summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-math-opts.cc
blob: ac277756d24bad2adfd55d6cab0cd309e858c760 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
/* Global, SSA-based optimizations using mathematical identities.
   Copyright (C) 2005-2022 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* Currently, the only mini-pass in this file tries to CSE reciprocal
   operations.  These are common in sequences such as this one:

	modulus = sqrt(x*x + y*y + z*z);
	x = x / modulus;
	y = y / modulus;
	z = z / modulus;

   that can be optimized to

	modulus = sqrt(x*x + y*y + z*z);
        rmodulus = 1.0 / modulus;
	x = x * rmodulus;
	y = y * rmodulus;
	z = z * rmodulus;

   We do this for loop invariant divisors, and with this pass whenever
   we notice that a division has the same divisor multiple times.

   Of course, like in PRE, we don't insert a division if a dominator
   already has one.  However, this cannot be done as an extension of
   PRE for several reasons.

   First of all, with some experiments it was found out that the
   transformation is not always useful if there are only two divisions
   by the same divisor.  This is probably because modern processors
   can pipeline the divisions; on older, in-order processors it should
   still be effective to optimize two divisions by the same number.
   We make this a param, and it shall be called N in the remainder of
   this comment.

   Second, if trapping math is active, we have less freedom on where
   to insert divisions: we can only do so in basic blocks that already
   contain one.  (If divisions don't trap, instead, we can insert
   divisions elsewhere, which will be in blocks that are common dominators
   of those that have the division).

   We really don't want to compute the reciprocal unless a division will
   be found.  To do this, we won't insert the division in a basic block
   that has less than N divisions *post-dominating* it.

   The algorithm constructs a subset of the dominator tree, holding the
   blocks containing the divisions and the common dominators to them,
   and walk it twice.  The first walk is in post-order, and it annotates
   each block with the number of divisions that post-dominate it: this
   gives information on where divisions can be inserted profitably.
   The second walk is in pre-order, and it inserts divisions as explained
   above, and replaces divisions by multiplications.

   In the best case, the cost of the pass is O(n_statements).  In the
   worst-case, the cost is due to creating the dominator tree subset,
   with a cost of O(n_basic_blocks ^ 2); however this can only happen
   for n_statements / n_basic_blocks statements.  So, the amortized cost
   of creating the dominator tree subset is O(n_basic_blocks) and the
   worst-case cost of the pass is O(n_statements * n_basic_blocks).

   More practically, the cost will be small because there are few
   divisions, and they tend to be in the same basic block, so insert_bb
   is called very few times.

   If we did this using domwalk.cc, an efficient implementation would have
   to work on all the variables in a single pass, because we could not
   work on just a subset of the dominator tree, as we do now, and the
   cost would also be something like O(n_statements * n_basic_blocks).
   The data structures would be more complex in order to work on all the
   variables in a single pass.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "predict.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "gimple-pretty-print.h"
#include "alias.h"
#include "fold-const.h"
#include "gimple-fold.h"
#include "gimple-iterator.h"
#include "gimplify.h"
#include "gimplify-me.h"
#include "stor-layout.h"
#include "tree-cfg.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "builtins.h"
#include "internal-fn.h"
#include "case-cfn-macros.h"
#include "optabs-libfuncs.h"
#include "tree-eh.h"
#include "targhooks.h"
#include "domwalk.h"
#include "tree-ssa-math-opts.h"

/* This structure represents one basic block that either computes a
   division, or is a common dominator for basic block that compute a
   division.  */
struct occurrence {
  /* The basic block represented by this structure.  */
  basic_block bb = basic_block();

  /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
     inserted in BB.  */
  tree recip_def = tree();

  /* If non-NULL, the SSA_NAME holding the definition for a squared
     reciprocal inserted in BB.  */
  tree square_recip_def = tree();

  /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
     was inserted in BB.  */
  gimple *recip_def_stmt = nullptr;

  /* Pointer to a list of "struct occurrence"s for blocks dominated
     by BB.  */
  struct occurrence *children = nullptr;

  /* Pointer to the next "struct occurrence"s in the list of blocks
     sharing a common dominator.  */
  struct occurrence *next = nullptr;

  /* The number of divisions that are in BB before compute_merit.  The
     number of divisions that are in BB or post-dominate it after
     compute_merit.  */
  int num_divisions = 0;

  /* True if the basic block has a division, false if it is a common
     dominator for basic blocks that do.  If it is false and trapping
     math is active, BB is not a candidate for inserting a reciprocal.  */
  bool bb_has_division = false;

  /* Construct a struct occurrence for basic block BB, and whose
     children list is headed by CHILDREN.  */
  occurrence (basic_block bb, struct occurrence *children)
  : bb (bb), children (children)
  {
    bb->aux = this;
  }

  /* Destroy a struct occurrence and remove it from its basic block.  */
  ~occurrence ()
  {
    bb->aux = nullptr;
  }

  /* Allocate memory for a struct occurrence from OCC_POOL.  */
  static void* operator new (size_t);

  /* Return memory for a struct occurrence to OCC_POOL.  */
  static void operator delete (void*, size_t);
};

static struct
{
  /* Number of 1.0/X ops inserted.  */
  int rdivs_inserted;

  /* Number of 1.0/FUNC ops inserted.  */
  int rfuncs_inserted;
} reciprocal_stats;

static struct
{
  /* Number of cexpi calls inserted.  */
  int inserted;

  /* Number of conversions removed.  */
  int conv_removed;

} sincos_stats;

static struct
{
  /* Number of widening multiplication ops inserted.  */
  int widen_mults_inserted;

  /* Number of integer multiply-and-accumulate ops inserted.  */
  int maccs_inserted;

  /* Number of fp fused multiply-add ops inserted.  */
  int fmas_inserted;

  /* Number of divmod calls inserted.  */
  int divmod_calls_inserted;

  /* Number of highpart multiplication ops inserted.  */
  int highpart_mults_inserted;
} widen_mul_stats;

/* The instance of "struct occurrence" representing the highest
   interesting block in the dominator tree.  */
static struct occurrence *occ_head;

/* Allocation pool for getting instances of "struct occurrence".  */
static object_allocator<occurrence> *occ_pool;

void* occurrence::operator new (size_t n)
{
  gcc_assert (n == sizeof(occurrence));
  return occ_pool->allocate_raw ();
}

void occurrence::operator delete (void *occ, size_t n)
{
  gcc_assert (n == sizeof(occurrence));
  occ_pool->remove_raw (occ);
}

/* Insert NEW_OCC into our subset of the dominator tree.  P_HEAD points to a
   list of "struct occurrence"s, one per basic block, having IDOM as
   their common dominator.

   We try to insert NEW_OCC as deep as possible in the tree, and we also
   insert any other block that is a common dominator for BB and one
   block already in the tree.  */

static void
insert_bb (struct occurrence *new_occ, basic_block idom,
	   struct occurrence **p_head)
{
  struct occurrence *occ, **p_occ;

  for (p_occ = p_head; (occ = *p_occ) != NULL; )
    {
      basic_block bb = new_occ->bb, occ_bb = occ->bb;
      basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
      if (dom == bb)
	{
	  /* BB dominates OCC_BB.  OCC becomes NEW_OCC's child: remove OCC
	     from its list.  */
	  *p_occ = occ->next;
	  occ->next = new_occ->children;
	  new_occ->children = occ;

	  /* Try the next block (it may as well be dominated by BB).  */
	}

      else if (dom == occ_bb)
	{
	  /* OCC_BB dominates BB.  Tail recurse to look deeper.  */
	  insert_bb (new_occ, dom, &occ->children);
	  return;
	}

      else if (dom != idom)
	{
	  gcc_assert (!dom->aux);

	  /* There is a dominator between IDOM and BB, add it and make
	     two children out of NEW_OCC and OCC.  First, remove OCC from
	     its list.	*/
	  *p_occ = occ->next;
	  new_occ->next = occ;
	  occ->next = NULL;

	  /* None of the previous blocks has DOM as a dominator: if we tail
	     recursed, we would reexamine them uselessly. Just switch BB with
	     DOM, and go on looking for blocks dominated by DOM.  */
	  new_occ = new occurrence (dom, new_occ);
	}

      else
	{
	  /* Nothing special, go on with the next element.  */
	  p_occ = &occ->next;
	}
    }

  /* No place was found as a child of IDOM.  Make BB a sibling of IDOM.  */
  new_occ->next = *p_head;
  *p_head = new_occ;
}

/* Register that we found a division in BB.
   IMPORTANCE is a measure of how much weighting to give
   that division.  Use IMPORTANCE = 2 to register a single
   division.  If the division is going to be found multiple
   times use 1 (as it is with squares).  */

static inline void
register_division_in (basic_block bb, int importance)
{
  struct occurrence *occ;

  occ = (struct occurrence *) bb->aux;
  if (!occ)
    {
      occ = new occurrence (bb, NULL);
      insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
    }

  occ->bb_has_division = true;
  occ->num_divisions += importance;
}


/* Compute the number of divisions that postdominate each block in OCC and
   its children.  */

static void
compute_merit (struct occurrence *occ)
{
  struct occurrence *occ_child;
  basic_block dom = occ->bb;

  for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
    {
      basic_block bb;
      if (occ_child->children)
        compute_merit (occ_child);

      if (flag_exceptions)
	bb = single_noncomplex_succ (dom);
      else
	bb = dom;

      if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
        occ->num_divisions += occ_child->num_divisions;
    }
}


/* Return whether USE_STMT is a floating-point division by DEF.  */
static inline bool
is_division_by (gimple *use_stmt, tree def)
{
  return is_gimple_assign (use_stmt)
	 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
	 && gimple_assign_rhs2 (use_stmt) == def
	 /* Do not recognize x / x as valid division, as we are getting
	    confused later by replacing all immediate uses x in such
	    a stmt.  */
	 && gimple_assign_rhs1 (use_stmt) != def
	 && !stmt_can_throw_internal (cfun, use_stmt);
}

/* Return TRUE if USE_STMT is a multiplication of DEF by A.  */
static inline bool
is_mult_by (gimple *use_stmt, tree def, tree a)
{
  if (gimple_code (use_stmt) == GIMPLE_ASSIGN
      && gimple_assign_rhs_code (use_stmt) == MULT_EXPR)
    {
      tree op0 = gimple_assign_rhs1 (use_stmt);
      tree op1 = gimple_assign_rhs2 (use_stmt);

      return (op0 == def && op1 == a)
	      || (op0 == a && op1 == def);
    }
  return 0;
}

/* Return whether USE_STMT is DEF * DEF.  */
static inline bool
is_square_of (gimple *use_stmt, tree def)
{
  return is_mult_by (use_stmt, def, def);
}

/* Return whether USE_STMT is a floating-point division by
   DEF * DEF.  */
static inline bool
is_division_by_square (gimple *use_stmt, tree def)
{
  if (gimple_code (use_stmt) == GIMPLE_ASSIGN
      && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
      && gimple_assign_rhs1 (use_stmt) != gimple_assign_rhs2 (use_stmt)
      && !stmt_can_throw_internal (cfun, use_stmt))
    {
      tree denominator = gimple_assign_rhs2 (use_stmt);
      if (TREE_CODE (denominator) == SSA_NAME)
	return is_square_of (SSA_NAME_DEF_STMT (denominator), def);
    }
  return 0;
}

/* Walk the subset of the dominator tree rooted at OCC, setting the
   RECIP_DEF field to a definition of 1.0 / DEF that can be used in
   the given basic block.  The field may be left NULL, of course,
   if it is not possible or profitable to do the optimization.

   DEF_BSI is an iterator pointing at the statement defining DEF.
   If RECIP_DEF is set, a dominator already has a computation that can
   be used.

   If should_insert_square_recip is set, then this also inserts
   the square of the reciprocal immediately after the definition
   of the reciprocal.  */

static void
insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
		    tree def, tree recip_def, tree square_recip_def,
		    int should_insert_square_recip, int threshold)
{
  tree type;
  gassign *new_stmt, *new_square_stmt;
  gimple_stmt_iterator gsi;
  struct occurrence *occ_child;

  if (!recip_def
      && (occ->bb_has_division || !flag_trapping_math)
      /* Divide by two as all divisions are counted twice in
	 the costing loop.  */
      && occ->num_divisions / 2 >= threshold)
    {
      /* Make a variable with the replacement and substitute it.  */
      type = TREE_TYPE (def);
      recip_def = create_tmp_reg (type, "reciptmp");
      new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
				      build_one_cst (type), def);

      if (should_insert_square_recip)
	{
	  square_recip_def = create_tmp_reg (type, "powmult_reciptmp");
	  new_square_stmt = gimple_build_assign (square_recip_def, MULT_EXPR,
						 recip_def, recip_def);
	}

      if (occ->bb_has_division)
	{
	  /* Case 1: insert before an existing division.  */
	  gsi = gsi_after_labels (occ->bb);
	  while (!gsi_end_p (gsi)
		 && (!is_division_by (gsi_stmt (gsi), def))
		 && (!is_division_by_square (gsi_stmt (gsi), def)))
	    gsi_next (&gsi);

	  gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
	  if (should_insert_square_recip)
	    gsi_insert_before (&gsi, new_square_stmt, GSI_SAME_STMT);
	}
      else if (def_gsi && occ->bb == gsi_bb (*def_gsi))
	{
	  /* Case 2: insert right after the definition.  Note that this will
	     never happen if the definition statement can throw, because in
	     that case the sole successor of the statement's basic block will
	     dominate all the uses as well.  */
	  gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
	  if (should_insert_square_recip)
	    gsi_insert_after (def_gsi, new_square_stmt, GSI_NEW_STMT);
	}
      else
	{
	  /* Case 3: insert in a basic block not containing defs/uses.  */
	  gsi = gsi_after_labels (occ->bb);
	  gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
	  if (should_insert_square_recip)
	    gsi_insert_before (&gsi, new_square_stmt, GSI_SAME_STMT);
	}

      reciprocal_stats.rdivs_inserted++;

      occ->recip_def_stmt = new_stmt;
    }

  occ->recip_def = recip_def;
  occ->square_recip_def = square_recip_def;
  for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
    insert_reciprocals (def_gsi, occ_child, def, recip_def,
			square_recip_def, should_insert_square_recip,
			threshold);
}

/* Replace occurrences of expr / (x * x) with expr * ((1 / x) * (1 / x)).
   Take as argument the use for (x * x).  */
static inline void
replace_reciprocal_squares (use_operand_p use_p)
{
  gimple *use_stmt = USE_STMT (use_p);
  basic_block bb = gimple_bb (use_stmt);
  struct occurrence *occ = (struct occurrence *) bb->aux;

  if (optimize_bb_for_speed_p (bb) && occ->square_recip_def
      && occ->recip_def)
    {
      gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
      gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
      gimple_assign_set_rhs2 (use_stmt, occ->square_recip_def);
      SET_USE (use_p, occ->square_recip_def);
      fold_stmt_inplace (&gsi);
      update_stmt (use_stmt);
    }
}


/* Replace the division at USE_P with a multiplication by the reciprocal, if
   possible.  */

static inline void
replace_reciprocal (use_operand_p use_p)
{
  gimple *use_stmt = USE_STMT (use_p);
  basic_block bb = gimple_bb (use_stmt);
  struct occurrence *occ = (struct occurrence *) bb->aux;

  if (optimize_bb_for_speed_p (bb)
      && occ->recip_def && use_stmt != occ->recip_def_stmt)
    {
      gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
      gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
      SET_USE (use_p, occ->recip_def);
      fold_stmt_inplace (&gsi);
      update_stmt (use_stmt);
    }
}


/* Free OCC and return one more "struct occurrence" to be freed.  */

static struct occurrence *
free_bb (struct occurrence *occ)
{
  struct occurrence *child, *next;

  /* First get the two pointers hanging off OCC.  */
  next = occ->next;
  child = occ->children;
  delete occ;

  /* Now ensure that we don't recurse unless it is necessary.  */
  if (!child)
    return next;
  else
    {
      while (next)
	next = free_bb (next);

      return child;
    }
}

/* Transform sequences like
   t = sqrt (a)
   x = 1.0 / t;
   r1 = x * x;
   r2 = a * x;
   into:
   t = sqrt (a)
   r1 = 1.0 / a;
   r2 = t;
   x = r1 * r2;
   depending on the uses of x, r1, r2.  This removes one multiplication and
   allows the sqrt and division operations to execute in parallel.
   DEF_GSI is the gsi of the initial division by sqrt that defines
   DEF (x in the example above).  */

static void
optimize_recip_sqrt (gimple_stmt_iterator *def_gsi, tree def)
{
  gimple *use_stmt;
  imm_use_iterator use_iter;
  gimple *stmt = gsi_stmt (*def_gsi);
  tree x = def;
  tree orig_sqrt_ssa_name = gimple_assign_rhs2 (stmt);
  tree div_rhs1 = gimple_assign_rhs1 (stmt);

  if (TREE_CODE (orig_sqrt_ssa_name) != SSA_NAME
      || TREE_CODE (div_rhs1) != REAL_CST
      || !real_equal (&TREE_REAL_CST (div_rhs1), &dconst1))
    return;

  gcall *sqrt_stmt
    = dyn_cast <gcall *> (SSA_NAME_DEF_STMT (orig_sqrt_ssa_name));

  if (!sqrt_stmt || !gimple_call_lhs (sqrt_stmt))
    return;

  switch (gimple_call_combined_fn (sqrt_stmt))
    {
    CASE_CFN_SQRT:
    CASE_CFN_SQRT_FN:
      break;

    default:
      return;
    }
  tree a = gimple_call_arg (sqrt_stmt, 0);

