard IEEE format.
      // So we transform it into an IEEE-compatible format, suitable for
      // consumption by the generic Ryu API, with an 11-bit exponent and 105-bit
      // mantissa (plus an implicit leading bit).  We use the exponent and sign
      // of the high part, and we merge the mantissa of the high part with the
      // mantissa (and the implicit leading bit) of the low part.
      uint64_t value_bits[2] = {};
      memcpy(value_bits, &value, sizeof(value_bits));

      const uint64_t value_hi = value_bits[0];
      const uint64_t value_lo = value_bits[1];

      uint64_t mantissa_hi = value_hi & ((1ull << 52) - 1);
      unsigned exponent_hi = (value_hi >> 52) & ((1ull << 11) - 1);
      const int sign_hi = (value_hi >> 63) & 1;

      uint64_t mantissa_lo = value_lo & ((1ull << 52) - 1);
      const unsigned exponent_lo = (value_lo >> 52) & ((1ull << 11) - 1);
      const int sign_lo = (value_lo >> 63) & 1;

	{
	  // The following code for adjusting the low-part mantissa to combine
	  // it with the high-part mantissa is taken from the glibc source file
	  // sysdeps/ieee754/ldbl-128ibm/printf_fphex.c.
	  mantissa_lo <<= 7;
	  if (exponent_lo != 0)
	    mantissa_lo |= (1ull << (52 + 7));
	  else
	    mantissa_lo <<= 1;

	  const int ediff = exponent_hi - exponent_lo - 53;
	  if (ediff > 63)
	    mantissa_lo = 0;
	  else if (ediff > 0)
	    mantissa_lo >>= ediff;
	  else if (ediff < 0)
	    mantissa_lo <<= -ediff;

	  if (sign_lo != sign_hi && mantissa_lo != 0)
	    {
	      mantissa_lo = (1ull << 60) - mantissa_lo;
	      if (mantissa_hi == 0)
		{
		  mantissa_hi = 0xffffffffffffeLL | (mantissa_lo >> 59);
		  mantissa_lo = 0xfffffffffffffffLL & (mantissa_lo << 1);
		  exponent_hi--;
		}
	      else
		mantissa_hi--;
	    }
	}

      ieee_t<long double> ieee_repr;
      ieee_repr.mantissa = ((uint128_t{mantissa_hi} << 64)
			    | (uint128_t{mantissa_lo} << 4)) >> 11;
      ieee_repr.biased_exponent = exponent_hi;
      ieee_repr.sign = sign_hi;
      return ieee_repr;
    }
#endif

  // Invoke Ryu to obtain the shortest scientific form for the given
  // floating-point number.
  template<typename T>
    typename floating_type_traits<T>::shortest_scientific_t
    floating_to_shortest_scientific(const T value)
    {
      if constexpr (std::is_same_v<T, float>)
	return ryu::floating_to_fd32(value);
      else if constexpr (std::is_same_v<T, double>)
	return ryu::floating_to_fd64(value);
      else if constexpr (std::is_same_v<T, long double>
			 || std::is_same_v<T, F128_type>)
	{
	  constexpr int mantissa_bits
	    = floating_type_traits<T>::mantissa_bits;
	  constexpr int exponent_bits
	    = floating_type_traits<T>::exponent_bits;
	  constexpr bool has_implicit_leading_bit
	    = floating_type_traits<T>::has_implicit_leading_bit;

	  const auto [mantissa, exponent, sign] = get_ieee_repr(value);
	  return ryu::generic_binary_to_decimal(mantissa, exponent, sign,
						mantissa_bits, exponent_bits,
						!has_implicit_leading_bit);
	}
    }

  // This subroutine returns true if the shortest scientific form fd is a
  // positive power of 10, and the floating-point number that has this shortest
  // scientific form is smaller than this power of 10.
  //
  // For instance, the exactly-representable 64-bit number
  // 99999999999999991611392.0 has the shortest scientific form 1e23, so its
  // exact value is smaller than its shortest scientific form.
  //
  // For these powers of 10 the length of the fixed form is one digit less
  // than what the scientific exponent suggests.
  //
  // This subroutine inspects a lookup table to detect when fd is such a
  // "rounded up" power of 10.
  template<typename T>
    bool
    is_rounded_up_pow10_p(const typename
			  floating_type_traits<T>::shortest_scientific_t fd)
    {
      if (fd.exponent < 0 || fd.mantissa != 1) [[likely]]
	return false;

      constexpr auto& pow10_adjustment_tab
	= floating_type_traits<T>::pow10_adjustment_tab;
      __glibcxx_assert(fd.exponent/64 < (int)std::size(pow10_adjustment_tab));
      return (pow10_adjustment_tab[fd.exponent/64]
	      & (1ull << (63 - fd.exponent%64)));
    }

  int
  get_mantissa_length(const ryu::floating_decimal_32 fd)
  { return ryu::decimalLength9(fd.mantissa); }

  int
  get_mantissa_length(const ryu::floating_decimal_64 fd)
  { return ryu::decimalLength17(fd.mantissa); }

  int
  get_mantissa_length(const ryu::floating_decimal_128 fd)
  { return ryu::generic128::decimalLength(fd.mantissa); }

#if !defined __SIZEOF_INT128__
  // An implementation of base-10 std::to_chars for the uint128_t class type,
  // used by targets that lack __int128.
  std::to_chars_result
  to_chars(char* first, char* const last, uint128_t x)
  {
    const int len = ryu::generic128::decimalLength(x);
    if (last - first < len)
      return {last, std::errc::value_too_large};
    if (x == 0)
      {
	*first++ = '0';
	return {first, std::errc{}};
      }
    for (int i = 0; i < len; ++i)
      {
	first[len - 1 - i] = '0' + static_cast<char>(x % 10);
	x /= 10;
      }
    __glibcxx_assert(x == 0);
    return {first + len, std::errc{}};
  }
#endif
} // anon namespace