  /* We have 'a' and 'x'.  Now analyze the uses of 'x'.  */

  /* Statements that use x in x * x.  */
  auto_vec<gimple *> sqr_stmts;
  /* Statements that use x in a * x.  */
  auto_vec<gimple *> mult_stmts;
  bool has_other_use = false;
  bool mult_on_main_path = false;

  FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, x)
    {
      if (is_gimple_debug (use_stmt))
	continue;
      if (is_square_of (use_stmt, x))
	{
	  sqr_stmts.safe_push (use_stmt);
	  if (gimple_bb (use_stmt) == gimple_bb (stmt))
	    mult_on_main_path = true;
	}
      else if (is_mult_by (use_stmt, x, a))
	{
	  mult_stmts.safe_push (use_stmt);
	  if (gimple_bb (use_stmt) == gimple_bb (stmt))
	    mult_on_main_path = true;
	}
      else
	has_other_use = true;
    }

  /* In the x * x and a * x cases we just rewire stmt operands or
     remove multiplications.  In the has_other_use case we introduce
     a multiplication so make sure we don't introduce a multiplication
     on a path where there was none.  */
  if (has_other_use && !mult_on_main_path)
    return;

  if (sqr_stmts.is_empty () && mult_stmts.is_empty ())
    return;

  /* If x = 1.0 / sqrt (a) has uses other than those optimized here we want
     to be able to compose it from the sqr and mult cases.  */
  if (has_other_use && (sqr_stmts.is_empty () || mult_stmts.is_empty ()))
    return;

  if (dump_file)
    {
      fprintf (dump_file, "Optimizing reciprocal sqrt multiplications of\n");
      print_gimple_stmt (dump_file, sqrt_stmt, 0, TDF_NONE);
      print_gimple_stmt (dump_file, stmt, 0, TDF_NONE);
      fprintf (dump_file, "\n");
    }

  bool delete_div = !has_other_use;
  tree sqr_ssa_name = NULL_TREE;
  if (!sqr_stmts.is_empty ())
    {
      /* r1 = x * x.  Transform the original
	 x = 1.0 / t
	 into
	 tmp1 = 1.0 / a
	 r1 = tmp1.  */

      sqr_ssa_name
	= make_temp_ssa_name (TREE_TYPE (a), NULL, "recip_sqrt_sqr");

      if (dump_file)
	{
	  fprintf (dump_file, "Replacing original division\n");
	  print_gimple_stmt (dump_file, stmt, 0, TDF_NONE);
	  fprintf (dump_file, "with new division\n");
	}
      stmt
	= gimple_build_assign (sqr_ssa_name, gimple_assign_rhs_code (stmt),
			       gimple_assign_rhs1 (stmt), a);
      gsi_insert_before (def_gsi, stmt, GSI_SAME_STMT);
      gsi_remove (def_gsi, true);
      *def_gsi = gsi_for_stmt (stmt);
      fold_stmt_inplace (def_gsi);
      update_stmt (stmt);

      if (dump_file)
	print_gimple_stmt (dump_file, stmt, 0, TDF_NONE);

      delete_div = false;
      gimple *sqr_stmt;
      unsigned int i;
      FOR_EACH_VEC_ELT (sqr_stmts, i, sqr_stmt)
	{
	  gimple_stmt_iterator gsi2 = gsi_for_stmt (sqr_stmt);
	  gimple_assign_set_rhs_from_tree (&gsi2, sqr_ssa_name);
	  update_stmt (sqr_stmt);
	}
    }
  if (!mult_stmts.is_empty ())
    {
      /* r2 = a * x.  Transform this into:
	 r2 = t (The original sqrt (a)).  */
      unsigned int i;
      gimple *mult_stmt = NULL;
      FOR_EACH_VEC_ELT (mult_stmts, i, mult_stmt)
	{
	  gimple_stmt_iterator gsi2 = gsi_for_stmt (mult_stmt);

	  if (dump_file)
	    {
	      fprintf (dump_file, "Replacing squaring multiplication\n");
	      print_gimple_stmt (dump_file, mult_stmt, 0, TDF_NONE);
	      fprintf (dump_file, "with assignment\n");
	    }
	  gimple_assign_set_rhs_from_tree (&gsi2, orig_sqrt_ssa_name);
	  fold_stmt_inplace (&gsi2);
	  update_stmt (mult_stmt);
	  if (dump_file)
	    print_gimple_stmt (dump_file, mult_stmt, 0, TDF_NONE);
      }
    }

  if (has_other_use)
    {
      /* Using the two temporaries tmp1, tmp2 from above
	 the original x is now:
	 x = tmp1 * tmp2.  */
      gcc_assert (orig_sqrt_ssa_name);
      gcc_assert (sqr_ssa_name);

      gimple *new_stmt
	= gimple_build_assign (x, MULT_EXPR,
			       orig_sqrt_ssa_name, sqr_ssa_name);
      gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
      update_stmt (stmt);
    }
  else if (delete_div)
    {
      /* Remove the original division.  */
      gimple_stmt_iterator gsi2 = gsi_for_stmt (stmt);
      gsi_remove (&gsi2, true);
      release_defs (stmt);
    }
  else
    release_ssa_name (x);
}

/* Look for floating-point divisions among DEF's uses, and try to
   replace them by multiplications with the reciprocal.  Add
   as many statements computing the reciprocal as needed.

   DEF must be a GIMPLE register of a floating-point type.  */

static void
execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
{
  use_operand_p use_p, square_use_p;
  imm_use_iterator use_iter, square_use_iter;
  tree square_def;
  struct occurrence *occ;
  int count = 0;
  int threshold;
  int square_recip_count = 0;
  int sqrt_recip_count = 0;

  gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && TREE_CODE (def) == SSA_NAME);
  threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));

  /* If DEF is a square (x * x), count the number of divisions by x.
     If there are more divisions by x than by (DEF * DEF), prefer to optimize
     the reciprocal of x instead of DEF.  This improves cases like:
       def = x * x
       t0 = a / def
       t1 = b / def
       t2 = c / x
     Reciprocal optimization of x results in 1 division rather than 2 or 3.  */
  gimple *def_stmt = SSA_NAME_DEF_STMT (def);

  if (is_gimple_assign (def_stmt)
      && gimple_assign_rhs_code (def_stmt) == MULT_EXPR
      && TREE_CODE (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
      && gimple_assign_rhs1 (def_stmt) == gimple_assign_rhs2 (def_stmt))
    {
      tree op0 = gimple_assign_rhs1 (def_stmt);

      FOR_EACH_IMM_USE_FAST (use_p, use_iter, op0)
	{
	  gimple *use_stmt = USE_STMT (use_p);
	  if (is_division_by (use_stmt, op0))
	    sqrt_recip_count++;
	}
    }

  FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
    {
      gimple *use_stmt = USE_STMT (use_p);
      if (is_division_by (use_stmt, def))
	{
	  register_division_in (gimple_bb (use_stmt), 2);
	  count++;
	}

      if (is_square_of (use_stmt, def))
	{
	  square_def = gimple_assign_lhs (use_stmt);
	  FOR_EACH_IMM_USE_FAST (square_use_p, square_use_iter, square_def)
	    {
	      gimple *square_use_stmt = USE_STMT (square_use_p);
	      if (is_division_by (square_use_stmt, square_def))
		{
		  /* This is executed twice for each division by a square.  */
		  register_division_in (gimple_bb (square_use_stmt), 1);
		  square_recip_count++;
		}
	    }
	}
    }

  /* Square reciprocals were counted twice above.  */
  square_recip_count /= 2;

  /* If it is more profitable to optimize 1 / x, don't optimize 1 / (x * x).  */
  if (sqrt_recip_count > square_recip_count)
    goto out;

  /* Do the expensive part only if we can hope to optimize something.  */
  if (count + square_recip_count >= threshold && count >= 1)
    {
      gimple *use_stmt;
      for (occ = occ_head; occ; occ = occ->next)
	{
	  compute_merit (occ);
	  insert_reciprocals (def_gsi, occ, def, NULL, NULL,
			      square_recip_count, threshold);
	}

      FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
	{
	  if (is_division_by (use_stmt, def))
	    {
	      FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
		replace_reciprocal (use_p);
	    }
	  else if (square_recip_count > 0 && is_square_of (use_stmt, def))
	    {
	      FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
		{
		  /* Find all uses of the square that are divisions and
		   * replace them by multiplications with the inverse.  */
		  imm_use_iterator square_iterator;
		  gimple *powmult_use_stmt = USE_STMT (use_p);
		  tree powmult_def_name = gimple_assign_lhs (powmult_use_stmt);

		  FOR_EACH_IMM_USE_STMT (powmult_use_stmt,
					 square_iterator, powmult_def_name)
		    FOR_EACH_IMM_USE_ON_STMT (square_use_p, square_iterator)
		      {
			gimple *powmult_use_stmt = USE_STMT (square_use_p);
			if (is_division_by (powmult_use_stmt, powmult_def_name))
			  replace_reciprocal_squares (square_use_p);
		      }
		}
	    }
	}
    }

out:
  for (occ = occ_head; occ; )
    occ = free_bb (occ);

  occ_head = NULL;
}

/* Return an internal function that implements the reciprocal of CALL,
   or IFN_LAST if there is no such function that the target supports.  */

internal_fn
internal_fn_reciprocal (gcall *call)
{
  internal_fn ifn;

  switch (gimple_call_combined_fn (call))
    {
    CASE_CFN_SQRT:
    CASE_CFN_SQRT_FN:
      ifn = IFN_RSQRT;
      break;

    default:
      return IFN_LAST;
    }

  tree_pair types = direct_internal_fn_types (ifn, call);
  if (!direct_internal_fn_supported_p (ifn, types, OPTIMIZE_FOR_SPEED))
    return IFN_LAST;

  return ifn;
}

/* Go through all the floating-point SSA_NAMEs, and call
   execute_cse_reciprocals_1 on each of them.  */
namespace {

const pass_data pass_data_cse_reciprocals =
{
  GIMPLE_PASS, /* type */
  "recip", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_RECIP, /* tv_id */
  PROP_ssa, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_update_ssa, /* todo_flags_finish */
};

class pass_cse_reciprocals : public gimple_opt_pass
{
public:
  pass_cse_reciprocals (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
  virtual unsigned int execute (function *);

}; // class pass_cse_reciprocals

unsigned int
pass_cse_reciprocals::execute (function *fun)
{
  basic_block bb;
  tree arg;

  occ_pool = new object_allocator<occurrence> ("dominators for recip");

  memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
  calculate_dominance_info (CDI_DOMINATORS);
  calculate_dominance_info (CDI_POST_DOMINATORS);

  if (flag_checking)
    FOR_EACH_BB_FN (bb, fun)
      gcc_assert (!bb->aux);

  for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
    if (FLOAT_TYPE_P (TREE_TYPE (arg))
	&& is_gimple_reg (arg))
      {
	tree name = ssa_default_def (fun, arg);
	if (name)
	  execute_cse_reciprocals_1 (NULL, name);
      }

  FOR_EACH_BB_FN (bb, fun)
    {
      tree def;

      for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
	   gsi_next (&gsi))
	{
	  gphi *phi = gsi.phi ();
	  def = PHI_RESULT (phi);
	  if (! virtual_operand_p (def)
	      && FLOAT_TYPE_P (TREE_TYPE (def)))
	    execute_cse_reciprocals_1 (NULL, def);
	}

      for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
	   gsi_next (&gsi))
        {
	  gimple *stmt = gsi_stmt (gsi);

	  if (gimple_has_lhs (stmt)
	      && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
	      && FLOAT_TYPE_P (TREE_TYPE (def))
	      && TREE_CODE (def) == SSA_NAME)
	    {
	      execute_cse_reciprocals_1 (&gsi, def);
	      stmt = gsi_stmt (gsi);
	      if (flag_unsafe_math_optimizations
		  && is_gimple_assign (stmt)
		  && gimple_assign_lhs (stmt) == def
		  && !stmt_can_throw_internal (cfun, stmt)
		  && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
		optimize_recip_sqrt (&gsi, def);
	    }
	}

      if (optimize_bb_for_size_p (bb))
        continue;

      /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b).  */
      for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
	   gsi_next (&gsi))
        {
	  gimple *stmt = gsi_stmt (gsi);

	  if (is_gimple_assign (stmt)
	      && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
	    {
	      tree arg1 = gimple_assign_rhs2 (stmt);
	      gimple *stmt1;

	      if (TREE_CODE (arg1) != SSA_NAME)
		continue;

	      stmt1 = SSA_NAME_DEF_STMT (arg1);

	      if (is_gimple_call (stmt1)
		  && gimple_call_lhs (stmt1))
		{
		  bool fail;
		  imm_use_iterator ui;
		  use_operand_p use_p;
		  tree fndecl = NULL_TREE;

		  gcall *call = as_a <gcall *> (stmt1);
		  internal_fn ifn = internal_fn_reciprocal (call);
		  if (ifn == IFN_LAST)
		    {
		      fndecl = gimple_call_fndecl (call);
		      if (!fndecl
			  || !fndecl_built_in_p (fndecl, BUILT_IN_MD))
			continue;
		      fndecl = targetm.builtin_reciprocal (fndecl);
		      if (!fndecl)
			continue;
		    }

		  /* Check that all uses of the SSA name are divisions,
		     otherwise replacing the defining statement will do
		     the wrong thing.  */
		  fail = false;
		  FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
		    {
		      gimple *stmt2 = USE_STMT (use_p);
		      if (is_gimple_debug (stmt2))
			continue;
		      if (!is_gimple_assign (stmt2)
			  || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
			  || gimple_assign_rhs1 (stmt2) == arg1
			  || gimple_assign_rhs2 (stmt2) != arg1)
			{
			  fail = true;
			  break;
			}
		    }
		  if (fail)
		    continue;

		  gimple_replace_ssa_lhs (call, arg1);
		  if (gimple_call_internal_p (call) != (ifn != IFN_LAST))
		    {
		      auto_vec<tree, 4> args;
		      for (unsigned int i = 0;
			   i < gimple_call_num_args (call); i++)
			args.safe_push (gimple_call_arg (call, i));
		      gcall *stmt2;
		      if (ifn == IFN_LAST)
			stmt2 = gimple_build_call_vec (fndecl, args);
		      else
			stmt2 = gimple_build_call_internal_vec (ifn, args);
		      gimple_call_set_lhs (stmt2, arg1);
		      gimple_move_vops (stmt2, call);
		      gimple_call_set_nothrow (stmt2,
					       gimple_call_nothrow_p (call));
		      gimple_stmt_iterator gsi2 = gsi_for_stmt (call);
		      gsi_replace (&gsi2, stmt2, true);
		    }
		  else
		    {
		      if (ifn == IFN_LAST)
			gimple_call_set_fndecl (call, fndecl);
		      else
			gimple_call_set_internal_fn (call, ifn);
		      update_stmt (call);
		    }
		  reciprocal_stats.rfuncs_inserted++;

		  FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
		    {
		      gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
		      gimple_assign_set_rhs_code (stmt, MULT_EXPR);
		      fold_stmt_inplace (&gsi);
		      update_stmt (stmt);
		    }
		}
	    }
	}
    }

  statistics_counter_event (fun, "reciprocal divs inserted",
			    reciprocal_stats.rdivs_inserted);
  statistics_counter_event (fun, "reciprocal functions inserted",
			    reciprocal_stats.rfuncs_inserted);

  free_dominance_info (CDI_DOMINATORS);
  free_dominance_info (CDI_POST_DOMINATORS);
  delete occ_pool;
  return 0;
}

} // anon namespace

gimple_opt_pass *
make_pass_cse_reciprocals (gcc::context *ctxt)
{
  return new pass_cse_reciprocals (ctxt);
}

/* If NAME is the result of a type conversion, look for other
   equivalent dominating or dominated conversions, and replace all
   uses with the earliest dominating name, removing the redundant
   conversions.  Return the prevailing name.  */

static tree
execute_cse_conv_1 (tree name)
{
  if (SSA_NAME_IS_DEFAULT_DEF (name)
      || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
    return name;

  gimple *def_stmt = SSA_NAME_DEF_STMT (name);

  if (!gimple_assign_cast_p (def_stmt))
    return name;

  tree src = gimple_assign_rhs1 (def_stmt);

  if (TREE_CODE (src) != SSA_NAME)
    return name;

  imm_use_iterator use_iter;
  gimple *use_stmt;

  /* Find the earliest dominating def.    */
  FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, src)
    {
      if (use_stmt == def_stmt
	  || !gimple_assign_cast_p (use_stmt))
	continue;

      tree lhs = gimple_assign_lhs (use_stmt);

      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
	  || (gimple_assign_rhs1 (use_stmt)
	      != gimple_assign_rhs1 (def_stmt))
	  || !types_compatible_p (TREE_TYPE (name), TREE_TYPE (lhs)))
	continue;

      bool use_dominates;
      if (gimple_bb (def_stmt) == gimple_bb (use_stmt))
	{
	  gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
	  while (!gsi_end_p (gsi) && gsi_stmt (gsi) != def_stmt)
	    gsi_next (&gsi);
	  use_dominates = !gsi_end_p (gsi);
	}
      else if (dominated_by_p (CDI_DOMINATORS, gimple_bb (use_stmt),
			       gimple_bb (def_stmt)))
	use_dominates = false;
      else if (dominated_by_p (CDI_DOMINATORS, gimple_bb (def_stmt),
			       gimple_bb (use_stmt)))
	use_dominates = true;
      else
	continue;

      if (use_dominates)
	{
	  std::swap (name, lhs);
	  std::swap (def_stmt, use_stmt);
	}
    }

  /* Now go through all uses of SRC again, replacing the equivalent
     dominated conversions.  We may replace defs that were not
     dominated by the then-prevailing defs when we first visited
     them.  */
  FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, src)
    {
      if (use_stmt == def_stmt
	  || !gimple_assign_cast_p (use_stmt))
	continue;

      tree lhs = gimple_assign_lhs (use_stmt);

      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
	  || (gimple_assign_rhs1 (use_stmt)
	      != gimple_assign_rhs1 (def_stmt))
	  || !types_compatible_p (TREE_TYPE (name), TREE_TYPE (lhs)))
	continue;

      if (gimple_bb (def_stmt) == gimple_bb (use_stmt)
	  || dominated_by_p (CDI_DOMINATORS, gimple_bb (use_stmt),
			     gimple_bb (def_stmt)))
	{
	  sincos_stats.conv_removed++;

	  gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
	  replace_uses_by (lhs, name);
	  gsi_remove (&gsi, true);
	}
    }

  return name;
}

/* Records an occurrence at statement USE_STMT in the vector of trees
   STMTS if it is dominated by *TOP_BB or dominates it or this basic block
   is not yet initialized.  Returns true if the occurrence was pushed on
   the vector.  Adjusts *TOP_BB to be the basic block dominating all
   statements in the vector.  */

static bool
maybe_record_sincos (vec<gimple *> *stmts,
		     basic_block *top_bb, gimple *use_stmt)
{
  basic_block use_bb = gimple_bb (use_stmt);
  if (*top_bb
      && (*top_bb == use_bb
	  || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
    stmts->safe_push (use_stmt);
  else if (!*top_bb
	   || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
    {
      stmts->safe_push (use_stmt);
      *top_bb = use_bb;
    }
  else
    return false;

  return true;
}

/* Look for sin, cos and cexpi calls with the same argument NAME and
   create a single call to cexpi CSEing the result in this case.
   We first walk over all immediate uses of the argument collecting
   statements that we can CSE in a vector and in a second pass replace
   the statement rhs with a REALPART or IMAGPART expression on the
   result of the cexpi call we insert before the use statement that
   dominates all other candidates.  */

static bool
execute_cse_sincos_1 (tree name)
{
  gimple_stmt_iterator gsi;
  imm_use_iterator use_iter;
  tree fndecl, res, type = NULL_TREE;
  gimple *def_stmt, *use_stmt, *stmt;
  int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
  auto_vec<gimple *> stmts;
  basic_block top_bb = NULL;
  int i;
  bool cfg_changed = false;

  name = execute_cse_conv_1 (name);

  FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
    {
      if (gimple_code (use_stmt) != GIMPLE_CALL
	  || !gimple_call_lhs (use_stmt))
	continue;

      switch (gimple_call_combined_fn (use_stmt))
	{
	CASE_CFN_COS:
	  seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
	  break;

	CASE_CFN_SIN:
	  seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
	  break;

	CASE_CFN_CEXPI:
	  seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
	  break;

	default:;
	  continue;
	}

      tree t = mathfn_built_in_type (gimple_call_combined_fn (use_stmt));
      if (!type)
	{
	  type = t;
	  t = TREE_TYPE (name);
	}
      /* This checks that NAME has the right type in the first round,
	 and, in subsequent rounds, that the built_in type is the same
	 type, or a compatible type.  */
      if (type != t && !types_compatible_p (type, t))
	return false;
    }
  if (seen_cos + seen_sin + seen_cexpi <= 1)
    return false;

  /* Simply insert cexpi at the beginning of top_bb but not earlier than
     the name def statement.  */
  fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
  if (!fndecl)
    return false;
  stmt = gimple_build_call (fndecl, 1, name);
  res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
  gimple_call_set_lhs (stmt, res);

  def_stmt = SSA_NAME_DEF_STMT (name);
  if (!SSA_NAME_IS_DEFAULT_DEF (name)
      && gimple_code (def_stmt) != GIMPLE_PHI
      && gimple_bb (def_stmt) == top_bb)
    {
      gsi = gsi_for_stmt (def_stmt);
      gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
    }
  else
    {
      gsi = gsi_after_labels (top_bb);
      gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
    }
  sincos_stats.inserted++;

  /* And adjust the recorded old call sites.  */
  for (i = 0; stmts.iterate (i, &use_stmt); ++i)
    {
      tree rhs = NULL;

      switch (gimple_call_combined_fn (use_stmt))
	{
	CASE_CFN_COS:
	  rhs = fold_build1 (REALPART_EXPR, type, res);
	  break;

	CASE_CFN_SIN:
	  rhs = fold_build1 (IMAGPART_EXPR, type, res);
	  break;

	CASE_CFN_CEXPI:
	  rhs = res;
	  break;

	default:;
	  gcc_unreachable ();
	}

	/* Replace call with a copy.  */
	stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);

	gsi = gsi_for_stmt (use_stmt);
	gsi_replace (&gsi, stmt, true);
	if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
	  cfg_changed = true;
    }

  return cfg_changed;
}

/* To evaluate powi(x,n), the floating point value x raised to the
   constant integer exponent n, we use a hybrid algorithm that
   combines the "window method" with look-up tables.  For an
   introduction to exponentiation algorithms and "addition chains",
   see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
   "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
   3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
   Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998.  */

/* Provide a default value for POWI_MAX_MULTS, the maximum number of
   multiplications to inline before calling the system library's pow
   function.  powi(x,n) requires at worst 2*bits(n)-2 multiplications,
   so this default never requires calling pow, powf or powl.  */

#ifndef POWI_MAX_MULTS
#define POWI_MAX_MULTS  (2*HOST_BITS_PER_WIDE_INT-2)
#endif

/* The size of the "optimal power tree" lookup table.  All
   exponents less than this value are simply looked up in the
   powi_table below.  This threshold is also used to size the
   cache of pseudo registers that hold intermediate results.  */
#define POWI_TABLE_SIZE 256

/* The size, in bits of the window, used in the "window method"
   exponentiation algorithm.  This is equivalent to a radix of
   (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method".  */
#define POWI_WINDOW_SIZE 3

/* The following table is an efficient representation of an
   "optimal power tree".  For each value, i, the corresponding
   value, j, in the table states than an optimal evaluation
   sequence for calculating pow(x,i) can be found by evaluating
   pow(x,j)*pow(x,i-j).  An optimal power tree for the first
   100 integers is given in Knuth's "Seminumerical algorithms".  */

static const unsigned char powi_table[POWI_TABLE_SIZE] =
  {
      0,   1,   1,   2,   2,   3,   3,   4,  /*   0 -   7 */
      4,   6,   5,   6,   6,  10,   7,   9,  /*   8 -  15 */
      8,  16,   9,  16,  10,  12,  11,  13,  /*  16 -  23 */
     12,  17,  13,  18,  14,  24,  15,  26,  /*  24 -  31 */
     16,  17,  17,  19,  18,  33,  19,  26,  /*  32 -  39 */
     20,  25,  21,  40,  22,  27,  23,  44,  /*  40 -  47 */
     24,  32,  25,  34,  26,  29,  27,  44,  /*  48 -  55 */
     28,  31,  29,  34,  30,  60,  31,  36,  /*  56 -  63 */
     32,  64,  33,  34,  34,  46,  35,  37,  /*  64 -  71 */
     36,  65,  37,  50,  38,  48,  39,  69,  /*  72 -  79 */
     40,  49,  41,  43,  42,  51,  43,  58,  /*  80 -  87 */
     44,  64,  45,  47,  46,  59,  47,  76,  /*  88 -  95 */
     48,  65,  49,  66,  50,  67,  51,  66,  /*  96 - 103 */
     52,  70,  53,  74,  54, 104,  55,  74,  /* 104 - 111 */
     56,  64,  57,  69,  58,  78,  59,  68,  /* 112 - 119 */
     60,  61,  61,  80,  62,  75,  63,  68,  /* 120 - 127 */
     64,  65,  65, 128,  66, 129,  67,  90,  /* 128 - 135 */
     68,  73,  69, 131,  70,  94,  71,  88,  /* 136 - 143 */
     72, 128,  73,  98,  74, 132,  75, 121,  /* 144 - 151 */
     76, 102,  77, 124,  78, 132,  79, 106,  /* 152 - 159 */
     80,  97,  81, 160,  82,  99,  83, 134,  /* 160 - 167 */
     84,  86,  85,  95,  86, 160,  87, 100,  /* 168 - 175 */
     88, 113,  89,  98,  90, 107,  91, 122,  /* 176 - 183 */
     92, 111,  93, 102,  94, 126,  95, 150,  /* 184 - 191 */
     96, 128,  97, 130,  98, 133,  99, 195,  /* 192 - 199 */
    100, 128, 101, 123, 102, 164, 103, 138,  /* 200 - 207 */
    104, 145, 105, 146, 106, 109, 107, 149,  /* 208 - 215 */
    108, 200, 109, 146, 110, 170, 111, 157,  /* 216 - 223 */
    112, 128, 113, 130, 114, 182, 115, 132,  /* 224 - 231 */
    116, 200, 117, 132, 118, 158, 119, 206,  /* 232 - 239 */
    120, 240, 121, 162, 122, 147, 123, 152,  /* 240 - 247 */
    124, 166, 125, 214, 126, 138, 127, 153,  /* 248 - 255 */
  };


/* Return the number of multiplications required to calculate
   powi(x,n) where n is less than POWI_TABLE_SIZE.  This is a
   subroutine of powi_cost.  CACHE is an array indicating
   which exponents have already been calculated.  */

static int
powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
{
  /* If we've already calculated this exponent, then this evaluation
     doesn't require any additional multiplications.  */
  if (cache[n])
    return 0;

  cache[n] = true;
  return powi_lookup_cost (n - powi_table[n], cache)
	 + powi_lookup_cost (powi_table[n], cache) + 1;
}

/* Return the number of multiplications required to calculate
   powi(x,n) for an arbitrary x, given the exponent N.  This
   function needs to be kept in sync with powi_as_mults below.  */

static int
powi_cost (HOST_WIDE_INT n)
{
  bool cache[POWI_TABLE_SIZE];
  unsigned HOST_WIDE_INT digit;
  unsigned HOST_WIDE_INT val;
  int result;

  if (n == 0)
    return 0;

  /* Ignore the reciprocal when calculating the cost.  */
  val = (n < 0) ? -n : n;

  /* Initialize the exponent cache.  */
  memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
  cache[1] = true;

  result = 0;

  while (val >= POWI_TABLE_SIZE)
    {
      if (val & 1)
	{
	  digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
	  result += powi_lookup_cost (digit, cache)
		    + POWI_WINDOW_SIZE + 1;
	  val >>= POWI_WINDOW_SIZE;
	}
      else
	{
	  val >>= 1;
	  result++;
	}
    }

  return result + powi_lookup_cost (val, cache);
}

/* Recursive subroutine of powi_as_mults.  This function takes the
   array, CACHE, of already calculated exponents and an exponent N and
   returns a tree that corresponds to CACHE[1]**N, with type TYPE.  */

static tree
powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
		 HOST_WIDE_INT n, tree *cache)
{
  tree op0, op1, ssa_target;
  unsigned HOST_WIDE_INT digit;
  gassign *mult_stmt;

  if (n < POWI_TABLE_SIZE && cache[n])
    return cache[n];

  ssa_target = make_temp_ssa_name (type, NULL, "powmult");

  if (n < POWI_TABLE_SIZE)
    {
      cache[n] = ssa_target;
      op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
      op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
    }
  else if (n & 1)
    {
      digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
      op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
      op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
    }
  else
    {
      op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
      op1 = op0;
    }

  mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
  gimple_set_location (mult_stmt, loc);
  gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);

  return ssa_target;
}

/* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
   This function needs to be kept in sync with powi_cost above.  */

tree
powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
	       tree arg0, HOST_WIDE_INT n)
{
  tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
  gassign *div_stmt;
  tree target;

  if (n == 0)
    return build_one_cst (type);

  memset (cache, 0, sizeof (cache));
  cache[1] = arg0;

  result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
  if (n >= 0)
    return result;

  /* If the original exponent was negative, reciprocate the result.  */
  target = make_temp_ssa_name (type, NULL, "powmult");
  div_stmt = gimple_build_assign (target, RDIV_EXPR,
				  build_real (type, dconst1), result);
  gimple_set_location (div_stmt, loc);
  gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);

  return target;
}

/* ARG0 and N are the two arguments to a powi builtin in GSI with
   location info LOC.  If the arguments are appropriate, create an
   equivalent sequence of statements prior to GSI using an optimal
   number of multiplications, and return an expession holding the
   result.  */

static tree
gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc, 
			    tree arg0, HOST_WIDE_INT n)
{
  /* Avoid largest negative number.  */
  if (n != -n
      && ((n >= -1 && n <= 2)
	  || (optimize_function_for_speed_p (cfun)
	      && powi_cost (n) <= POWI_MAX_MULTS)))
    return powi_as_mults (gsi, loc, arg0, n);

  return NULL_TREE;
}

/* Build a gimple call statement that calls FN with argument ARG.
   Set the lhs of the call statement to a fresh SSA name.  Insert the
   statement prior to GSI's current position, and return the fresh
   SSA name.  */

static tree
build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
		       tree fn, tree arg)
{
  gcall *call_stmt;
  tree ssa_target;

  call_stmt = gimple_build_call (fn, 1, arg);
  ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
  gimple_set_lhs (call_stmt, ssa_target);
  gimple_set_location (call_stmt, loc);
  gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);

  return ssa_target;
}

/* Build a gimple binary operation with the given CODE and arguments
   ARG0, ARG1, assigning the result to a new SSA name for variable
   TARGET.  Insert the statement prior to GSI's current position, and
   return the fresh SSA name.*/

static tree
build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
			const char *name, enum tree_code code,
			tree arg0, tree arg1)
{
  tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
  gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
  gimple_set_location (stmt, loc);
  gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
  return result;
}

/* Build a gimple reference operation with the given CODE and argument
   ARG, assigning the result to a new SSA name of TYPE with NAME.
   Insert the statement prior to GSI's current position, and return
   the fresh SSA name.  */

static inline tree
build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
		      const char *name, enum tree_code code, tree arg0)
{
  tree result = make_temp_ssa_name (type, NULL, name);
  gimple *stmt = gimple_build_assign (result, build1 (code, type, arg0));
  gimple_set_location (stmt, loc);
  gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
  return result;
}

/* Build a gimple assignment to cast VAL to TYPE.  Insert the statement
   prior to GSI's current position, and return the fresh SSA name.  */

static tree
build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
		       tree type, tree val)
{
  tree result = make_ssa_name (type);
  gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
  gimple_set_location (stmt, loc);
  gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
  return result;
}

struct pow_synth_sqrt_info
{
  bool *factors;
  unsigned int deepest;
  unsigned int num_mults;
};

/* Return true iff the real value C can be represented as a
   sum of powers of 0.5 up to N.  That is:
   C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
   Record in INFO the various parameters of the synthesis algorithm such
   as the factors a[i], the maximum 0.5 power and the number of
   multiplications that will be required.  */

bool
representable_as_half_series_p (REAL_VALUE_TYPE c, unsigned n,
				 struct pow_synth_sqrt_info *info)
{
  REAL_VALUE_TYPE factor = dconsthalf;
  REAL_VALUE_TYPE remainder = c;

  info->deepest = 0;
  info->num_mults = 0;
  memset (info->factors, 0, n * sizeof (bool));

  for (unsigned i = 0; i < n; i++)
    {
      REAL_VALUE_TYPE res;

      /* If something inexact happened bail out now.  */
      if (real_arithmetic (&res, MINUS_EXPR, &remainder, &factor))
	return false;

      /* We have hit zero.  The number is representable as a sum
         of powers of 0.5.  */
      if (real_equal (&res, &dconst0))
	{
	  info->factors[i] = true;
	  info->deepest = i + 1;
	  return true;
	}
      else if (!REAL_VALUE_NEGATIVE (res))
	{
	  remainder = res;
	  info->factors[i] = true;
	  info->num_mults++;
	}
      else
	info->factors[i] = false;

      real_arithmetic (&factor, MULT_EXPR, &factor, &dconsthalf);
    }
  return false;
}

/* Return the tree corresponding to FN being applied
   to ARG N times at GSI and LOC.
   Look up previous results from CACHE if need be.
   cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times.  */

static tree
get_fn_chain (tree arg, unsigned int n, gimple_stmt_iterator *gsi,
	      tree fn, location_t loc, tree *cache)
{
  tree res = cache[n];
  if (!res)
    {
      tree prev = get_fn_chain (arg, n - 1, gsi, fn, loc, cache);
      res = build_and_insert_call (gsi, loc, fn, prev);
      cache[n] = res;
    }

  return res;
}

/* Print to STREAM the repeated application of function FNAME to ARG
   N times.  So, for FNAME = "foo", ARG = "x", N = 2 it would print:
   "foo (foo (x))".  */

static void
print_nested_fn (FILE* stream, const char *fname, const char* arg,
		 unsigned int n)
{
  if (n == 0)
    fprintf (stream, "%s", arg);
  else
    {
      fprintf (stream, "%s (", fname);
      print_nested_fn (stream, fname, arg, n - 1);
      fprintf (stream, ")");
    }
}

/* Print to STREAM the fractional sequence of sqrt chains
   applied to ARG, described by INFO.  Used for the dump file.  */

static void
dump_fractional_sqrt_sequence (FILE *stream, const char *arg,
			        struct pow_synth_sqrt_info *info)
{
  for (unsigned int i = 0; i < info->deepest; i++)
    {
      bool is_set = info->factors[i];
      if (is_set)
	{
	  print_nested_fn (stream, "sqrt", arg, i + 1);
	  if (i != info->deepest - 1)
	    fprintf (stream, " * ");
	}
    }
}

/* Print to STREAM a representation of raising ARG to an integer
   power N.  Used for the dump file.  */

static void
dump_integer_part (FILE *stream, const char* arg, HOST_WIDE_INT n)
{
  if (n > 1)
    fprintf (stream, "powi (%s, " HOST_WIDE_INT_PRINT_DEC ")", arg, n);
  else if (n == 1)
    fprintf (stream, "%s", arg);
}

/* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
   square roots.  Place at GSI and LOC.  Limit the maximum depth
   of the sqrt chains to MAX_DEPTH.  Return the tree holding the
   result of the expanded sequence or NULL_TREE if the expansion failed.