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

// This subroutine of __floating_to_chars_* handles writing nan, inf and 0 in
// all formatting modes.
template<typename T>
  static optional<to_chars_result>
  __handle_special_value(char* first, char* const last, const T value,
			 const chars_format fmt, const int precision)
  {
    __glibcxx_assert(precision >= 0);

    string_view str;
    switch (__builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL,
				 FP_ZERO, value))
      {
      case FP_INFINITE:
	str = "-inf";
	break;

      case FP_NAN:
	str = "-nan";
	break;

      case FP_ZERO:
	break;

      default:
      case FP_SUBNORMAL:
      case FP_NORMAL: [[likely]]
	return nullopt;
      }

    if (!str.empty())
      {
	// We're formatting +-inf or +-nan.
	if (!__builtin_signbit(value))
	  str.remove_prefix(strlen("-"));

	if (last - first < (int)str.length())
	  return {{last, errc::value_too_large}};

	memcpy(first, &str[0], str.length());
	first += str.length();
	return {{first, errc{}}};
      }

    // We're formatting 0.
    __glibcxx_assert(value == 0);
    const auto orig_first = first;
    const bool sign = __builtin_signbit(value);
    int expected_output_length;
    switch (fmt)
      {
      case chars_format::fixed:
      case chars_format::scientific:
      case chars_format::hex:
	expected_output_length = sign + 1;
	if (precision)
	  expected_output_length += strlen(".") + precision;
	if (fmt == chars_format::scientific)
	  expected_output_length += strlen("e+00");
	else if (fmt == chars_format::hex)
	  expected_output_length += strlen("p+0");
	if (last - first < expected_output_length)
	  return {{last, errc::value_too_large}};

	if (sign)
	  *first++ = '-';
	*first++ = '0';
	if (precision)
	  {
	    *first++ = '.';
	    memset(first, '0', precision);
	    first += precision;
	  }
	if (fmt == chars_format::scientific)
	  {
	    memcpy(first, "e+00", 4);
	    first += 4;
	  }
	else if (fmt == chars_format::hex)
	  {
	    memcpy(first, "p+0", 3);
	    first += 3;
	  }
	break;

      case chars_format::general:
      default: // case chars_format{}:
	expected_output_length = sign + 1;
	if (last - first < expected_output_length)
	  return {{last, errc::value_too_large}};

	if (sign)
	  *first++ = '-';
	*first++ = '0';
	break;
      }
    __glibcxx_assert(first - orig_first == expected_output_length);
    return {{first, errc{}}};
  }

// This subroutine of the floating-point to_chars overloads performs
// hexadecimal formatting.
template<typename T>
  static to_chars_result
  __floating_to_chars_hex(char* first, char* const last, const T value,
			  const optional<int> precision)
  {
    if (precision.has_value() && precision.value() < 0) [[unlikely]]
      // A negative precision argument is treated as if it were omitted.
      return __floating_to_chars_hex(first, last, value, nullopt);

    __glibcxx_requires_valid_range(first, last);

    constexpr int mantissa_bits = floating_type_traits<T>::mantissa_bits;
    constexpr bool has_implicit_leading_bit
      = floating_type_traits<T>::has_implicit_leading_bit;
    constexpr int exponent_bits = floating_type_traits<T>::exponent_bits;
    constexpr int exponent_bias = (1u << (exponent_bits - 1)) - 1;
    using mantissa_t = typename floating_type_traits<T>::mantissa_t;
    constexpr int mantissa_t_width = sizeof(mantissa_t) * __CHAR_BIT__;

    if (auto result = __handle_special_value(first, last, value,
					     chars_format::hex,
					     precision.value_or(0)))
      return *result;

    // Extract the sign, mantissa and exponent from the value.
    const auto [ieee_mantissa, biased_exponent, sign] = get_ieee_repr(value);
    const bool is_normal_number = (biased_exponent != 0);

    // Calculate the unbiased exponent.
    const int32_t unbiased_exponent = (is_normal_number
				       ? biased_exponent - exponent_bias
				       : 1 - exponent_bias);

    // Shift the mantissa so that its bitwidth is a multiple of 4.
    constexpr unsigned rounded_mantissa_bits = (mantissa_bits + 3) / 4 * 4;
    static_assert(mantissa_t_width >= rounded_mantissa_bits);
    mantissa_t effective_mantissa
      = ieee_mantissa << (rounded_mantissa_bits - mantissa_bits);
    if (is_normal_number)
      {
	if constexpr (has_implicit_leading_bit)
	  // Restore the mantissa's implicit leading bit.
	  effective_mantissa |= mantissa_t{1} << rounded_mantissa_bits;
	else
	  // The explicit mantissa bit should already be set.
	  __glibcxx_assert(effective_mantissa & (mantissa_t{1} << (mantissa_bits
								   - 1u)));
      }

    // Compute the shortest precision needed to print this value exactly,
    // disregarding trailing zeros.
    constexpr int full_hex_precision = (has_implicit_leading_bit
					? (mantissa_bits + 3) / 4
					// With an explicit leading bit, we
					// use the four leading nibbles as the
					// hexit before the decimal point.
					: (mantissa_bits - 4 + 3) / 4);
    const int trailing_zeros = __countr_zero(effective_mantissa) / 4;
    const int shortest_full_precision = full_hex_precision - trailing_zeros;
    __glibcxx_assert(shortest_full_precision >= 0);

    int written_exponent = unbiased_exponent;
    int effective_precision = precision.value_or(shortest_full_precision);
    int excess_precision = 0;
    if (effective_precision < shortest_full_precision)
      {
	// When limiting the precision, we need to determine how to round the
	// least significant printed hexit.  The following branchless
	// bit-level-parallel technique computes whether to round up the
	// mantissa bit at index N (according to round-to-nearest rules) when
	// dropping N bits of precision, for each index N in the bit vector.
	// This technique is borrowed from the MSVC implementation.
	using bitvec = mantissa_t;
	const bitvec round_bit = effective_mantissa << 1;
	const bitvec has_tail_bits = round_bit - 1;
	const bitvec lsb_bit = effective_mantissa;
	const bitvec should_round = round_bit & (has_tail_bits | lsb_bit);