   This routine assumes that ARG1 is a real number with a fractional part
   (the integer exponent case will have been handled earlier in
   gimple_expand_builtin_pow).

   For ARG1 > 0.0:
   * For ARG1 composed of a whole part WHOLE_PART and a fractional part
     FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
                    FRAC_PART == ARG1 - WHOLE_PART:
     Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
     POW (ARG0, FRAC_PART) is expanded as a product of square root chains
     if it can be expressed as such, that is if FRAC_PART satisfies:
     FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
     where integer a[i] is either 0 or 1.

     Example:
     POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
       --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))

   For ARG1 < 0.0 there are two approaches:
   * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
         is calculated as above.

     Example:
     POW (x, -5.625) == 1.0 / POW (x, 5.625)
       -->  1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))

   * (B) : WHOLE_PART := - ceil (abs (ARG1))
           FRAC_PART  := ARG1 - WHOLE_PART
     and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
     Example:
     POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
       --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))

   For ARG1 < 0.0 we choose between (A) and (B) depending on
   how many multiplications we'd have to do.
   So, for the example in (B): POW (x, -5.875), if we were to
   follow algorithm (A) we would produce:
   1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
   which contains more multiplications than approach (B).

   Hopefully, this approach will eliminate potentially expensive POW library
   calls when unsafe floating point math is enabled and allow the compiler to
   further optimise the multiplies, square roots and divides produced by this
   function.  */

static tree
expand_pow_as_sqrts (gimple_stmt_iterator *gsi, location_t loc,
		     tree arg0, tree arg1, HOST_WIDE_INT max_depth)
{
  tree type = TREE_TYPE (arg0);
  machine_mode mode = TYPE_MODE (type);
  tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
  bool one_over = true;

  if (!sqrtfn)
    return NULL_TREE;

  if (TREE_CODE (arg1) != REAL_CST)
    return NULL_TREE;

  REAL_VALUE_TYPE exp_init = TREE_REAL_CST (arg1);

  gcc_assert (max_depth > 0);
  tree *cache = XALLOCAVEC (tree, max_depth + 1);

  struct pow_synth_sqrt_info synth_info;
  synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
  synth_info.deepest = 0;
  synth_info.num_mults = 0;

  bool neg_exp = REAL_VALUE_NEGATIVE (exp_init);
  REAL_VALUE_TYPE exp = real_value_abs (&exp_init);

  /* The whole and fractional parts of exp.  */
  REAL_VALUE_TYPE whole_part;
  REAL_VALUE_TYPE frac_part;

  real_floor (&whole_part, mode, &exp);
  real_arithmetic (&frac_part, MINUS_EXPR, &exp, &whole_part);


  REAL_VALUE_TYPE ceil_whole = dconst0;
  REAL_VALUE_TYPE ceil_fract = dconst0;

  if (neg_exp)
    {
      real_ceil (&ceil_whole, mode, &exp);
      real_arithmetic (&ceil_fract, MINUS_EXPR, &ceil_whole, &exp);
    }

  if (!representable_as_half_series_p (frac_part, max_depth, &synth_info))
    return NULL_TREE;

  /* Check whether it's more profitable to not use 1.0 / ...  */
  if (neg_exp)
    {
      struct pow_synth_sqrt_info alt_synth_info;
      alt_synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
      alt_synth_info.deepest = 0;
      alt_synth_info.num_mults = 0;

      if (representable_as_half_series_p (ceil_fract, max_depth,
					   &alt_synth_info)
	  && alt_synth_info.deepest <= synth_info.deepest
	  && alt_synth_info.num_mults < synth_info.num_mults)
	{
	  whole_part = ceil_whole;
	  frac_part = ceil_fract;
	  synth_info.deepest = alt_synth_info.deepest;
	  synth_info.num_mults = alt_synth_info.num_mults;
	  memcpy (synth_info.factors, alt_synth_info.factors,
		  (max_depth + 1) * sizeof (bool));
	  one_over = false;
	}
    }

  HOST_WIDE_INT n = real_to_integer (&whole_part);
  REAL_VALUE_TYPE cint;
  real_from_integer (&cint, VOIDmode, n, SIGNED);

  if (!real_identical (&whole_part, &cint))
    return NULL_TREE;

  if (powi_cost (n) + synth_info.num_mults > POWI_MAX_MULTS)
    return NULL_TREE;

  memset (cache, 0, (max_depth + 1) * sizeof (tree));

  tree integer_res = n == 0 ? build_real (type, dconst1) : arg0;

  /* Calculate the integer part of the exponent.  */
  if (n > 1)
    {
      integer_res = gimple_expand_builtin_powi (gsi, loc, arg0, n);
      if (!integer_res)
	return NULL_TREE;
    }

  if (dump_file)
    {
      char string[64];

      real_to_decimal (string, &exp_init, sizeof (string), 0, 1);
      fprintf (dump_file, "synthesizing pow (x, %s) as:\n", string);

      if (neg_exp)
	{
	  if (one_over)
	    {
	      fprintf (dump_file, "1.0 / (");
	      dump_integer_part (dump_file, "x", n);
	      if (n > 0)
	        fprintf (dump_file, " * ");
	      dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
	      fprintf (dump_file, ")");
	    }
	  else
	    {
	      dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
	      fprintf (dump_file, " / (");
	      dump_integer_part (dump_file, "x", n);
	      fprintf (dump_file, ")");
	    }
	}
      else
	{
	  dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
	  if (n > 0)
	    fprintf (dump_file, " * ");
	  dump_integer_part (dump_file, "x", n);
	}

      fprintf (dump_file, "\ndeepest sqrt chain: %d\n", synth_info.deepest);
    }


  tree fract_res = NULL_TREE;
  cache[0] = arg0;

  /* Calculate the fractional part of the exponent.  */
  for (unsigned i = 0; i < synth_info.deepest; i++)
    {
      if (synth_info.factors[i])
	{
	  tree sqrt_chain = get_fn_chain (arg0, i + 1, gsi, sqrtfn, loc, cache);

	  if (!fract_res)
	      fract_res = sqrt_chain;

	  else
	    fract_res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
					   fract_res, sqrt_chain);
	}
    }

  tree res = NULL_TREE;

  if (neg_exp)
    {
      if (one_over)
	{
	  if (n > 0)
	    res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
					   fract_res, integer_res);
	  else
	    res = fract_res;

	  res = build_and_insert_binop (gsi, loc, "powrootrecip", RDIV_EXPR,
					  build_real (type, dconst1), res);
	}
      else
	{
	  res = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
					 fract_res, integer_res);
	}
    }
  else
    res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
				   fract_res, integer_res);
  return res;
}

/* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
   with location info LOC.  If possible, create an equivalent and
   less expensive sequence of statements prior to GSI, and return an
   expession holding the result.  */

static tree
gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc, 
			   tree arg0, tree arg1)
{
  REAL_VALUE_TYPE c, cint, dconst1_3, dconst1_4, dconst1_6;
  REAL_VALUE_TYPE c2, dconst3;
  HOST_WIDE_INT n;
  tree type, sqrtfn, cbrtfn, sqrt_arg0, result, cbrt_x, powi_cbrt_x;
  machine_mode mode;
  bool speed_p = optimize_bb_for_speed_p (gsi_bb (*gsi));
  bool hw_sqrt_exists, c_is_int, c2_is_int;

  dconst1_4 = dconst1;
  SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);

  /* If the exponent isn't a constant, there's nothing of interest
     to be done.  */
  if (TREE_CODE (arg1) != REAL_CST)
    return NULL_TREE;

  /* Don't perform the operation if flag_signaling_nans is on
     and the operand is a signaling NaN.  */
  if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
      && ((TREE_CODE (arg0) == REAL_CST
	   && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0)))
	  || REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1))))
    return NULL_TREE;

  /* If the exponent is equivalent to an integer, expand to an optimal
     multiplication sequence when profitable.  */
  c = TREE_REAL_CST (arg1);
  n = real_to_integer (&c);
  real_from_integer (&cint, VOIDmode, n, SIGNED);
  c_is_int = real_identical (&c, &cint);

  if (c_is_int
      && ((n >= -1 && n <= 2)
	  || (flag_unsafe_math_optimizations
	      && speed_p
	      && powi_cost (n) <= POWI_MAX_MULTS)))
    return gimple_expand_builtin_powi (gsi, loc, arg0, n);

  /* Attempt various optimizations using sqrt and cbrt.  */
  type = TREE_TYPE (arg0);
  mode = TYPE_MODE (type);
  sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);

  /* Optimize pow(x,0.5) = sqrt(x).  This replacement is always safe
     unless signed zeros must be maintained.  pow(-0,0.5) = +0, while
     sqrt(-0) = -0.  */
  if (sqrtfn
      && real_equal (&c, &dconsthalf)
      && !HONOR_SIGNED_ZEROS (mode))
    return build_and_insert_call (gsi, loc, sqrtfn, arg0);

  hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;

  /* Optimize pow(x,1./3.) = cbrt(x).  This requires unsafe math
     optimizations since 1./3. is not exactly representable.  If x
     is negative and finite, the correct value of pow(x,1./3.) is
     a NaN with the "invalid" exception raised, because the value
     of 1./3. actually has an even denominator.  The correct value
     of cbrt(x) is a negative real value.  */
  cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
  dconst1_3 = real_value_truncate (mode, dconst_third ());

  if (flag_unsafe_math_optimizations
      && cbrtfn
      && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
      && real_equal (&c, &dconst1_3))
    return build_and_insert_call (gsi, loc, cbrtfn, arg0);
  
  /* Optimize pow(x,1./6.) = cbrt(sqrt(x)).  Don't do this optimization
     if we don't have a hardware sqrt insn.  */
  dconst1_6 = dconst1_3;
  SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);

  if (flag_unsafe_math_optimizations
      && sqrtfn
      && cbrtfn
      && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
      && speed_p
      && hw_sqrt_exists
      && real_equal (&c, &dconst1_6))
    {
      /* sqrt(x)  */
      sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);

      /* cbrt(sqrt(x))  */
      return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
    }


  /* Attempt to expand the POW as a product of square root chains.
     Expand the 0.25 case even when otpimising for size.  */
  if (flag_unsafe_math_optimizations
      && sqrtfn
      && hw_sqrt_exists
      && (speed_p || real_equal (&c, &dconst1_4))
      && !HONOR_SIGNED_ZEROS (mode))
    {
      unsigned int max_depth = speed_p
				? param_max_pow_sqrt_depth
				: 2;

      tree expand_with_sqrts
	= expand_pow_as_sqrts (gsi, loc, arg0, arg1, max_depth);

      if (expand_with_sqrts)
	return expand_with_sqrts;
    }

  real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
  n = real_to_integer (&c2);
  real_from_integer (&cint, VOIDmode, n, SIGNED);
  c2_is_int = real_identical (&c2, &cint);

  /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into

     powi(x, n/3) * powi(cbrt(x), n%3),                    n > 0;
     1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)),  n < 0.

     Do not calculate the first factor when n/3 = 0.  As cbrt(x) is
     different from pow(x, 1./3.) due to rounding and behavior with
     negative x, we need to constrain this transformation to unsafe
     math and positive x or finite math.  */
  real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
  real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
  real_round (&c2, mode, &c2);
  n = real_to_integer (&c2);
  real_from_integer (&cint, VOIDmode, n, SIGNED);
  real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
  real_convert (&c2, mode, &c2);

  if (flag_unsafe_math_optimizations
      && cbrtfn
      && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
      && real_identical (&c2, &c)
      && !c2_is_int
      && optimize_function_for_speed_p (cfun)
      && powi_cost (n / 3) <= POWI_MAX_MULTS)
    {
      tree powi_x_ndiv3 = NULL_TREE;

      /* Attempt to fold powi(arg0, abs(n/3)) into multiplies.  If not
         possible or profitable, give up.  Skip the degenerate case when
         abs(n) < 3, where the result is always 1.  */
      if (absu_hwi (n) >= 3)
	{
	  powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
						     abs_hwi (n / 3));
	  if (!powi_x_ndiv3)
	    return NULL_TREE;
	}

      /* Calculate powi(cbrt(x), n%3).  Don't use gimple_expand_builtin_powi
         as that creates an unnecessary variable.  Instead, just produce
         either cbrt(x) or cbrt(x) * cbrt(x).  */
      cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);

      if (absu_hwi (n) % 3 == 1)
	powi_cbrt_x = cbrt_x;
      else
	powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
					      cbrt_x, cbrt_x);

      /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1.  */
      if (absu_hwi (n) < 3)
	result = powi_cbrt_x;
      else
	result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
					 powi_x_ndiv3, powi_cbrt_x);

      /* If n is negative, reciprocate the result.  */
      if (n < 0)
	result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
					 build_real (type, dconst1), result);

      return result;
    }

  /* No optimizations succeeded.  */
  return NULL_TREE;
}

/* ARG is the argument to a cabs builtin call in GSI with location info
   LOC.  Create a sequence of statements prior to GSI that calculates
   sqrt(R*R + I*I), where R and I are the real and imaginary components
   of ARG, respectively.  Return an expression holding the result.  */

static tree
gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
{
  tree real_part, imag_part, addend1, addend2, sum, result;
  tree type = TREE_TYPE (TREE_TYPE (arg));
  tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
  machine_mode mode = TYPE_MODE (type);

  if (!flag_unsafe_math_optimizations
      || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
      || !sqrtfn
      || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
    return NULL_TREE;

  real_part = build_and_insert_ref (gsi, loc, type, "cabs",
				    REALPART_EXPR, arg);
  addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
				    real_part, real_part);
  imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
				    IMAGPART_EXPR, arg);
  addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
				    imag_part, imag_part);
  sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
  result = build_and_insert_call (gsi, loc, sqrtfn, sum);

  return result;
}

/* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
   on the SSA_NAME argument of each of them.  Also expand powi(x,n) into
   an optimal number of multiplies, when n is a constant.  */

namespace {

const pass_data pass_data_cse_sincos =
{
  GIMPLE_PASS, /* type */
  "sincos", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_SINCOS, /* tv_id */
  PROP_ssa, /* properties_required */
  PROP_gimple_opt_math, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_update_ssa, /* todo_flags_finish */
};

class pass_cse_sincos : public gimple_opt_pass
{
public:
  pass_cse_sincos (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_cse_sincos, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *)
    {
      /* We no longer require either sincos or cexp, since powi expansion
	 piggybacks on this pass.  */
      return optimize;
    }

  virtual unsigned int execute (function *);

}; // class pass_cse_sincos

unsigned int
pass_cse_sincos::execute (function *fun)
{
  basic_block bb;
  bool cfg_changed = false;

  calculate_dominance_info (CDI_DOMINATORS);
  memset (&sincos_stats, 0, sizeof (sincos_stats));

  FOR_EACH_BB_FN (bb, fun)
    {
      gimple_stmt_iterator gsi;
      bool cleanup_eh = false;

      for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
        {
	  gimple *stmt = gsi_stmt (gsi);

	  /* Only the last stmt in a bb could throw, no need to call
	     gimple_purge_dead_eh_edges if we change something in the middle
	     of a basic block.  */
	  cleanup_eh = false;

	  if (is_gimple_call (stmt)
	      && gimple_call_lhs (stmt))
	    {
	      tree arg, arg0, arg1, result;
	      HOST_WIDE_INT n;
	      location_t loc;

	      switch (gimple_call_combined_fn (stmt))
		{
		CASE_CFN_COS:
		CASE_CFN_SIN:
		CASE_CFN_CEXPI:
		  arg = gimple_call_arg (stmt, 0);
		  /* Make sure we have either sincos or cexp.  */
		  if (!targetm.libc_has_function (function_c99_math_complex,
						  TREE_TYPE (arg))
		      && !targetm.libc_has_function (function_sincos,
						     TREE_TYPE (arg)))
		    break;

		  if (TREE_CODE (arg) == SSA_NAME)
		    cfg_changed |= execute_cse_sincos_1 (arg);
		  break;

		CASE_CFN_POW:
		  arg0 = gimple_call_arg (stmt, 0);
		  arg1 = gimple_call_arg (stmt, 1);

		  loc = gimple_location (stmt);
		  result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);

		  if (result)
		    {
		      tree lhs = gimple_get_lhs (stmt);
		      gassign *new_stmt = gimple_build_assign (lhs, result);
		      gimple_set_location (new_stmt, loc);
		      unlink_stmt_vdef (stmt);
		      gsi_replace (&gsi, new_stmt, true);
		      cleanup_eh = true;
		      if (gimple_vdef (stmt))
			release_ssa_name (gimple_vdef (stmt));
		    }
		  break;

		CASE_CFN_POWI:
		  arg0 = gimple_call_arg (stmt, 0);
		  arg1 = gimple_call_arg (stmt, 1);
		  loc = gimple_location (stmt);

		  if (real_minus_onep (arg0))
		    {
                      tree t0, t1, cond, one, minus_one;
		      gassign *stmt;

		      t0 = TREE_TYPE (arg0);
		      t1 = TREE_TYPE (arg1);
		      one = build_real (t0, dconst1);
		      minus_one = build_real (t0, dconstm1);

		      cond = make_temp_ssa_name (t1, NULL, "powi_cond");
		      stmt = gimple_build_assign (cond, BIT_AND_EXPR,
						  arg1, build_int_cst (t1, 1));
		      gimple_set_location (stmt, loc);
		      gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);

		      result = make_temp_ssa_name (t0, NULL, "powi");
		      stmt = gimple_build_assign (result, COND_EXPR, cond,
						  minus_one, one);
		      gimple_set_location (stmt, loc);
		      gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
		    }
		  else
		    {
		      if (!tree_fits_shwi_p (arg1))
			break;

		      n = tree_to_shwi (arg1);
		      result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
		    }

		  if (result)
		    {
		      tree lhs = gimple_get_lhs (stmt);
		      gassign *new_stmt = gimple_build_assign (lhs, result);
		      gimple_set_location (new_stmt, loc);
		      unlink_stmt_vdef (stmt);
		      gsi_replace (&gsi, new_stmt, true);
		      cleanup_eh = true;
		      if (gimple_vdef (stmt))
			release_ssa_name (gimple_vdef (stmt));
		    }
		  break;

		CASE_CFN_CABS:
		  arg0 = gimple_call_arg (stmt, 0);
		  loc = gimple_location (stmt);
		  result = gimple_expand_builtin_cabs (&gsi, loc, arg0);

		  if (result)
		    {
		      tree lhs = gimple_get_lhs (stmt);
		      gassign *new_stmt = gimple_build_assign (lhs, result);
		      gimple_set_location (new_stmt, loc);
		      unlink_stmt_vdef (stmt);
		      gsi_replace (&gsi, new_stmt, true);
		      cleanup_eh = true;
		      if (gimple_vdef (stmt))
			release_ssa_name (gimple_vdef (stmt));
		    }
		  break;

		default:;
		}
	    }
	}
      if (cleanup_eh)
	cfg_changed |= gimple_purge_dead_eh_edges (bb);
    }

  statistics_counter_event (fun, "sincos statements inserted",
			    sincos_stats.inserted);
  statistics_counter_event (fun, "conv statements removed",
			    sincos_stats.conv_removed);

  return cfg_changed ? TODO_cleanup_cfg : 0;
}

} // anon namespace

gimple_opt_pass *
make_pass_cse_sincos (gcc::context *ctxt)
{
  return new pass_cse_sincos (ctxt);
}

/* Return true if stmt is a type conversion operation that can be stripped
   when used in a widening multiply operation.  */
static bool
widening_mult_conversion_strippable_p (tree result_type, gimple *stmt)
{
  enum tree_code rhs_code = gimple_assign_rhs_code (stmt);

  if (TREE_CODE (result_type) == INTEGER_TYPE)
    {
      tree op_type;
      tree inner_op_type;

      if (!CONVERT_EXPR_CODE_P (rhs_code))
	return false;

      op_type = TREE_TYPE (gimple_assign_lhs (stmt));

      /* If the type of OP has the same precision as the result, then
	 we can strip this conversion.  The multiply operation will be
	 selected to create the correct extension as a by-product.  */
      if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
	return true;

      /* We can also strip a conversion if it preserves the signed-ness of
	 the operation and doesn't narrow the range.  */
      inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));

      /* If the inner-most type is unsigned, then we can strip any
	 intermediate widening operation.  If it's signed, then the
	 intermediate widening operation must also be signed.  */
      if ((TYPE_UNSIGNED (inner_op_type)
	   || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
	  && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
	return true;

      return false;
    }

  return rhs_code == FIXED_CONVERT_EXPR;
}

/* Return true if RHS is a suitable operand for a widening multiplication,
   assuming a target type of TYPE.
   There are two cases:

     - RHS makes some value at least twice as wide.  Store that value
       in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.

     - RHS is an integer constant.  Store that value in *NEW_RHS_OUT if so,
       but leave *TYPE_OUT untouched.  */

static bool
is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
			tree *new_rhs_out)
{
  gimple *stmt;
  tree type1, rhs1;

  if (TREE_CODE (rhs) == SSA_NAME)
    {
      stmt = SSA_NAME_DEF_STMT (rhs);
      if (is_gimple_assign (stmt))
	{
	  if (! widening_mult_conversion_strippable_p (type, stmt))
	    rhs1 = rhs;
	  else
	    {
	      rhs1 = gimple_assign_rhs1 (stmt);

	      if (TREE_CODE (rhs1) == INTEGER_CST)
		{
		  *new_rhs_out = rhs1;
		  *type_out = NULL;
		  return true;
		}
	    }
	}
      else
	rhs1 = rhs;

      type1 = TREE_TYPE (rhs1);

      if (TREE_CODE (type1) != TREE_CODE (type)
	  || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
	return false;

      *new_rhs_out = rhs1;
      *type_out = type1;
      return true;
    }

  if (TREE_CODE (rhs) == INTEGER_CST)
    {
      *new_rhs_out = rhs;
      *type_out = NULL;
      return true;
    }

  return false;
}

/* Return true if STMT performs a widening multiplication, assuming the
   output type is TYPE.  If so, store the unwidened types of the operands
   in *TYPE1_OUT and *TYPE2_OUT respectively.  Also fill *RHS1_OUT and
   *RHS2_OUT such that converting those operands to types *TYPE1_OUT
   and *TYPE2_OUT would give the operands of the multiplication.  */

static bool
is_widening_mult_p (gimple *stmt,
		    tree *type1_out, tree *rhs1_out,
		    tree *type2_out, tree *rhs2_out)
{
  tree type = TREE_TYPE (gimple_assign_lhs (stmt));

  if (TREE_CODE (type) == INTEGER_TYPE)
    {
      if (TYPE_OVERFLOW_TRAPS (type))
	return false;
    }
  else if (TREE_CODE (type) != FIXED_POINT_TYPE)
    return false;

  if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
			       rhs1_out))
    return false;

  if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
			       rhs2_out))
    return false;

  if (*type1_out == NULL)
    {
      if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
	return false;
      *type1_out = *type2_out;
    }

  if (*type2_out == NULL)
    {
      if (!int_fits_type_p (*rhs2_out, *type1_out))
	return false;
      *type2_out = *type1_out;
    }

  /* Ensure that the larger of the two operands comes first. */
  if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
    {
      std::swap (*type1_out, *type2_out);
      std::swap (*rhs1_out, *rhs2_out);
    }

  return true;
}

/* Check to see if the CALL statement is an invocation of copysign
   with 1. being the first argument.  */
static bool
is_copysign_call_with_1 (gimple *call)
{
  gcall *c = dyn_cast <gcall *> (call);
  if (! c)
    return false;

  enum combined_fn code = gimple_call_combined_fn (c);

  if (code == CFN_LAST)
    return false;

  if (builtin_fn_p (code))
    {
      switch (as_builtin_fn (code))
	{
	CASE_FLT_FN (BUILT_IN_COPYSIGN):
	CASE_FLT_FN_FLOATN_NX (BUILT_IN_COPYSIGN):
	  return real_onep (gimple_call_arg (c, 0));
	default:
	  return false;
	}
    }

  if (internal_fn_p (code))
    {
      switch (as_internal_fn (code))
	{
	case IFN_COPYSIGN:
	  return real_onep (gimple_call_arg (c, 0));
	default:
	  return false;
	}
    }

   return false;
}

/* Try to expand the pattern x * copysign (1, y) into xorsign (x, y).
   This only happens when the xorsign optab is defined, if the
   pattern is not a xorsign pattern or if expansion fails FALSE is
   returned, otherwise TRUE is returned.  */
static bool
convert_expand_mult_copysign (gimple *stmt, gimple_stmt_iterator *gsi)
{
  tree treeop0, treeop1, lhs, type;
  location_t loc = gimple_location (stmt);
  lhs = gimple_assign_lhs (stmt);
  treeop0 = gimple_assign_rhs1 (stmt);
  treeop1 = gimple_assign_rhs2 (stmt);
  type = TREE_TYPE (lhs);
  machine_mode mode = TYPE_MODE (type);

  if (HONOR_SNANS (type))
    return false;

  if (TREE_CODE (treeop0) == SSA_NAME && TREE_CODE (treeop1) == SSA_NAME)
    {
      gimple *call0 = SSA_NAME_DEF_STMT (treeop0);
      if (!has_single_use (treeop0) || !is_copysign_call_with_1 (call0))
	{
	  call0 = SSA_NAME_DEF_STMT (treeop1);
	  if (!has_single_use (treeop1) || !is_copysign_call_with_1 (call0))
	    return false;

	  treeop1 = treeop0;
	}
	if (optab_handler (xorsign_optab, mode) == CODE_FOR_nothing)
	  return false;

	gcall *c = as_a<gcall*> (call0);
	treeop0 = gimple_call_arg (c, 1);

	gcall *call_stmt
	  = gimple_build_call_internal (IFN_XORSIGN, 2, treeop1, treeop0);
	gimple_set_lhs (call_stmt, lhs);
	gimple_set_location (call_stmt, loc);
	gsi_replace (gsi, call_stmt, true);
	return true;
    }

  return false;
}

/* Process a single gimple statement STMT, which has a MULT_EXPR as
   its rhs, and try to convert it into a WIDEN_MULT_EXPR.  The return
   value is true iff we converted the statement.  */

static bool
convert_mult_to_widen (gimple *stmt, gimple_stmt_iterator *gsi)
{
  tree lhs, rhs1, rhs2, type, type1, type2;
  enum insn_code handler;
  scalar_int_mode to_mode, from_mode, actual_mode;
  optab op;
  int actual_precision;
  location_t loc = gimple_location (stmt);
  bool from_unsigned1, from_unsigned2;

  lhs = gimple_assign_lhs (stmt);
  type = TREE_TYPE (lhs);
  if (TREE_CODE (type) != INTEGER_TYPE)
    return false;

  if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
    return false;

  to_mode = SCALAR_INT_TYPE_MODE (type);
  from_mode = SCALAR_INT_TYPE_MODE (type1);
  if (to_mode == from_mode)
    return false;

  from_unsigned1 = TYPE_UNSIGNED (type1);
  from_unsigned2 = TYPE_UNSIGNED (type2);

  if (from_unsigned1 && from_unsigned2)
    op = umul_widen_optab;
  else if (!from_unsigned1 && !from_unsigned2)
    op = smul_widen_optab;
  else
    op = usmul_widen_optab;

  handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
						  &actual_mode);

  if (handler == CODE_FOR_nothing)
    {
      if (op != smul_widen_optab)
	{
	  /* We can use a signed multiply with unsigned types as long as
	     there is a wider mode to use, or it is the smaller of the two
	     types that is unsigned.  Note that type1 >= type2, always.  */
	  if ((TYPE_UNSIGNED (type1)
	       && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
	      || (TYPE_UNSIGNED (type2)
		  && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
	    {
	      if (!GET_MODE_WIDER_MODE (from_mode).exists (&from_mode)
		  || GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
		return false;
	    }

	  op = smul_widen_optab;
	  handler = find_widening_optab_handler_and_mode (op, to_mode,
							  from_mode,
							  &actual_mode);

	  if (handler == CODE_FOR_nothing)
	    return false;

	  from_unsigned1 = from_unsigned2 = false;
	}
      else
	{
	  /* Expand can synthesize smul_widen_optab if the target
	     supports umul_widen_optab.  */
	  op = umul_widen_optab;
	  handler = find_widening_optab_handler_and_mode (op, to_mode,
							  from_mode,
							  &actual_mode);
	  if (handler == CODE_FOR_nothing)
	    return false;
	}
    }

  /* Ensure that the inputs to the handler are in the correct precison
     for the opcode.  This will be the full mode size.  */
  actual_precision = GET_MODE_PRECISION (actual_mode);
  if (2 * actual_precision > TYPE_PRECISION (type))
    return false;
  if (actual_precision != TYPE_PRECISION (type1)
      || from_unsigned1 != TYPE_UNSIGNED (type1))
    rhs1 = build_and_insert_cast (gsi, loc,
				  build_nonstandard_integer_type
				    (actual_precision, from_unsigned1), rhs1);
  if (actual_precision != TYPE_PRECISION (type2)
      || from_unsigned2 != TYPE_UNSIGNED (type2))
    rhs2 = build_and_insert_cast (gsi, loc,
				  build_nonstandard_integer_type
				    (actual_precision, from_unsigned2), rhs2);

  /* Handle constants.  */
  if (TREE_CODE (rhs1) == INTEGER_CST)
    rhs1 = fold_convert (type1, rhs1);
  if (TREE_CODE (rhs2) == INTEGER_CST)
    rhs2 = fold_convert (type2, rhs2);

  gimple_assign_set_rhs1 (stmt, rhs1);
  gimple_assign_set_rhs2 (stmt, rhs2);
  gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
  update_stmt (stmt);
  widen_mul_stats.widen_mults_inserted++;
  return true;
}

/* Process a single gimple statement STMT, which is found at the
   iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
   rhs (given by CODE), and try to convert it into a
   WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR.  The return value
   is true iff we converted the statement.  */

static bool
convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple *stmt,
			    enum tree_code code)
{
  gimple *rhs1_stmt = NULL, *rhs2_stmt = NULL;
  gimple *conv1_stmt = NULL, *conv2_stmt = NULL, *conv_stmt;
  tree type, type1, type2, optype;
  tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
  enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
  optab this_optab;
  enum tree_code wmult_code;
  enum insn_code handler;
  scalar_mode to_mode, from_mode, actual_mode;
  location_t loc = gimple_location (stmt);
  int actual_precision;
  bool from_unsigned1, from_unsigned2;

  lhs = gimple_assign_lhs (stmt);
  type = TREE_TYPE (lhs);
  if (TREE_CODE (type) != INTEGER_TYPE
      && TREE_CODE (type) != FIXED_POINT_TYPE)
    return false;

  if (code == MINUS_EXPR)
    wmult_code = WIDEN_MULT_MINUS_EXPR;
  else
    wmult_code = WIDEN_MULT_PLUS_EXPR;

  rhs1 = gimple_assign_rhs1 (stmt);
  rhs2 = gimple_assign_rhs2 (stmt);

  if (TREE_CODE (rhs1) == SSA_NAME)
    {
      rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
      if (is_gimple_assign (rhs1_stmt))
	rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
    }

  if (TREE_CODE (rhs2) == SSA_NAME)
    {
      rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
      if (is_gimple_assign (rhs2_stmt))
	rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
    }

  /* Allow for one conversion statement between the multiply
     and addition/subtraction statement.  If there are more than
     one conversions then we assume they would invalidate this
     transformation.  If that's not the case then they should have
     been folded before now.  */
  if (CONVERT_EXPR_CODE_P (rhs1_code))
    {
      conv1_stmt = rhs1_stmt;
      rhs1 = gimple_assign_rhs1 (rhs1_stmt);
      if (TREE_CODE (rhs1) == SSA_NAME)
	{
	  rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
	  if (is_gimple_assign (rhs1_stmt))
	    rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
	}
      else
	return false;
    }
  if (CONVERT_EXPR_CODE_P (rhs2_code))
    {
      conv2_stmt = rhs2_stmt;
      rhs2 = gimple_assign_rhs1 (rhs2_stmt);
      if (TREE_CODE (rhs2) == SSA_NAME)
	{
	  rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
	  if (is_gimple_assign (rhs2_stmt))
	    rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
	}
      else
	return false;
    }

  /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
     is_widening_mult_p, but we still need the rhs returns.

     It might also appear that it would be sufficient to use the existing
     operands of the widening multiply, but that would limit the choice of
     multiply-and-accumulate instructions.