	const int dropped_bits = 4*(full_hex_precision - effective_precision);
	// Mask out the dropped nibbles.
	effective_mantissa >>= dropped_bits;
	effective_mantissa <<= dropped_bits;
	if (should_round & (mantissa_t{1} << dropped_bits))
	  {
	    // Round up the least significant nibble.
	    effective_mantissa += mantissa_t{1} << dropped_bits;
	    // Check and adjust for overflow of the leading nibble.  When the
	    // type has an implicit leading bit, then the leading nibble
	    // before rounding is either 0 or 1, so it can't overflow.
	    if constexpr (!has_implicit_leading_bit)
	      {
		// The only supported floating-point type with explicit
		// leading mantissa bit is LDK_FLOAT80, i.e. x86 80-bit
		// extended precision, and so we hardcode the below overflow
		// check+adjustment for this type.
		static_assert(mantissa_t_width == 64
			      && rounded_mantissa_bits == 64);
		if (effective_mantissa == 0)
		  {
		    // We rounded up the least significant nibble and the
		    // mantissa overflowed, e.g f.fcp+10 with precision=1
		    // became 10.0p+10.  Absorb this extra hexit into the
		    // exponent to obtain 1.0p+14.
		    effective_mantissa
		      = mantissa_t{1} << (rounded_mantissa_bits - 4);
		    written_exponent += 4;
		  }
	      }
	  }
      }
    else
      {
	excess_precision = effective_precision - shortest_full_precision;
	effective_precision = shortest_full_precision;
      }

    // Compute the leading hexit and mask it out from the mantissa.
    char leading_hexit;
    if constexpr (has_implicit_leading_bit)
      {
	const auto nibble = unsigned(effective_mantissa >> rounded_mantissa_bits);
	__glibcxx_assert(nibble <= 2);
	leading_hexit = '0' + nibble;
	effective_mantissa &= ~(mantissa_t{0b11} << rounded_mantissa_bits);
      }
    else
      {
	const auto nibble = unsigned(effective_mantissa >> (rounded_mantissa_bits-4));
	__glibcxx_assert(nibble < 16);
	leading_hexit = "0123456789abcdef"[nibble];
	effective_mantissa &= ~(mantissa_t{0b1111} << (rounded_mantissa_bits-4));
	written_exponent -= 3;
      }

    // Now before we start writing the string, determine the total length of
    // the output string and perform a single bounds check.
    int expected_output_length = sign + 1;
    if (effective_precision + excess_precision > 0)
      expected_output_length += strlen(".");
    expected_output_length += effective_precision;
    const int abs_written_exponent = abs(written_exponent);
    expected_output_length += (abs_written_exponent >= 10000 ? strlen("p+ddddd")
			       : abs_written_exponent >= 1000 ? strlen("p+dddd")
			       : abs_written_exponent >= 100 ? strlen("p+ddd")
			       : abs_written_exponent >= 10 ? strlen("p+dd")
			       : strlen("p+d"));
    if (last - first < expected_output_length
	|| last - first - expected_output_length < excess_precision)
      return {last, errc::value_too_large};
    char* const expected_output_end = first + expected_output_length + excess_precision;

    // Write the negative sign and the leading hexit.
    if (sign)
      *first++ = '-';
    *first++ = leading_hexit;

    if (effective_precision + excess_precision > 0)
      *first++ = '.';

    if (effective_precision > 0)
      {
	int written_hexits = 0;
	// Extract and mask out the leading nibble after the decimal point,
	// write its corresponding hexit, and repeat until the mantissa is
	// empty.
	int nibble_offset = rounded_mantissa_bits;
	if constexpr (!has_implicit_leading_bit)
	  // We already printed the entire leading hexit.
	  nibble_offset -= 4;
	while (effective_mantissa != 0)
	  {
	    nibble_offset -= 4;
	    const auto nibble = unsigned(effective_mantissa >> nibble_offset);
	    __glibcxx_assert(nibble < 16);
	    *first++ = "0123456789abcdef"[nibble];
	    ++written_hexits;
	     effective_mantissa &= ~(mantissa_t{0b1111} << nibble_offset);
	  }
	__glibcxx_assert(nibble_offset >= 0);
	__glibcxx_assert(written_hexits <= effective_precision);
	// Since the mantissa is now empty, every hexit hereafter must be '0'.
	if (int remaining_hexits = effective_precision - written_hexits)
	  {
	    memset(first, '0', remaining_hexits);
	    first += remaining_hexits;
	  }
      }

    if (excess_precision > 0)
      {
	memset(first, '0', excess_precision);
	first += excess_precision;
      }

    // Finally, write the exponent.
    *first++ = 'p';
    if (written_exponent >= 0)
      *first++ = '+';
    const to_chars_result result = to_chars(first, last, written_exponent);
    __glibcxx_assert(result.ec == errc{} && result.ptr == expected_output_end);
    return result;
  }

namespace
{
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wabi"
  template<typename T, typename... Extra>
  inline int
  sprintf_ld(char* buffer, const char* format_string, T value, Extra... args)
  {
    int len;

#if _GLIBCXX_USE_C99_FENV_TR1 && defined(FE_TONEAREST)
    const int saved_rounding_mode = fegetround();
    if (saved_rounding_mode != FE_TONEAREST)
      fesetround(FE_TONEAREST); // We want round-to-nearest behavior.
#endif

#ifdef _GLIBCXX_LONG_DOUBLE_ALT128_COMPAT
    if constexpr (is_same_v<T, __ieee128>)
      len = __sprintfieee128(buffer, format_string, args..., value);
    else
#endif
    len = sprintf(buffer, format_string, args..., value);

#if _GLIBCXX_USE_C99_FENV_TR1 && defined(FE_TONEAREST)
    if (saved_rounding_mode != FE_TONEAREST)
      fesetround(saved_rounding_mode);
#endif

    return len;
  }
#pragma GCC diagnostic pop
}

template<typename T>
  static to_chars_result
  __floating_to_chars_shortest(char* first, char* const last, const T value,
			       chars_format fmt)
  {
    if (fmt == chars_format::hex)
      return __floating_to_chars_hex(first, last, value, nullopt);

    __glibcxx_assert(fmt == chars_format::fixed
		     || fmt == chars_format::scientific
		     || fmt == chars_format::general
		     || fmt == chars_format{});
    __glibcxx_requires_valid_range(first, last);

    if (auto result = __handle_special_value(first, last, value, fmt, 0))
      return *result;

    const auto fd = floating_to_shortest_scientific(value);
    const int mantissa_length = get_mantissa_length(fd);
    const int scientific_exponent = fd.exponent + mantissa_length - 1;

    if (fmt == chars_format::general)
      {
	// Resolve the 'general' formatting mode as per the specification of
	// the 'g' printf output specifier.  Since there is no precision
	// argument, the default precision of the 'g' specifier, 6, applies.
	if (scientific_exponent >= -4 && scientific_exponent < 6)
	  fmt = chars_format::fixed;
	else
	  fmt = chars_format::scientific;
      }
    else if (fmt == chars_format{})
      {
	// The 'plain' formatting mode resolves to 'scientific' if it yields
	// the shorter string, and resolves to 'fixed' otherwise.  The
	// following lower and upper bounds on the exponent characterize when
	// to prefer 'fixed' over 'scientific'.
	int lower_bound = -(mantissa_length + 3);
	int upper_bound = 5;
	if (mantissa_length == 1)
	  // The decimal point in scientific notation will be omitted in this
	  // case; tighten the bounds appropriately.
	  ++lower_bound, --upper_bound;

	if (fd.exponent >= lower_bound && fd.exponent <= upper_bound)
	  fmt = chars_format::fixed;
	else
	  fmt = chars_format::scientific;
      }

    if (fmt == chars_format::scientific)
      {
	// Calculate the total length of the output string, perform a bounds
	// check, and then defer to Ryu's to_chars subroutine.
	int expected_output_length = fd.sign + mantissa_length;
	if (mantissa_length > 1)
	  expected_output_length += strlen(".");
	const int abs_exponent = abs(scientific_exponent);
	expected_output_length += (abs_exponent >= 1000 ? strlen("e+dddd")
				   : abs_exponent >= 100 ? strlen("e+ddd")
				   : strlen("e+dd"));
	if (last - first < expected_output_length)
	  return {last, errc::value_too_large};

	const int output_length = ryu::to_chars(fd, first);
	__glibcxx_assert(output_length == expected_output_length);
	return {first + output_length, errc{}};
      }
    else if (fmt == chars_format::fixed && fd.exponent >= 0)
      {
	// The Ryu exponent is positive, and so this number's shortest
	// representation is a whole number, to be formatted in fixed instead
	// of scientific notation "as if by std::printf".  This means we may
	// need to print more digits of the IEEE mantissa than what the
	// shortest scientific form given by Ryu provides.
	//
	// For instance, the exactly representable number
	// 12300000000000001048576.0 has as its shortest scientific
	// representation 123e+22, so in this case fd.mantissa is 123 and
	// fd.exponent is 22, which doesn't have enough information to format
	// the number exactly.  So we defer to Ryu's d2fixed_buffered_n with
	// precision=0 to format the number in the general case here.

	// To that end, first compute the output length and perform a bounds
	// check.
	int expected_output_length = fd.sign + mantissa_length + fd.exponent;
	if (is_rounded_up_pow10_p<T>(fd))
	  --expected_output_length;
	if (last - first < expected_output_length)
	  return {last, errc::value_too_large};

	// Optimization: if the shortest representation fits inside the IEEE
	// mantissa, then the number is certainly exactly-representable and
	// its shortest scientific form must be equal to its exact form.  So
	// we can write the value in fixed form exactly via fd.mantissa and
	// fd.exponent.
	//
	// Taking log2 of both sides of the desired condition
	//   fd.mantissa * 10^fd.exponent < 2^mantissa_bits
	// we get
	//   log2 fd.mantissa + fd.exponent * log2 10 < mantissa_bits
	// where log2 10 is slightly smaller than 10/3=3.333...
	//
	// After adding some wiggle room due to rounding we get the condition
	// value_fits_inside_mantissa_p below.
	const int log2_mantissa = __bit_width(fd.mantissa) - 1;
	const bool value_fits_inside_mantissa_p
	  = (log2_mantissa + (fd.exponent*10 + 2) / 3
	     < floating_type_traits<T>::mantissa_bits - 2);
	if (value_fits_inside_mantissa_p)
	  {
	    // Print the small exactly-representable number in fixed form by
	    // writing out fd.mantissa followed by fd.exponent many 0s.
	    if (fd.sign)
	      *first++ = '-';
	    to_chars_result result = to_chars(first, last, fd.mantissa);
	    __glibcxx_assert(result.ec == errc{});
	    memset(result.ptr, '0', fd.exponent);
	    result.ptr += fd.exponent;
	    const int output_length = fd.sign + (result.ptr - first);
	    __glibcxx_assert(output_length == expected_output_length);
	    return result;
	  }
	else if constexpr (is_same_v<T, long double>
			   || is_same_v<T, F128_type>)
	  {
	    // We can't use d2fixed_buffered_n for types larger than double,
	    // so we instead format larger types through sprintf.
	    // TODO: We currently go through an intermediate buffer in order
	    // to accommodate the mandatory null terminator of sprintf, but we
	    // can avoid this if we use sprintf to write all but the last
	    // digit, and carefully compute and write the last digit
	    // ourselves.
	    char buffer[expected_output_length+1];
	    const int output_length = sprintf_ld(buffer, "%.0Lf", value);
	    __glibcxx_assert(output_length == expected_output_length);
	    memcpy(first, buffer, output_length);
	    return {first + output_length, errc{}};
	  }
	else
	  {
	    // Otherwise, the number is too big, so defer to d2fixed_buffered_n.
	    const int output_length = ryu::d2fixed_buffered_n(value, 0, first);
	    __glibcxx_assert(output_length == expected_output_length);
	    return {first + output_length, errc{}};
	  }
      }
    else if (fmt == chars_format::fixed && fd.exponent < 0)
      {
	// The Ryu exponent is negative, so fd.mantissa definitely contains
	// all of the whole part of the number, and therefore fd.mantissa and
	// fd.exponent contain all of the information needed to format the
	// number in fixed notation "as if by std::printf" (with precision
	// equal to -fd.exponent).
	const int whole_digits = max<int>(mantissa_length + fd.exponent, 1);
	const int expected_output_length
	  = fd.sign + whole_digits + strlen(".") + -fd.exponent;
	if (last - first < expected_output_length)
	  return {last, errc::value_too_large};
	if (mantissa_length <= -fd.exponent)
	  {
	    // The magnitude of the number is less than one.  Format the
	    // number appropriately.
	    const auto orig_first = first;
	    if (fd.sign)
	      *first++ = '-';
	    *first++ = '0';
	    *first++ = '.';
	    const int leading_zeros = -fd.exponent - mantissa_length;
	    memset(first, '0', leading_zeros);
	    first += leading_zeros;
	    const to_chars_result result = to_chars(first, last, fd.mantissa);
	    const int output_length = result.ptr - orig_first;
	    __glibcxx_assert(output_length == expected_output_length
			     && result.ec == errc{});
	    return result;
	  }
	else
	  {
	    // The magnitude of the number is at least one.
	    const auto orig_first = first;
	    if (fd.sign)
	      *first++ = '-';
	    to_chars_result result = to_chars(first, last, fd.mantissa);
	    __glibcxx_assert(result.ec == errc{});
	    // Make space for and write the decimal point in the correct spot.
	    memmove(&result.ptr[fd.exponent+1], &result.ptr[fd.exponent],
		    -fd.exponent);
	    result.ptr[fd.exponent] = '.';
	    const int output_length = result.ptr + 1 - orig_first;
	    __glibcxx_assert(output_length == expected_output_length);
	    ++result.ptr;
	    return result;
	  }
      }