     If the widened-multiplication result has more than one uses, it is
     probably wiser not to do the conversion.  Also restrict this operation
     to single basic block to avoid moving the multiply to a different block
     with a higher execution frequency.  */
  if (code == PLUS_EXPR
      && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
    {
      if (!has_single_use (rhs1)
	  || gimple_bb (rhs1_stmt) != gimple_bb (stmt)
	  || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
				  &type2, &mult_rhs2))
	return false;
      add_rhs = rhs2;
      conv_stmt = conv1_stmt;
    }
  else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
    {
      if (!has_single_use (rhs2)
	  || gimple_bb (rhs2_stmt) != gimple_bb (stmt)
	  || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
				  &type2, &mult_rhs2))
	return false;
      add_rhs = rhs1;
      conv_stmt = conv2_stmt;
    }
  else
    return false;

  to_mode = SCALAR_TYPE_MODE (type);
  from_mode = SCALAR_TYPE_MODE (type1);
  if (to_mode == from_mode)
    return false;

  from_unsigned1 = TYPE_UNSIGNED (type1);
  from_unsigned2 = TYPE_UNSIGNED (type2);
  optype = type1;

  /* There's no such thing as a mixed sign madd yet, so use a wider mode.  */
  if (from_unsigned1 != from_unsigned2)
    {
      if (!INTEGRAL_TYPE_P (type))
	return false;
      /* We can use a signed multiply with unsigned types as long as
	 there is a wider mode to use, or it is the smaller of the two
	 types that is unsigned.  Note that type1 >= type2, always.  */
      if ((from_unsigned1
	   && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
	  || (from_unsigned2
	      && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
	{
	  if (!GET_MODE_WIDER_MODE (from_mode).exists (&from_mode)
	      || GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
	    return false;
	}

      from_unsigned1 = from_unsigned2 = false;
      optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
					       false);
    }

  /* If there was a conversion between the multiply and addition
     then we need to make sure it fits a multiply-and-accumulate.
     The should be a single mode change which does not change the
     value.  */
  if (conv_stmt)
    {
      /* We use the original, unmodified data types for this.  */
      tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
      tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
      int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
      bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);

      if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
	{
	  /* Conversion is a truncate.  */
	  if (TYPE_PRECISION (to_type) < data_size)
	    return false;
	}
      else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
	{
	  /* Conversion is an extend.  Check it's the right sort.  */
	  if (TYPE_UNSIGNED (from_type) != is_unsigned
	      && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
	    return false;
	}
      /* else convert is a no-op for our purposes.  */
    }

  /* Verify that the machine can perform a widening multiply
     accumulate in this mode/signedness combination, otherwise
     this transformation is likely to pessimize code.  */
  this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
  handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
						  from_mode, &actual_mode);

  if (handler == CODE_FOR_nothing)
    return false;

  /* Ensure that the inputs to the handler are in the correct precison
     for the opcode.  This will be the full mode size.  */
  actual_precision = GET_MODE_PRECISION (actual_mode);
  if (actual_precision != TYPE_PRECISION (type1)
      || from_unsigned1 != TYPE_UNSIGNED (type1))
    mult_rhs1 = build_and_insert_cast (gsi, loc,
				       build_nonstandard_integer_type
				         (actual_precision, from_unsigned1),
				       mult_rhs1);
  if (actual_precision != TYPE_PRECISION (type2)
      || from_unsigned2 != TYPE_UNSIGNED (type2))
    mult_rhs2 = build_and_insert_cast (gsi, loc,
				       build_nonstandard_integer_type
					 (actual_precision, from_unsigned2),
				       mult_rhs2);

  if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
    add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);

  /* Handle constants.  */
  if (TREE_CODE (mult_rhs1) == INTEGER_CST)
    mult_rhs1 = fold_convert (type1, mult_rhs1);
  if (TREE_CODE (mult_rhs2) == INTEGER_CST)
    mult_rhs2 = fold_convert (type2, mult_rhs2);

  gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
				  add_rhs);
  update_stmt (gsi_stmt (*gsi));
  widen_mul_stats.maccs_inserted++;
  return true;
}

/* Given a result MUL_RESULT which is a result of a multiplication of OP1 and
   OP2 and which we know is used in statements that can be, together with the
   multiplication, converted to FMAs, perform the transformation.  */

static void
convert_mult_to_fma_1 (tree mul_result, tree op1, tree op2)
{
  tree type = TREE_TYPE (mul_result);
  gimple *use_stmt;
  imm_use_iterator imm_iter;
  gcall *fma_stmt;

  FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
    {
      gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
      tree addop, mulop1 = op1, result = mul_result;
      bool negate_p = false;
      gimple_seq seq = NULL;

      if (is_gimple_debug (use_stmt))
	continue;

      if (is_gimple_assign (use_stmt)
	  && gimple_assign_rhs_code (use_stmt) == NEGATE_EXPR)
	{
	  result = gimple_assign_lhs (use_stmt);
	  use_operand_p use_p;
	  gimple *neguse_stmt;
	  single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
	  gsi_remove (&gsi, true);
	  release_defs (use_stmt);

	  use_stmt = neguse_stmt;
	  gsi = gsi_for_stmt (use_stmt);
	  negate_p = true;
	}

      tree cond, else_value, ops[3];
      tree_code code;
      if (!can_interpret_as_conditional_op_p (use_stmt, &cond, &code,
					      ops, &else_value))
	gcc_unreachable ();
      addop = ops[0] == result ? ops[1] : ops[0];

      if (code == MINUS_EXPR)
	{
	  if (ops[0] == result)
	    /* a * b - c -> a * b + (-c)  */
	    addop = gimple_build (&seq, NEGATE_EXPR, type, addop);
	  else
	    /* a - b * c -> (-b) * c + a */
	    negate_p = !negate_p;
	}

      if (negate_p)
	mulop1 = gimple_build (&seq, NEGATE_EXPR, type, mulop1);

      if (seq)
	gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);

      if (cond)
	fma_stmt = gimple_build_call_internal (IFN_COND_FMA, 5, cond, mulop1,
					       op2, addop, else_value);
      else
	fma_stmt = gimple_build_call_internal (IFN_FMA, 3, mulop1, op2, addop);
      gimple_set_lhs (fma_stmt, gimple_get_lhs (use_stmt));
      gimple_call_set_nothrow (fma_stmt, !stmt_can_throw_internal (cfun,
								   use_stmt));
      gsi_replace (&gsi, fma_stmt, true);
      /* Follow all SSA edges so that we generate FMS, FNMA and FNMS
	 regardless of where the negation occurs.  */
      gimple *orig_stmt = gsi_stmt (gsi);
      if (fold_stmt (&gsi, follow_all_ssa_edges))
	{
	  if (maybe_clean_or_replace_eh_stmt (orig_stmt, gsi_stmt (gsi)))
	    gcc_unreachable ();
	  update_stmt (gsi_stmt (gsi));
	}

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Generated FMA ");
	  print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, TDF_NONE);
	  fprintf (dump_file, "\n");
	}

      /* If the FMA result is negated in a single use, fold the negation
	 too.  */
      orig_stmt = gsi_stmt (gsi);
      use_operand_p use_p;
      gimple *neg_stmt;
      if (is_gimple_call (orig_stmt)
	  && gimple_call_internal_p (orig_stmt)
	  && gimple_call_lhs (orig_stmt)
	  && TREE_CODE (gimple_call_lhs (orig_stmt)) == SSA_NAME
	  && single_imm_use (gimple_call_lhs (orig_stmt), &use_p, &neg_stmt)
	  && is_gimple_assign (neg_stmt)
	  && gimple_assign_rhs_code (neg_stmt) == NEGATE_EXPR
	  && !stmt_could_throw_p (cfun, neg_stmt))
	{
	  gsi = gsi_for_stmt (neg_stmt);
	  if (fold_stmt (&gsi, follow_all_ssa_edges))
	    {
	      if (maybe_clean_or_replace_eh_stmt (neg_stmt, gsi_stmt (gsi)))
		gcc_unreachable ();
	      update_stmt (gsi_stmt (gsi));
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "Folded FMA negation ");
		  print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, TDF_NONE);
		  fprintf (dump_file, "\n");
		}
	    }
	}

      widen_mul_stats.fmas_inserted++;
    }
}

/* Data necessary to perform the actual transformation from a multiplication
   and an addition to an FMA after decision is taken it should be done and to
   then delete the multiplication statement from the function IL.  */

struct fma_transformation_info
{
  gimple *mul_stmt;
  tree mul_result;
  tree op1;
  tree op2;
};

/* Structure containing the current state of FMA deferring, i.e. whether we are
   deferring, whether to continue deferring, and all data necessary to come
   back and perform all deferred transformations.  */

class fma_deferring_state
{
public:
  /* Class constructor.  Pass true as PERFORM_DEFERRING in order to actually
     do any deferring.  */

  fma_deferring_state (bool perform_deferring)
    : m_candidates (), m_mul_result_set (), m_initial_phi (NULL),
      m_last_result (NULL_TREE), m_deferring_p (perform_deferring) {}

  /* List of FMA candidates for which we the transformation has been determined
     possible but we at this point in BB analysis we do not consider them
     beneficial.  */
  auto_vec<fma_transformation_info, 8> m_candidates;

  /* Set of results of multiplication that are part of an already deferred FMA
     candidates.  */
  hash_set<tree> m_mul_result_set;

  /* The PHI that supposedly feeds back result of a FMA to another over loop
     boundary.  */
  gphi *m_initial_phi;

  /* Result of the last produced FMA candidate or NULL if there has not been
     one.  */
  tree m_last_result;

  /* If true, deferring might still be profitable.  If false, transform all
     candidates and no longer defer.  */
  bool m_deferring_p;
};

/* Transform all deferred FMA candidates and mark STATE as no longer
   deferring.  */

static void
cancel_fma_deferring (fma_deferring_state *state)
{
  if (!state->m_deferring_p)
    return;

  for (unsigned i = 0; i < state->m_candidates.length (); i++)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Generating deferred FMA\n");

      const fma_transformation_info &fti = state->m_candidates[i];
      convert_mult_to_fma_1 (fti.mul_result, fti.op1, fti.op2);

      gimple_stmt_iterator gsi = gsi_for_stmt (fti.mul_stmt);
      gsi_remove (&gsi, true);
      release_defs (fti.mul_stmt);
    }
  state->m_deferring_p = false;
}

/* If OP is an SSA name defined by a PHI node, return the PHI statement.
   Otherwise return NULL.  */

static gphi *
result_of_phi (tree op)
{
  if (TREE_CODE (op) != SSA_NAME)
    return NULL;

  return dyn_cast <gphi *> (SSA_NAME_DEF_STMT (op));
}

/* After processing statements of a BB and recording STATE, return true if the
   initial phi is fed by the last FMA candidate result ore one such result from
   previously processed BBs marked in LAST_RESULT_SET.  */

static bool
last_fma_candidate_feeds_initial_phi (fma_deferring_state *state,
				      hash_set<tree> *last_result_set)
{
  ssa_op_iter iter;
  use_operand_p use;
  FOR_EACH_PHI_ARG (use, state->m_initial_phi, iter, SSA_OP_USE)
    {
      tree t = USE_FROM_PTR (use);
      if (t == state->m_last_result
	  || last_result_set->contains (t))
	return true;
    }

  return false;
}

/* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
   with uses in additions and subtractions to form fused multiply-add
   operations.  Returns true if successful and MUL_STMT should be removed.
   If MUL_COND is nonnull, the multiplication in MUL_STMT is conditional
   on MUL_COND, otherwise it is unconditional.

   If STATE indicates that we are deferring FMA transformation, that means
   that we do not produce FMAs for basic blocks which look like:

    <bb 6>
    # accumulator_111 = PHI <0.0(5), accumulator_66(6)>
    _65 = _14 * _16;
    accumulator_66 = _65 + accumulator_111;

  or its unrolled version, i.e. with several FMA candidates that feed result
  of one into the addend of another.  Instead, we add them to a list in STATE
  and if we later discover an FMA candidate that is not part of such a chain,
  we go back and perform all deferred past candidates.  */

static bool
convert_mult_to_fma (gimple *mul_stmt, tree op1, tree op2,
		     fma_deferring_state *state, tree mul_cond = NULL_TREE)
{
  tree mul_result = gimple_get_lhs (mul_stmt);
  /* If there isn't a LHS then this can't be an FMA.  There can be no LHS
     if the statement was left just for the side-effects.  */
  if (!mul_result)
    return false;
  tree type = TREE_TYPE (mul_result);
  gimple *use_stmt, *neguse_stmt;
  use_operand_p use_p;
  imm_use_iterator imm_iter;

  if (FLOAT_TYPE_P (type)
      && flag_fp_contract_mode == FP_CONTRACT_OFF)
    return false;

  /* We don't want to do bitfield reduction ops.  */
  if (INTEGRAL_TYPE_P (type)
      && (!type_has_mode_precision_p (type) || TYPE_OVERFLOW_TRAPS (type)))
    return false;

  /* If the target doesn't support it, don't generate it.  We assume that
     if fma isn't available then fms, fnma or fnms are not either.  */
  optimization_type opt_type = bb_optimization_type (gimple_bb (mul_stmt));
  if (!direct_internal_fn_supported_p (IFN_FMA, type, opt_type))
    return false;

  /* If the multiplication has zero uses, it is kept around probably because
     of -fnon-call-exceptions.  Don't optimize it away in that case,
     it is DCE job.  */
  if (has_zero_uses (mul_result))
    return false;

  bool check_defer
    = (state->m_deferring_p
       && maybe_le (tree_to_poly_int64 (TYPE_SIZE (type)),
		    param_avoid_fma_max_bits));
  bool defer = check_defer;
  bool seen_negate_p = false;
  /* Make sure that the multiplication statement becomes dead after
     the transformation, thus that all uses are transformed to FMAs.
     This means we assume that an FMA operation has the same cost
     as an addition.  */
  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
    {
      tree result = mul_result;
      bool negate_p = false;

      use_stmt = USE_STMT (use_p);

      if (is_gimple_debug (use_stmt))
	continue;

      /* For now restrict this operations to single basic blocks.  In theory
	 we would want to support sinking the multiplication in
	 m = a*b;
	 if ()
	   ma = m + c;
	 else
	   d = m;
	 to form a fma in the then block and sink the multiplication to the
	 else block.  */
      if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
	return false;

      /* A negate on the multiplication leads to FNMA.  */
      if (is_gimple_assign (use_stmt)
	  && gimple_assign_rhs_code (use_stmt) == NEGATE_EXPR)
	{
	  ssa_op_iter iter;
	  use_operand_p usep;

	  /* If (due to earlier missed optimizations) we have two
	     negates of the same value, treat them as equivalent
	     to a single negate with multiple uses.  */
	  if (seen_negate_p)
	    return false;

	  result = gimple_assign_lhs (use_stmt);

	  /* Make sure the negate statement becomes dead with this
	     single transformation.  */
	  if (!single_imm_use (gimple_assign_lhs (use_stmt),
			       &use_p, &neguse_stmt))
	    return false;

	  /* Make sure the multiplication isn't also used on that stmt.  */
	  FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
	    if (USE_FROM_PTR (usep) == mul_result)
	      return false;

	  /* Re-validate.  */
	  use_stmt = neguse_stmt;
	  if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
	    return false;

	  negate_p = seen_negate_p = true;
	}

      tree cond, else_value, ops[3];
      tree_code code;
      if (!can_interpret_as_conditional_op_p (use_stmt, &cond, &code, ops,
					      &else_value))
	return false;

      switch (code)
	{
	case MINUS_EXPR:
	  if (ops[1] == result)
	    negate_p = !negate_p;
	  break;
	case PLUS_EXPR:
	  break;
	default:
	  /* FMA can only be formed from PLUS and MINUS.  */
	  return false;
	}

      if (mul_cond && cond != mul_cond)
	return false;

      if (cond)
	{
	  if (cond == result || else_value == result)
	    return false;
	  if (!direct_internal_fn_supported_p (IFN_COND_FMA, type, opt_type))
	    return false;
	}

      /* If the subtrahend (OPS[1]) is computed by a MULT_EXPR that
	 we'll visit later, we might be able to get a more profitable
	 match with fnma.
	 OTOH, if we don't, a negate / fma pair has likely lower latency
	 that a mult / subtract pair.  */
      if (code == MINUS_EXPR
	  && !negate_p
	  && ops[0] == result
	  && !direct_internal_fn_supported_p (IFN_FMS, type, opt_type)
	  && direct_internal_fn_supported_p (IFN_FNMA, type, opt_type)
	  && TREE_CODE (ops[1]) == SSA_NAME
	  && has_single_use (ops[1]))
	{
	  gimple *stmt2 = SSA_NAME_DEF_STMT (ops[1]);
	  if (is_gimple_assign (stmt2)
	      && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
	    return false;
	}

      /* We can't handle a * b + a * b.  */
      if (ops[0] == ops[1])
	return false;
      /* If deferring, make sure we are not looking at an instruction that
	 wouldn't have existed if we were not.  */
      if (state->m_deferring_p
	  && (state->m_mul_result_set.contains (ops[0])
	      || state->m_mul_result_set.contains (ops[1])))
	return false;

      if (check_defer)
	{
	  tree use_lhs = gimple_get_lhs (use_stmt);
	  if (state->m_last_result)
	    {
	      if (ops[1] == state->m_last_result
		  || ops[0] == state->m_last_result)
		defer = true;
	      else
		defer = false;
	    }
	  else
	    {
	      gcc_checking_assert (!state->m_initial_phi);
	      gphi *phi;
	      if (ops[0] == result)
		phi = result_of_phi (ops[1]);
	      else
		{
		  gcc_assert (ops[1] == result);
		  phi = result_of_phi (ops[0]);
		}

	      if (phi)
		{
		  state->m_initial_phi = phi;
		  defer = true;
		}
	      else
		defer = false;
	    }

	  state->m_last_result = use_lhs;
	  check_defer = false;
	}
      else
	defer = false;

      /* While it is possible to validate whether or not the exact form that
	 we've recognized is available in the backend, the assumption is that
	 if the deferring logic above did not trigger, the transformation is
	 never a loss.  For instance, suppose the target only has the plain FMA
	 pattern available.  Consider a*b-c -> fma(a,b,-c): we've exchanged
	 MUL+SUB for FMA+NEG, which is still two operations.  Consider
         -(a*b)-c -> fma(-a,b,-c): we still have 3 operations, but in the FMA
	 form the two NEGs are independent and could be run in parallel.  */
    }

  if (defer)
    {
      fma_transformation_info fti;
      fti.mul_stmt = mul_stmt;
      fti.mul_result = mul_result;
      fti.op1 = op1;
      fti.op2 = op2;
      state->m_candidates.safe_push (fti);
      state->m_mul_result_set.add (mul_result);