    __glibcxx_assert(false);
    __builtin_unreachable();
  }

template<typename T>
  static to_chars_result
  __floating_to_chars_precision(char* first, char* const last, const T value,
				chars_format fmt, const int precision)
  {
    if (fmt == chars_format::hex)
      return __floating_to_chars_hex(first, last, value, precision);

    if (precision < 0) [[unlikely]]
      // A negative precision argument is treated as if it were omitted, in
      // which case the default precision of 6 applies, as per the printf
      // specification.
      return __floating_to_chars_precision(first, last, value, fmt, 6);

    __glibcxx_assert(fmt == chars_format::fixed
		     || fmt == chars_format::scientific
		     || fmt == chars_format::general);
    __glibcxx_requires_valid_range(first, last);

    if (auto result = __handle_special_value(first, last, value,
					     fmt, precision))
      return *result;

    constexpr int mantissa_bits = floating_type_traits<T>::mantissa_bits;
    constexpr int exponent_bits = floating_type_traits<T>::exponent_bits;
    constexpr int exponent_bias = (1u << (exponent_bits - 1)) - 1;

    // Extract the sign and exponent from the value.
    const auto [mantissa, biased_exponent, sign] = get_ieee_repr(value);
    const bool is_normal_number = (biased_exponent != 0);

    // Calculate the unbiased exponent.
    const int32_t unbiased_exponent = (is_normal_number
				       ? biased_exponent - exponent_bias
				       : 1 - exponent_bias);

    // Obtain trunc(log2(abs(value))), which is just the unbiased exponent.
    const int floor_log2_value = unbiased_exponent;
    // This is within +-1 of log10(abs(value)).  Note that log10 2 is 0.3010..
    const int approx_log10_value = (floor_log2_value >= 0
				    ? (floor_log2_value*301 + 999)/1000
				    : (floor_log2_value*301 - 999)/1000);

    // Compute (an upper bound of) the number's effective precision when it is
    // formatted in scientific and fixed notation.  Beyond this precision all
    // digits are definitely zero, and this fact allows us to bound the sizes
    // of any local output buffers that we may need to use.  TODO: Consider
    // the number of trailing zero bits in the mantissa to obtain finer upper
    // bounds.
    // ???: Using "mantissa_bits + 1" instead of just "mantissa_bits" in the
    // bounds below is necessary only for __ibm128, it seems.  Even though the
    // type has 105 bits of precision, printf may output 106 fractional digits
    // on some inputs, e.g. 0x1.bcd19f5d720d12a3513e3301028p+0.
    const int max_eff_scientific_precision
      = (floor_log2_value >= 0
	 ? max(mantissa_bits + 1, approx_log10_value + 1)
	 : -(7*floor_log2_value + 9)/10 + 2 + mantissa_bits + 1);
    __glibcxx_assert(max_eff_scientific_precision > 0);

    const int max_eff_fixed_precision
      = (floor_log2_value >= 0
	 ? mantissa_bits + 1
	 : -floor_log2_value + mantissa_bits + 1);
    __glibcxx_assert(max_eff_fixed_precision > 0);

    // Ryu doesn't support formatting floating-point types larger than double
    // with an explicit precision, so instead we just go through printf.
    if constexpr (is_same_v<T, long double> || is_same_v<T, F128_type>)
      {
	int effective_precision;
	const char* output_specifier;
	if (fmt == chars_format::scientific)
	  {
	    effective_precision = min(precision, max_eff_scientific_precision);
	    output_specifier = "%.*Le";
	  }
	else if (fmt == chars_format::fixed)
	  {
	    effective_precision = min(precision, max_eff_fixed_precision);
	    output_specifier = "%.*Lf";
	  }
	else if (fmt == chars_format::general)
	  {
	    effective_precision = min(precision, max_eff_scientific_precision);
	    output_specifier = "%.*Lg";
	  }
	else
	  __builtin_unreachable();
	const int excess_precision = (fmt != chars_format::general
				      ? precision - effective_precision : 0);

	// Since the output of printf is locale-sensitive, we need to be able
	// to handle a radix point that's different from '.'.
	char radix[6] = {'.', '\0', '\0', '\0', '\0', '\0'};
#ifdef RADIXCHAR
	if (effective_precision > 0)
	  // ???: Can nl_langinfo() ever return null?
	  if (const char* const radix_ptr = nl_langinfo(RADIXCHAR))
	    {
	      strncpy(radix, radix_ptr, sizeof(radix)-1);
	      // We accept only radix points which are at most 4 bytes (one
	      // UTF-8 character) wide.
	      __glibcxx_assert(radix[4] == '\0');
	    }
#endif

	// Compute straightforward upper bounds on the output length.
	int output_length_upper_bound;
	if (fmt == chars_format::scientific || fmt == chars_format::general)
	  output_length_upper_bound = (strlen("-d") + sizeof(radix)
				       + effective_precision
				       + strlen("e+dddd"));
	else if (fmt == chars_format::fixed)
	  {
	    if (approx_log10_value >= 0)
	      output_length_upper_bound = sign + approx_log10_value + 1;
	    else
	      output_length_upper_bound = sign + strlen("0");
	    output_length_upper_bound += sizeof(radix) + effective_precision;
	  }
	else
	  __builtin_unreachable();

	// Do the sprintf into the local buffer.
	char buffer[output_length_upper_bound+1];
	int output_length
	  = sprintf_ld(buffer, output_specifier, value, effective_precision);
	__glibcxx_assert(output_length <= output_length_upper_bound);

	if (effective_precision > 0)
	  // We need to replace a radix that is different from '.' with '.'.
	  if (const string_view radix_sv = {radix}; radix_sv != ".")
	    {
	      const string_view buffer_sv = {buffer, (size_t)output_length};
	      const size_t radix_index = buffer_sv.find(radix_sv);
	      if (radix_index != string_view::npos)
		{
		  buffer[radix_index] = '.';
		  if (radix_sv.length() > 1)
		    {
		      memmove(&buffer[radix_index + 1],
			      &buffer[radix_index + radix_sv.length()],
			      output_length - radix_index - radix_sv.length());
		      output_length -= radix_sv.length() - 1;
		    }
		}
	    }

	// Copy the string from the buffer over to the output range.
	if (last - first < output_length
	    || last - first - output_length < excess_precision)
	  return {last, errc::value_too_large};
	memcpy(first, buffer, output_length);
	first += output_length;

	// Add the excess 0s to the result.
	if (excess_precision > 0)
	  {
	    if (fmt == chars_format::scientific)
	      {
		char* const significand_end
		  = (output_length >= 6 && first[-6] == 'e' ? &first[-6]
		     : first[-5] == 'e' ? &first[-5]
		     : &first[-4]);
		__glibcxx_assert(*significand_end == 'e');
		  memmove(significand_end + excess_precision, significand_end,
			  first - significand_end);
		  memset(significand_end, '0', excess_precision);
		  first += excess_precision;
	      }
	    else if (fmt == chars_format::fixed)
	      {
		memset(first, '0', excess_precision);
		first += excess_precision;
	      }
	  }
	return {first, errc{}};
      }
    else if (fmt == chars_format::scientific)
      {
	const int effective_precision
	  = min(precision, max_eff_scientific_precision);
	const int excess_precision = precision - effective_precision;

	// We can easily compute the output length exactly whenever the
	// scientific exponent is far enough away from +-100.  But if it's
	// near +-100, then our log2 approximation is too coarse (and doesn't
	// consider precision-dependent rounding) in order to accurately
	// distinguish between a scientific exponent of +-100 and +-99.
	const bool scientific_exponent_near_100_p
	  = abs(abs(floor_log2_value) - 332) <= 4;

	// Compute an upper bound on the output length.  TODO: Maybe also
	// consider a lower bound on the output length.
	int output_length_upper_bound = sign + strlen("d");
	if (effective_precision > 0)
	  output_length_upper_bound += strlen(".") + effective_precision;
	if (scientific_exponent_near_100_p
	    || (floor_log2_value >= 332 || floor_log2_value <= -333))
	  output_length_upper_bound += strlen("e+ddd");
	else
	  output_length_upper_bound += strlen("e+dd");

	int output_length;
	if (last - first >= output_length_upper_bound
	    && last - first - output_length_upper_bound >= excess_precision)
	  {
	    // The result will definitely fit into the output range, so we can
	    // write directly into it.
	    output_length = ryu::d2exp_buffered_n(value, effective_precision,
						  first, nullptr);
	    __glibcxx_assert(output_length == output_length_upper_bound
			     || (scientific_exponent_near_100_p
				 && (output_length
				     == output_length_upper_bound - 1)));
	  }
	else if (scientific_exponent_near_100_p)
	  {
	    // Write the result of d2exp_buffered_n into an intermediate
	    // buffer, do a bounds check, and copy the result into the output
	    // range.
	    char buffer[output_length_upper_bound];
	    output_length = ryu::d2exp_buffered_n(value, effective_precision,
						  buffer, nullptr);
	    __glibcxx_assert(output_length == output_length_upper_bound - 1
			     || output_length == output_length_upper_bound);
	    if (last - first < output_length
		|| last - first - output_length < excess_precision)
	      return {last, errc::value_too_large};
	    memcpy(first, buffer, output_length);
	  }
	else
	  // If the scientific exponent is not near 100, then the upper bound
	  // is actually the exact length, and so the result will definitely
	  // not fit into the output range.
	  return {last, errc::value_too_large};
	first += output_length;
	if (excess_precision > 0)
	  {
	    // Splice the excess zeros into the result.
	    char* const significand_end = (first[-5] == 'e'
					   ? &first[-5] : &first[-4]);
	    __glibcxx_assert(*significand_end == 'e');
	    memmove(significand_end + excess_precision, significand_end,
		    first - significand_end);
	    memset(significand_end, '0', excess_precision);
	    first += excess_precision;
	  }
	return {first, errc{}};
      }
    else if (fmt == chars_format::fixed)
      {
	const int effective_precision
	  = min(precision, max_eff_fixed_precision);
	const int excess_precision = precision - effective_precision;