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Deferred generating FMA for multiplication ");
	  print_gimple_stmt (dump_file, mul_stmt, 0, TDF_NONE);
	  fprintf (dump_file, "\n");
	}

      return false;
    }
  else
    {
      if (state->m_deferring_p)
	cancel_fma_deferring (state);
      convert_mult_to_fma_1 (mul_result, op1, op2);
      return true;
    }
}


/* Helper function of match_arith_overflow.  For MUL_OVERFLOW, if we have
   a check for non-zero like:
   _1 = x_4(D) * y_5(D);
   *res_7(D) = _1;
   if (x_4(D) != 0)
     goto <bb 3>; [50.00%]
   else
     goto <bb 4>; [50.00%]

   <bb 3> [local count: 536870913]:
   _2 = _1 / x_4(D);
   _9 = _2 != y_5(D);
   _10 = (int) _9;

   <bb 4> [local count: 1073741824]:
   # iftmp.0_3 = PHI <_10(3), 0(2)>
   then in addition to using .MUL_OVERFLOW (x_4(D), y_5(D)) we can also
   optimize the x_4(D) != 0 condition to 1.  */

static void
maybe_optimize_guarding_check (vec<gimple *> &mul_stmts, gimple *cond_stmt,
			       gimple *div_stmt, bool *cfg_changed)
{
  basic_block bb = gimple_bb (cond_stmt);
  if (gimple_bb (div_stmt) != bb || !single_pred_p (bb))
    return;
  edge pred_edge = single_pred_edge (bb);
  basic_block pred_bb = pred_edge->src;
  if (EDGE_COUNT (pred_bb->succs) != 2)
    return;
  edge other_edge = EDGE_SUCC (pred_bb, EDGE_SUCC (pred_bb, 0) == pred_edge);
  edge other_succ_edge = NULL;
  if (gimple_code (cond_stmt) == GIMPLE_COND)
    {
      if (EDGE_COUNT (bb->succs) != 2)
	return;
      other_succ_edge = EDGE_SUCC (bb, 0);
      if (gimple_cond_code (cond_stmt) == NE_EXPR)
	{
	  if (other_succ_edge->flags & EDGE_TRUE_VALUE)
	    other_succ_edge = EDGE_SUCC (bb, 1);
	}
      else if (other_succ_edge->flags & EDGE_FALSE_VALUE)
	other_succ_edge = EDGE_SUCC (bb, 0);
      if (other_edge->dest != other_succ_edge->dest)
	return;
    }
  else if (!single_succ_p (bb) || other_edge->dest != single_succ (bb))
    return;
  gimple *zero_cond = last_stmt (pred_bb);
  if (zero_cond == NULL
      || gimple_code (zero_cond) != GIMPLE_COND
      || (gimple_cond_code (zero_cond)
	  != ((pred_edge->flags & EDGE_TRUE_VALUE) ? NE_EXPR : EQ_EXPR))
      || !integer_zerop (gimple_cond_rhs (zero_cond)))
    return;
  tree zero_cond_lhs = gimple_cond_lhs (zero_cond);
  if (TREE_CODE (zero_cond_lhs) != SSA_NAME)
    return;
  if (gimple_assign_rhs2 (div_stmt) != zero_cond_lhs)
    {
      /* Allow the divisor to be result of a same precision cast
	 from zero_cond_lhs.  */
      tree rhs2 = gimple_assign_rhs2 (div_stmt);
      if (TREE_CODE (rhs2) != SSA_NAME)
	return;
      gimple *g = SSA_NAME_DEF_STMT (rhs2);
      if (!gimple_assign_cast_p (g)
	  || gimple_assign_rhs1 (g) != gimple_cond_lhs (zero_cond)
	  || !INTEGRAL_TYPE_P (TREE_TYPE (zero_cond_lhs))
	  || (TYPE_PRECISION (TREE_TYPE (zero_cond_lhs))
	      != TYPE_PRECISION (TREE_TYPE (rhs2))))
	return;
    }
  gimple_stmt_iterator gsi = gsi_after_labels (bb);
  mul_stmts.quick_push (div_stmt);
  if (is_gimple_debug (gsi_stmt (gsi)))
    gsi_next_nondebug (&gsi);
  unsigned cast_count = 0;
  while (gsi_stmt (gsi) != cond_stmt)
    {
      /* If original mul_stmt has a single use, allow it in the same bb,
	 we are looking then just at __builtin_mul_overflow_p.
	 Though, in that case the original mul_stmt will be replaced
	 by .MUL_OVERFLOW, REALPART_EXPR and IMAGPART_EXPR stmts.  */
      gimple *mul_stmt;
      unsigned int i;
      bool ok = false;
      FOR_EACH_VEC_ELT (mul_stmts, i, mul_stmt)
	{
	  if (gsi_stmt (gsi) == mul_stmt)
	    {
	      ok = true;
	      break;
	    }
	}
      if (!ok && gimple_assign_cast_p (gsi_stmt (gsi)) && ++cast_count < 4)
	ok = true;
      if (!ok)
	return;
      gsi_next_nondebug (&gsi);
    }
  if (gimple_code (cond_stmt) == GIMPLE_COND)
    {
      basic_block succ_bb = other_edge->dest;
      for (gphi_iterator gpi = gsi_start_phis (succ_bb); !gsi_end_p (gpi);
	   gsi_next (&gpi))
	{
	  gphi *phi = gpi.phi ();
	  tree v1 = gimple_phi_arg_def (phi, other_edge->dest_idx);
	  tree v2 = gimple_phi_arg_def (phi, other_succ_edge->dest_idx);
	  if (!operand_equal_p (v1, v2, 0))
	    return;
	}
    }
  else
    {
      tree lhs = gimple_assign_lhs (cond_stmt);
      if (!lhs || !INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
	return;
      gsi_next_nondebug (&gsi);
      if (!gsi_end_p (gsi))
	{
	  if (gimple_assign_rhs_code (cond_stmt) == COND_EXPR)
	    return;
	  gimple *cast_stmt = gsi_stmt (gsi);
	  if (!gimple_assign_cast_p (cast_stmt))
	    return;
	  tree new_lhs = gimple_assign_lhs (cast_stmt);
	  gsi_next_nondebug (&gsi);
	  if (!gsi_end_p (gsi)
	      || !new_lhs
	      || !INTEGRAL_TYPE_P (TREE_TYPE (new_lhs))
	      || TYPE_PRECISION (TREE_TYPE (new_lhs)) <= 1)
	    return;
	  lhs = new_lhs;
	}
      edge succ_edge = single_succ_edge (bb);
      basic_block succ_bb = succ_edge->dest;
      gsi = gsi_start_phis (succ_bb);
      if (gsi_end_p (gsi))
	return;
      gphi *phi = as_a <gphi *> (gsi_stmt (gsi));
      gsi_next (&gsi);
      if (!gsi_end_p (gsi))
	return;
      if (gimple_phi_arg_def (phi, succ_edge->dest_idx) != lhs)
	return;
      tree other_val = gimple_phi_arg_def (phi, other_edge->dest_idx);
      if (gimple_assign_rhs_code (cond_stmt) == COND_EXPR)
	{
	  tree cond = gimple_assign_rhs1 (cond_stmt);
	  if (TREE_CODE (cond) == NE_EXPR)
	    {
	      if (!operand_equal_p (other_val,
				    gimple_assign_rhs3 (cond_stmt), 0))
		return;
	    }
	  else if (!operand_equal_p (other_val,
				     gimple_assign_rhs2 (cond_stmt), 0))
	    return;
	}
      else if (gimple_assign_rhs_code (cond_stmt) == NE_EXPR)
	{
	  if (!integer_zerop (other_val))
	    return;
	}
      else if (!integer_onep (other_val))
	return;
    }
  gcond *zero_gcond = as_a <gcond *> (zero_cond);
  if (pred_edge->flags & EDGE_TRUE_VALUE)
    gimple_cond_make_true (zero_gcond);
  else
    gimple_cond_make_false (zero_gcond);
  update_stmt (zero_cond);
  *cfg_changed = true;
}

/* Helper function for arith_overflow_check_p.  Return true
   if VAL1 is equal to VAL2 cast to corresponding integral type
   with other signedness or vice versa.  */

static bool
arith_cast_equal_p (tree val1, tree val2)
{
  if (TREE_CODE (val1) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
    return wi::eq_p (wi::to_wide (val1), wi::to_wide (val2));
  else if (TREE_CODE (val1) != SSA_NAME || TREE_CODE (val2) != SSA_NAME)
    return false;
  if (gimple_assign_cast_p (SSA_NAME_DEF_STMT (val1))
      && gimple_assign_rhs1 (SSA_NAME_DEF_STMT (val1)) == val2)
    return true;
  if (gimple_assign_cast_p (SSA_NAME_DEF_STMT (val2))
      && gimple_assign_rhs1 (SSA_NAME_DEF_STMT (val2)) == val1)
    return true;
  return false;
}

/* Helper function of match_arith_overflow.  Return 1
   if USE_STMT is unsigned overflow check ovf != 0 for
   STMT, -1 if USE_STMT is unsigned overflow check ovf == 0
   and 0 otherwise.  */

static int
arith_overflow_check_p (gimple *stmt, gimple *cast_stmt, gimple *&use_stmt,
			tree maxval, tree *other)
{
  enum tree_code ccode = ERROR_MARK;
  tree crhs1 = NULL_TREE, crhs2 = NULL_TREE;
  enum tree_code code = gimple_assign_rhs_code (stmt);
  tree lhs = gimple_assign_lhs (cast_stmt ? cast_stmt : stmt);
  tree rhs1 = gimple_assign_rhs1 (stmt);
  tree rhs2 = gimple_assign_rhs2 (stmt);
  tree multop = NULL_TREE, divlhs = NULL_TREE;
  gimple *cur_use_stmt = use_stmt;

  if (code == MULT_EXPR)
    {
      if (!is_gimple_assign (use_stmt))
	return 0;
      if (gimple_assign_rhs_code (use_stmt) != TRUNC_DIV_EXPR)
	return 0;
      if (gimple_assign_rhs1 (use_stmt) != lhs)
	return 0;
      if (cast_stmt)
	{
	  if (arith_cast_equal_p (gimple_assign_rhs2 (use_stmt), rhs1))
	    multop = rhs2;
	  else if (arith_cast_equal_p (gimple_assign_rhs2 (use_stmt), rhs2))
	    multop = rhs1;
	  else
	    return 0;
	}
      else if (gimple_assign_rhs2 (use_stmt) == rhs1)
	multop = rhs2;
      else if (operand_equal_p (gimple_assign_rhs2 (use_stmt), rhs2, 0))
	multop = rhs1;
      else
	return 0;
      if (stmt_ends_bb_p (use_stmt))
	return 0;
      divlhs = gimple_assign_lhs (use_stmt);
      if (!divlhs)
	return 0;
      use_operand_p use;
      if (!single_imm_use (divlhs, &use, &cur_use_stmt))
	return 0;
    }
  if (gimple_code (cur_use_stmt) == GIMPLE_COND)
    {
      ccode = gimple_cond_code (cur_use_stmt);
      crhs1 = gimple_cond_lhs (cur_use_stmt);
      crhs2 = gimple_cond_rhs (cur_use_stmt);
    }
  else if (is_gimple_assign (cur_use_stmt))
    {
      if (gimple_assign_rhs_class (cur_use_stmt) == GIMPLE_BINARY_RHS)
	{
	  ccode = gimple_assign_rhs_code (cur_use_stmt);
	  crhs1 = gimple_assign_rhs1 (cur_use_stmt);
	  crhs2 = gimple_assign_rhs2 (cur_use_stmt);
	}
      else if (gimple_assign_rhs_code (cur_use_stmt) == COND_EXPR)
	{
	  tree cond = gimple_assign_rhs1 (cur_use_stmt);
	  if (COMPARISON_CLASS_P (cond))
	    {
	      ccode = TREE_CODE (cond);
	      crhs1 = TREE_OPERAND (cond, 0);
	      crhs2 = TREE_OPERAND (cond, 1);
	    }
	  else
	    return 0;
	}
      else
	return 0;
    }
  else
    return 0;

  if (TREE_CODE_CLASS (ccode) != tcc_comparison)
    return 0;

  switch (ccode)
    {
    case GT_EXPR:
    case LE_EXPR:
      if (maxval)
	{
	  /* r = a + b; r > maxval or r <= maxval  */
	  if (crhs1 == lhs
	      && TREE_CODE (crhs2) == INTEGER_CST
	      && tree_int_cst_equal (crhs2, maxval))
	    return ccode == GT_EXPR ? 1 : -1;
	  break;
	}
      /* r = a - b; r > a or r <= a
	 r = a + b; a > r or a <= r or b > r or b <= r.  */
      if ((code == MINUS_EXPR && crhs1 == lhs && crhs2 == rhs1)
	  || (code == PLUS_EXPR && (crhs1 == rhs1 || crhs1 == rhs2)
	      && crhs2 == lhs))
	return ccode == GT_EXPR ? 1 : -1;
      /* r = ~a; b > r or b <= r.  */
      if (code == BIT_NOT_EXPR && crhs2 == lhs)
	{
	  if (other)
	    *other = crhs1;
	  return ccode == GT_EXPR ? 1 : -1;
	}
      break;
    case LT_EXPR:
    case GE_EXPR:
      if (maxval)
	break;
      /* r = a - b; a < r or a >= r
	 r = a + b; r < a or r >= a or r < b or r >= b.  */
      if ((code == MINUS_EXPR && crhs1 == rhs1 && crhs2 == lhs)
	  || (code == PLUS_EXPR && crhs1 == lhs
	      && (crhs2 == rhs1 || crhs2 == rhs2)))
	return ccode == LT_EXPR ? 1 : -1;
      /* r = ~a; r < b or r >= b.  */
      if (code == BIT_NOT_EXPR && crhs1 == lhs)
	{
	  if (other)
	    *other = crhs2;
	  return ccode == LT_EXPR ? 1 : -1;
	}
      break;
    case EQ_EXPR:
    case NE_EXPR:
      /* r = a * b; _1 = r / a; _1 == b
	 r = a * b; _1 = r / b; _1 == a
	 r = a * b; _1 = r / a; _1 != b
	 r = a * b; _1 = r / b; _1 != a.  */
      if (code == MULT_EXPR)
	{
	  if (cast_stmt)
	    {
	      if ((crhs1 == divlhs && arith_cast_equal_p (crhs2, multop))
		  || (crhs2 == divlhs && arith_cast_equal_p (crhs1, multop)))
		{
		  use_stmt = cur_use_stmt;
		  return ccode == NE_EXPR ? 1 : -1;
		}
	    }
	  else if ((crhs1 == divlhs && operand_equal_p (crhs2, multop, 0))
		   || (crhs2 == divlhs && crhs1 == multop))
	    {
	      use_stmt = cur_use_stmt;
	      return ccode == NE_EXPR ? 1 : -1;
	    }
	}
      break;
    default:
      break;
    }
  return 0;
}

/* Recognize for unsigned x
   x = y - z;
   if (x > y)
   where there are other uses of x and replace it with
   _7 = .SUB_OVERFLOW (y, z);
   x = REALPART_EXPR <_7>;
   _8 = IMAGPART_EXPR <_7>;
   if (_8)
   and similarly for addition.

   Also recognize:
   yc = (type) y;
   zc = (type) z;
   x = yc + zc;
   if (x > max)
   where y and z have unsigned types with maximum max
   and there are other uses of x and all of those cast x
   back to that unsigned type and again replace it with
   _7 = .ADD_OVERFLOW (y, z);
   _9 = REALPART_EXPR <_7>;
   _8 = IMAGPART_EXPR <_7>;
   if (_8)
   and replace (utype) x with _9.