	// Compute an upper bound on the output length.  TODO: Maybe also
	// consider a lower bound on the output length.
	int output_length_upper_bound;
	if (approx_log10_value >= 0)
	  output_length_upper_bound = sign + approx_log10_value + 1;
	else
	  output_length_upper_bound = sign + strlen("0");
	if (effective_precision > 0)
	  output_length_upper_bound += strlen(".") + effective_precision;

	int output_length;
	if (last - first >= output_length_upper_bound
	    && last - first - output_length_upper_bound >= excess_precision)
	  {
	    // The result will definitely fit into the output range, so we can
	    // write directly into it.
	    output_length = ryu::d2fixed_buffered_n(value, effective_precision,
						    first);
	    __glibcxx_assert(output_length <= output_length_upper_bound);
	  }
	else
	  {
	    // Write the result of d2fixed_buffered_n into an intermediate
	    // buffer, do a bounds check, and copy the result into the output
	    // range.
	    char buffer[output_length_upper_bound];
	    output_length = ryu::d2fixed_buffered_n(value, effective_precision,
						    buffer);
	    __glibcxx_assert(output_length <= output_length_upper_bound);
	    if (last - first < output_length
		|| last - first - output_length < excess_precision)
	      return {last, errc::value_too_large};
	    memcpy(first, buffer, output_length);
	  }
	first += output_length;
	if (excess_precision > 0)
	  {
	    // Append the excess zeros into the result.
	    memset(first, '0', excess_precision);
	    first += excess_precision;
	  }
	return {first, errc{}};
      }
    else if (fmt == chars_format::general)
      {
	// Handle the 'general' formatting mode as per C11 printf's %g output
	// specifier.  Since Ryu doesn't do zero-trimming, we always write to
	// an intermediate buffer and manually perform zero-trimming there
	// before copying the result over to the output range.
	int effective_precision
	  = min(precision, max_eff_scientific_precision + 1);
	const int output_length_upper_bound
	  = strlen("-d.") + effective_precision + strlen("e+ddd");
	// The four bytes of headroom is to avoid needing to do a memmove when
	// rewriting a scientific form such as 1.00e-2 into the equivalent
	// fixed form 0.001.
	char buffer[4 + output_length_upper_bound];

	// 7.21.6.1/8: "Let P equal ... 1 if the precision is zero."
	if (effective_precision == 0)
	  effective_precision = 1;

	// Perform a trial formatting in scientific form, and obtain the
	// scientific exponent.
	int scientific_exponent;
	char* buffer_start = buffer + 4;
	int output_length
	  = ryu::d2exp_buffered_n(value, effective_precision - 1,
				  buffer_start, &scientific_exponent);
	__glibcxx_assert(output_length <= output_length_upper_bound);

	// 7.21.6.1/8: "Then, if a conversion with style E would have an
	// exponent of X:
	//   if P > X >= -4, the conversion is with style f and
	//     precision P - (X + 1).
	//   otherwise, the conversion is with style e and precision P - 1."
	const bool resolve_to_fixed_form
	  = (scientific_exponent >= -4
	     && scientific_exponent < effective_precision);
	if (resolve_to_fixed_form)
	  {
	    // Rather than invoking d2fixed_buffered_n to reformat the number
	    // for us from scratch, we can just rewrite the scientific form
	    // into fixed form in-place.  This is safe to do because whenever
	    // %g resolves to %f, the fixed form will be no larger than the
	    // corresponding scientific form, and it will also contain the
	    // same significant digits as the scientific form.
	    fmt = chars_format::fixed;
	    if (scientific_exponent < 0)
	      {
		// e.g. buffer_start == "-1.234e-04"
		char* leading_digit = &buffer_start[sign];
		leading_digit[1] = leading_digit[0];
		// buffer_start == "-11234e-04"
		buffer_start -= -scientific_exponent;
		__glibcxx_assert(buffer_start >= buffer);
		// buffer_start == "????-11234e-04"
		char* head = buffer_start;
		if (sign)
		  *head++ = '-';
		*head++ = '0';
		*head++ = '.';
		memset(head, '0', -scientific_exponent - 1);
		// buffer_start == "-0.00011234e-04"

		// Now drop the exponent suffix, and add the leading zeros to
		// the output length.
		output_length -= strlen("e-0d");
		output_length += -scientific_exponent;
		if (effective_precision - 1 == 0)
		  // The scientific form had no decimal point, but the fixed
		  // form now does.
		  output_length += strlen(".");
	      }
	    else if (effective_precision == 1)
	      {
		// The scientific exponent must be 0, so the fixed form
		// coincides with the scientific form (minus the exponent
		// suffix).
		__glibcxx_assert(scientific_exponent == 0);
		output_length -= strlen("e+dd");
	      }
	    else
	      {
		// We are dealing with a scientific form which has a
		// non-empty fractional part and a nonnegative exponent,
		// e.g. buffer_start == "1.234e+02".
		__glibcxx_assert(effective_precision >= 1);
		char* const decimal_point = &buffer_start[sign + 1];
		__glibcxx_assert(*decimal_point == '.');
		memmove(decimal_point, decimal_point+1,
			scientific_exponent);
		// buffer_start == "123.4e+02"
		decimal_point[scientific_exponent] = '.';
		if (scientific_exponent >= 100)
		  output_length -= strlen("e+ddd");
		else
		  output_length -= strlen("e+dd");
		if (effective_precision - 1 == scientific_exponent)
		  output_length -= strlen(".");
	      }
	    effective_precision -= 1 + scientific_exponent;

	    __glibcxx_assert(output_length <= output_length_upper_bound);
	  }
	else
	  {
	    // We're sticking to the scientific form, so keep the output as-is.
	    fmt = chars_format::scientific;
	    effective_precision = effective_precision - 1;
	  }

	// 7.21.6.1/8: "Finally ... any any trailing zeros are removed from
	// the fractional portion of the result and the decimal-point
	// character is removed if there is no fractional portion remaining."
	if (effective_precision > 0)
	  {
	    char* decimal_point = nullptr;
	    if (fmt == chars_format::scientific)
	      decimal_point = &buffer_start[sign + 1];
	    else if (fmt == chars_format::fixed)
	      decimal_point
		= &buffer_start[output_length] - effective_precision - 1;
	    __glibcxx_assert(*decimal_point == '.');

	    char* const fractional_part_start = decimal_point + 1;
	    char* fractional_part_end = nullptr;
	    if (fmt == chars_format::scientific)
	      {
		fractional_part_end = (buffer_start[output_length-5] == 'e'
				       ? &buffer_start[output_length-5]
				       : &buffer_start[output_length-4]);
		__glibcxx_assert(*fractional_part_end == 'e');
	      }
	    else if (fmt == chars_format::fixed)
	      fractional_part_end = &buffer_start[output_length];

	    const string_view fractional_part
	      = {fractional_part_start, (size_t)(fractional_part_end
						 - fractional_part_start) };
	    const size_t last_nonzero_digit_pos
	      = fractional_part.find_last_not_of('0');

	    char* trim_start;
	    if (last_nonzero_digit_pos == string_view::npos)
	      trim_start = decimal_point;
	    else
	      trim_start = &fractional_part_start[last_nonzero_digit_pos] + 1;
	    if (fmt == chars_format::scientific)
	      memmove(trim_start, fractional_part_end,
		      &buffer_start[output_length] - fractional_part_end);
	    output_length -= fractional_part_end - trim_start;
	  }

	if (last - first < output_length)
	  return {last, errc::value_too_large};

	memcpy(first, buffer_start, output_length);
	return {first + output_length, errc{}};
      }

    __glibcxx_assert(false);
    __builtin_unreachable();
  }

// Define the overloads for float.
to_chars_result
to_chars(char* first, char* last, float value) noexcept
{ return __floating_to_chars_shortest(first, last, value, chars_format{}); }

to_chars_result
to_chars(char* first, char* last, float value, chars_format fmt) noexcept
{ return __floating_to_chars_shortest(first, last, value, fmt); }

to_chars_result
to_chars(char* first, char* last, float value, chars_format fmt,
	 int precision) noexcept
{ return __floating_to_chars_precision(first, last, value, fmt, precision); }

// Define the overloads for double.
to_chars_result
to_chars(char* first, char* last, double value) noexcept
{ return __floating_to_chars_shortest(first, last, value, chars_format{}); }

to_chars_result
to_chars(char* first, char* last, double value, chars_format fmt) noexcept
{ return __floating_to_chars_shortest(first, last, value, fmt); }

to_chars_result
to_chars(char* first, char* last, double value, chars_format fmt,
	 int precision) noexcept
{ return __floating_to_chars_precision(first, last, value, fmt, precision); }

// Define the overloads for long double.
to_chars_result
to_chars(char* first, char* last, long double value) noexcept
{
  if constexpr (LONG_DOUBLE_KIND == LDK_BINARY64
		|| LONG_DOUBLE_KIND == LDK_UNSUPPORTED)
    return __floating_to_chars_shortest(first, last, static_cast<double>(value),
					chars_format{});
  else
    return __floating_to_chars_shortest(first, last, value, chars_format{});
}

to_chars_result
to_chars(char* first, char* last, long double value, chars_format fmt) noexcept
{
  if constexpr (LONG_DOUBLE_KIND == LDK_BINARY64
		|| LONG_DOUBLE_KIND == LDK_UNSUPPORTED)
    return __floating_to_chars_shortest(first, last, static_cast<double>(value),
					fmt);
  else
    return __floating_to_chars_shortest(first, last, value, fmt);
}

to_chars_result
to_chars(char* first, char* last, long double value, chars_format fmt,
	 int precision) noexcept
{
  if constexpr (LONG_DOUBLE_KIND == LDK_BINARY64
		|| LONG_DOUBLE_KIND == LDK_UNSUPPORTED)
    return __floating_to_chars_precision(first, last, static_cast<double>(value),
					 fmt,
					 precision);
  else
    return __floating_to_chars_precision(first, last, value, fmt, precision);
}

#ifdef FLOAT128_TO_CHARS
to_chars_result
to_chars(char* first, char* last, __float128 value) noexcept
{
  return __floating_to_chars_shortest(first, last, value, chars_format{});
}

to_chars_result
to_chars(char* first, char* last, __float128 value, chars_format fmt) noexcept
{
  return __floating_to_chars_shortest(first, last, value, fmt);
}

to_chars_result
to_chars(char* first, char* last, __float128 value, chars_format fmt,
	 int precision) noexcept
{
  return __floating_to_chars_precision(first, last, value, fmt, precision);
}
#endif

#ifdef _GLIBCXX_LONG_DOUBLE_COMPAT
// Map the -mlong-double-64 long double overloads to the double overloads.
extern "C" to_chars_result
_ZSt8to_charsPcS_e(char* first, char* last, double value) noexcept
  __attribute__((alias ("_ZSt8to_charsPcS_d")));

extern "C" to_chars_result
_ZSt8to_charsPcS_eSt12chars_format(char* first, char* last, double value,
				   chars_format fmt) noexcept
  __attribute__((alias ("_ZSt8to_charsPcS_dSt12chars_format")));

extern "C" to_chars_result
_ZSt8to_charsPcS_eSt12chars_formati(char* first, char* last, double value,
				    chars_format fmt, int precision) noexcept
  __attribute__((alias ("_ZSt8to_charsPcS_dSt12chars_formati")));
#endif

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#endif // _GLIBCXX_FLOAT_IS_IEEE_BINARY32 && _GLIBCXX_DOUBLE_IS_IEEE_BINARY64