   Also recognize:
   x = ~z;
   if (y > x)
   and replace it with
   _7 = .ADD_OVERFLOW (y, z);
   _8 = IMAGPART_EXPR <_7>;
   if (_8)

   And also recognize:
   z = x * y;
   if (x != 0)
     goto <bb 3>; [50.00%]
   else
     goto <bb 4>; [50.00%]

   <bb 3> [local count: 536870913]:
   _2 = z / x;
   _9 = _2 != y;
   _10 = (int) _9;

   <bb 4> [local count: 1073741824]:
   # iftmp.0_3 = PHI <_10(3), 0(2)>
   and replace it with
   _7 = .MUL_OVERFLOW (x, y);
   z = IMAGPART_EXPR <_7>;
   _8 = IMAGPART_EXPR <_7>;
   _9 = _8 != 0;
   iftmp.0_3 = (int) _9;  */

static bool
match_arith_overflow (gimple_stmt_iterator *gsi, gimple *stmt,
		      enum tree_code code, bool *cfg_changed)
{
  tree lhs = gimple_assign_lhs (stmt);
  tree type = TREE_TYPE (lhs);
  use_operand_p use_p;
  imm_use_iterator iter;
  bool use_seen = false;
  bool ovf_use_seen = false;
  gimple *use_stmt;
  gimple *add_stmt = NULL;
  bool add_first = false;
  gimple *cond_stmt = NULL;
  gimple *cast_stmt = NULL;
  tree cast_lhs = NULL_TREE;

  gcc_checking_assert (code == PLUS_EXPR
		       || code == MINUS_EXPR
		       || code == MULT_EXPR
		       || code == BIT_NOT_EXPR);
  if (!INTEGRAL_TYPE_P (type)
      || !TYPE_UNSIGNED (type)
      || has_zero_uses (lhs)
      || (code != PLUS_EXPR
	  && code != MULT_EXPR
	  && optab_handler (code == MINUS_EXPR ? usubv4_optab : uaddv4_optab,
			    TYPE_MODE (type)) == CODE_FOR_nothing))
    return false;

  tree rhs1 = gimple_assign_rhs1 (stmt);
  tree rhs2 = gimple_assign_rhs2 (stmt);
  FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
    {
      use_stmt = USE_STMT (use_p);
      if (is_gimple_debug (use_stmt))
	continue;

      tree other = NULL_TREE;
      if (arith_overflow_check_p (stmt, NULL, use_stmt, NULL_TREE, &other))
	{
	  if (code == BIT_NOT_EXPR)
	    {
	      gcc_assert (other);
	      if (TREE_CODE (other) != SSA_NAME)
		return false;
	      if (rhs2 == NULL)
		rhs2 = other;
	      else
		return false;
	      cond_stmt = use_stmt;
	    }
	  ovf_use_seen = true;
	}
      else 
	{
	  use_seen = true;
	  if (code == MULT_EXPR
	      && cast_stmt == NULL
	      && gimple_assign_cast_p (use_stmt))
	    {
	      cast_lhs = gimple_assign_lhs (use_stmt);
	      if (INTEGRAL_TYPE_P (TREE_TYPE (cast_lhs))
		  && !TYPE_UNSIGNED (TREE_TYPE (cast_lhs))
		  && (TYPE_PRECISION (TREE_TYPE (cast_lhs))
		      == TYPE_PRECISION (TREE_TYPE (lhs))))
		cast_stmt = use_stmt;
	      else
		cast_lhs = NULL_TREE;
	    }
	}
      if (ovf_use_seen && use_seen)
	break;
    }

  if (!ovf_use_seen
      && code == MULT_EXPR
      && cast_stmt)
    {
      if (TREE_CODE (rhs1) != SSA_NAME
	  || (TREE_CODE (rhs2) != SSA_NAME && TREE_CODE (rhs2) != INTEGER_CST))
	return false;
      FOR_EACH_IMM_USE_FAST (use_p, iter, cast_lhs)
	{
	  use_stmt = USE_STMT (use_p);
	  if (is_gimple_debug (use_stmt))
	    continue;

	  if (arith_overflow_check_p (stmt, cast_stmt, use_stmt,
				      NULL_TREE, NULL))
	    ovf_use_seen = true;
	}
    }
  else
    {
      cast_stmt = NULL;
      cast_lhs = NULL_TREE;
    }

  tree maxval = NULL_TREE;
  if (!ovf_use_seen
      || (code != MULT_EXPR && (code == BIT_NOT_EXPR ? use_seen : !use_seen))
      || (code == PLUS_EXPR
	  && optab_handler (uaddv4_optab,
			    TYPE_MODE (type)) == CODE_FOR_nothing)
      || (code == MULT_EXPR
	  && optab_handler (cast_stmt ? mulv4_optab : umulv4_optab,
			    TYPE_MODE (type)) == CODE_FOR_nothing))
    {
      if (code != PLUS_EXPR)
	return false;
      if (TREE_CODE (rhs1) != SSA_NAME
	  || !gimple_assign_cast_p (SSA_NAME_DEF_STMT (rhs1)))
	return false;
      rhs1 = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (rhs1));
      tree type1 = TREE_TYPE (rhs1);
      if (!INTEGRAL_TYPE_P (type1)
	  || !TYPE_UNSIGNED (type1)
	  || TYPE_PRECISION (type1) >= TYPE_PRECISION (type)
	  || (TYPE_PRECISION (type1)
	      != GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type1))))
	return false;
      if (TREE_CODE (rhs2) == INTEGER_CST)
	{
	  if (wi::ne_p (wi::rshift (wi::to_wide (rhs2),
	  			    TYPE_PRECISION (type1),
				    UNSIGNED), 0))
	    return false;
	  rhs2 = fold_convert (type1, rhs2);
	}
      else
	{
	  if (TREE_CODE (rhs2) != SSA_NAME
	      || !gimple_assign_cast_p (SSA_NAME_DEF_STMT (rhs2)))
	    return false;
	  rhs2 = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (rhs2));
	  tree type2 = TREE_TYPE (rhs2);
	  if (!INTEGRAL_TYPE_P (type2)
	      || !TYPE_UNSIGNED (type2)
	      || TYPE_PRECISION (type2) >= TYPE_PRECISION (type)
	      || (TYPE_PRECISION (type2)
		  != GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type2))))
	    return false;
	}
      if (TYPE_PRECISION (type1) >= TYPE_PRECISION (TREE_TYPE (rhs2)))
	type = type1;
      else
	type = TREE_TYPE (rhs2);

      if (TREE_CODE (type) != INTEGER_TYPE
	  || optab_handler (uaddv4_optab,
			    TYPE_MODE (type)) == CODE_FOR_nothing)
	return false;

      maxval = wide_int_to_tree (type, wi::max_value (TYPE_PRECISION (type),
						      UNSIGNED));
      ovf_use_seen = false;
      use_seen = false;
      basic_block use_bb = NULL;
      FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
	{
	  use_stmt = USE_STMT (use_p);
	  if (is_gimple_debug (use_stmt))
	    continue;

	  if (arith_overflow_check_p (stmt, NULL, use_stmt, maxval, NULL))
	    {
	      ovf_use_seen = true;
	      use_bb = gimple_bb (use_stmt);
	    }
	  else
	    {
	      if (!gimple_assign_cast_p (use_stmt)
		  || gimple_assign_rhs_code (use_stmt) == VIEW_CONVERT_EXPR)
		return false;
	      tree use_lhs = gimple_assign_lhs (use_stmt);
	      if (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
		  || (TYPE_PRECISION (TREE_TYPE (use_lhs))
		      > TYPE_PRECISION (type)))
		return false;
	      use_seen = true;
	    }
	}
      if (!ovf_use_seen)
	return false;
      if (!useless_type_conversion_p (type, TREE_TYPE (rhs1)))
	{
	  if (!use_seen)
	    return false;
	  tree new_rhs1 = make_ssa_name (type);
	  gimple *g = gimple_build_assign (new_rhs1, NOP_EXPR, rhs1);
	  gsi_insert_before (gsi, g, GSI_SAME_STMT);
	  rhs1 = new_rhs1;
	}
      else if (!useless_type_conversion_p (type, TREE_TYPE (rhs2)))
	{
	  if (!use_seen)
	    return false;
	  tree new_rhs2 = make_ssa_name (type);
	  gimple *g = gimple_build_assign (new_rhs2, NOP_EXPR, rhs2);
	  gsi_insert_before (gsi, g, GSI_SAME_STMT);
	  rhs2 = new_rhs2;
	}
      else if (!use_seen)
	{
	  /* If there are no uses of the wider addition, check if
	     forwprop has not created a narrower addition.
	     Require it to be in the same bb as the overflow check.  */
	  FOR_EACH_IMM_USE_FAST (use_p, iter, rhs1)
	    {
	      use_stmt = USE_STMT (use_p);
	      if (is_gimple_debug (use_stmt))
		continue;

	      if (use_stmt == stmt)
		continue;

	      if (!is_gimple_assign (use_stmt)
		  || gimple_bb (use_stmt) != use_bb
		  || gimple_assign_rhs_code (use_stmt) != PLUS_EXPR)
		continue;

	      if (gimple_assign_rhs1 (use_stmt) == rhs1)
		{
		  if (!operand_equal_p (gimple_assign_rhs2 (use_stmt),
					rhs2, 0))
		    continue;
		}
	      else if (gimple_assign_rhs2 (use_stmt) == rhs1)
		{
		  if (gimple_assign_rhs1 (use_stmt) != rhs2)
		    continue;
		}
	      else
		continue;

	      add_stmt = use_stmt;
	      break;
	    }
	  if (add_stmt == NULL)
	    return false;

	  /* If stmt and add_stmt are in the same bb, we need to find out
	     which one is earlier.  If they are in different bbs, we've
	     checked add_stmt is in the same bb as one of the uses of the
	     stmt lhs, so stmt needs to dominate add_stmt too.  */
	  if (gimple_bb (stmt) == gimple_bb (add_stmt))
	    {
	      gimple_stmt_iterator gsif = *gsi;
	      gimple_stmt_iterator gsib = *gsi;
	      int i;
	      /* Search both forward and backward from stmt and have a small
		 upper bound.  */
	      for (i = 0; i < 128; i++)
		{
		  if (!gsi_end_p (gsib))
		    {
		      gsi_prev_nondebug (&gsib);
		      if (gsi_stmt (gsib) == add_stmt)
			{
			  add_first = true;
			  break;
			}
		    }
		  else if (gsi_end_p (gsif))
		    break;
		  if (!gsi_end_p (gsif))
		    {
		      gsi_next_nondebug (&gsif);
		      if (gsi_stmt (gsif) == add_stmt)
			break;
		    }
		}
	      if (i == 128)
		return false;
	      if (add_first)
		*gsi = gsi_for_stmt (add_stmt);
	    }
	}
    }

  if (code == BIT_NOT_EXPR)
    *gsi = gsi_for_stmt (cond_stmt);

  auto_vec<gimple *, 8> mul_stmts;
  if (code == MULT_EXPR && cast_stmt)
    {
      type = TREE_TYPE (cast_lhs);
      gimple *g = SSA_NAME_DEF_STMT (rhs1);
      if (gimple_assign_cast_p (g)
	  && useless_type_conversion_p (type,
					TREE_TYPE (gimple_assign_rhs1 (g)))
	  && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (g)))
	rhs1 = gimple_assign_rhs1 (g);
      else
	{
	  g = gimple_build_assign (make_ssa_name (type), NOP_EXPR, rhs1);
	  gsi_insert_before (gsi, g, GSI_SAME_STMT);
	  rhs1 = gimple_assign_lhs (g);
	  mul_stmts.quick_push (g);
	}
      if (TREE_CODE (rhs2) == INTEGER_CST)
	rhs2 = fold_convert (type, rhs2);
      else
	{
	  g = SSA_NAME_DEF_STMT (rhs2);
	  if (gimple_assign_cast_p (g)
	      && useless_type_conversion_p (type,
					    TREE_TYPE (gimple_assign_rhs1 (g)))
	      && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (g)))
	    rhs2 = gimple_assign_rhs1 (g);
	  else
	    {
	      g = gimple_build_assign (make_ssa_name (type), NOP_EXPR, rhs2);
	      gsi_insert_before (gsi, g, GSI_SAME_STMT);
	      rhs2 = gimple_assign_lhs (g);
	      mul_stmts.quick_push (g);
	    }
	}
    }
  tree ctype = build_complex_type (type);
  gcall *g = gimple_build_call_internal (code == MULT_EXPR
					 ? IFN_MUL_OVERFLOW
					 : code != MINUS_EXPR
					 ? IFN_ADD_OVERFLOW : IFN_SUB_OVERFLOW,
					 2, rhs1, rhs2);
  tree ctmp = make_ssa_name (ctype);
  gimple_call_set_lhs (g, ctmp);
  gsi_insert_before (gsi, g, GSI_SAME_STMT);
  tree new_lhs = (maxval || cast_stmt) ? make_ssa_name (type) : lhs;
  gassign *g2;
  if (code != BIT_NOT_EXPR)
    {
      g2 = gimple_build_assign (new_lhs, REALPART_EXPR,
				build1 (REALPART_EXPR, type, ctmp));
      if (maxval || cast_stmt)
	{
	  gsi_insert_before (gsi, g2, GSI_SAME_STMT);
	  if (add_first)
	    *gsi = gsi_for_stmt (stmt);
	}
      else
	gsi_replace (gsi, g2, true);
      if (code == MULT_EXPR)
	{
	  mul_stmts.quick_push (g);
	  mul_stmts.quick_push (g2);
	  if (cast_stmt)
	    {
	      g2 = gimple_build_assign (lhs, NOP_EXPR, new_lhs);
	      gsi_replace (gsi, g2, true);
	      mul_stmts.quick_push (g2);
	    }
	}
    }
  tree ovf = make_ssa_name (type);
  g2 = gimple_build_assign (ovf, IMAGPART_EXPR,
			    build1 (IMAGPART_EXPR, type, ctmp));
  if (code != BIT_NOT_EXPR)
    gsi_insert_after (gsi, g2, GSI_NEW_STMT);
  else
    gsi_insert_before (gsi, g2, GSI_SAME_STMT);
  if (code == MULT_EXPR)
    mul_stmts.quick_push (g2);

  FOR_EACH_IMM_USE_STMT (use_stmt, iter, cast_lhs ? cast_lhs : lhs)
    {
      if (is_gimple_debug (use_stmt))
	continue;

      gimple *orig_use_stmt = use_stmt;
      int ovf_use = arith_overflow_check_p (stmt, cast_stmt, use_stmt,
					    maxval, NULL);
      if (ovf_use == 0)
	{
	  gcc_assert (code != BIT_NOT_EXPR);
	  if (maxval)
	    {
	      tree use_lhs = gimple_assign_lhs (use_stmt);
	      gimple_assign_set_rhs1 (use_stmt, new_lhs);
	      if (useless_type_conversion_p (TREE_TYPE (use_lhs),
					     TREE_TYPE (new_lhs)))
		gimple_assign_set_rhs_code (use_stmt, SSA_NAME);
	      update_stmt (use_stmt);
	    }
	  continue;
	}
      if (gimple_code (use_stmt) == GIMPLE_COND)
	{
	  gcond *cond_stmt = as_a <gcond *> (use_stmt);
	  gimple_cond_set_lhs (cond_stmt, ovf);
	  gimple_cond_set_rhs (cond_stmt, build_int_cst (type, 0));
	  gimple_cond_set_code (cond_stmt, ovf_use == 1 ? NE_EXPR : EQ_EXPR);
	}
      else
	{
	  gcc_checking_assert (is_gimple_assign (use_stmt));
	  if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
	    {
	      gimple_assign_set_rhs1 (use_stmt, ovf);
	      gimple_assign_set_rhs2 (use_stmt, build_int_cst (type, 0));
	      gimple_assign_set_rhs_code (use_stmt,
					  ovf_use == 1 ? NE_EXPR : EQ_EXPR);
	    }
	  else
	    {
	      gcc_checking_assert (gimple_assign_rhs_code (use_stmt)
				   == COND_EXPR);
	      tree cond = build2 (ovf_use == 1 ? NE_EXPR : EQ_EXPR,
				  boolean_type_node, ovf,
				  build_int_cst (type, 0));
	      gimple_assign_set_rhs1 (use_stmt, cond);
	    }
	}
      update_stmt (use_stmt);
      if (code == MULT_EXPR && use_stmt != orig_use_stmt)
	{
	  gimple_stmt_iterator gsi2 = gsi_for_stmt (orig_use_stmt);
	  maybe_optimize_guarding_check (mul_stmts, use_stmt, orig_use_stmt,
					 cfg_changed);
	  gsi_remove (&gsi2, true);
	  release_ssa_name (gimple_assign_lhs (orig_use_stmt));
	}
    }
  if (maxval)
    {
      gimple_stmt_iterator gsi2 = gsi_for_stmt (stmt);
      gsi_remove (&gsi2, true);
      if (add_stmt)
	{
	  gimple *g = gimple_build_assign (gimple_assign_lhs (add_stmt),
					   new_lhs);
	  gsi2 = gsi_for_stmt (add_stmt);
	  gsi_replace (&gsi2, g, true);
	}
    }
  else if (code == BIT_NOT_EXPR)
    {
      *gsi = gsi_for_stmt (stmt);
      gsi_remove (gsi, true);
      release_ssa_name (lhs);
      return true;
    }
  return false;
}

/* Return true if target has support for divmod.  */

static bool
target_supports_divmod_p (optab divmod_optab, optab div_optab, machine_mode mode) 
{
  /* If target supports hardware divmod insn, use it for divmod.  */
  if (optab_handler (divmod_optab, mode) != CODE_FOR_nothing)
    return true;

  /* Check if libfunc for divmod is available.  */
  rtx libfunc = optab_libfunc (divmod_optab, mode);
  if (libfunc != NULL_RTX)
    {
      /* If optab_handler exists for div_optab, perhaps in a wider mode,
	 we don't want to use the libfunc even if it exists for given mode.  */ 
      machine_mode div_mode;
      FOR_EACH_MODE_FROM (div_mode, mode)
	if (optab_handler (div_optab, div_mode) != CODE_FOR_nothing)
	  return false;

      return targetm.expand_divmod_libfunc != NULL;
    }
  
  return false; 
}

/* Check if stmt is candidate for divmod transform.  */

static bool
divmod_candidate_p (gassign *stmt)
{
  tree type = TREE_TYPE (gimple_assign_lhs (stmt));
  machine_mode mode = TYPE_MODE (type);
  optab divmod_optab, div_optab;

  if (TYPE_UNSIGNED (type))
    {
      divmod_optab = udivmod_optab;
      div_optab = udiv_optab;
    }
  else
    {
      divmod_optab = sdivmod_optab;
      div_optab = sdiv_optab;
    }

  tree op1 = gimple_assign_rhs1 (stmt);
  tree op2 = gimple_assign_rhs2 (stmt);

  /* Disable the transform if either is a constant, since division-by-constant
     may have specialized expansion.  */
  if (CONSTANT_CLASS_P (op1))
    return false;

  if (CONSTANT_CLASS_P (op2))
    {
      if (integer_pow2p (op2))
	return false;

      if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
	  && TYPE_PRECISION (type) <= BITS_PER_WORD)
	return false;

      /* If the divisor is not power of 2 and the precision wider than
	 HWI, expand_divmod punts on that, so in that case it is better
	 to use divmod optab or libfunc.  Similarly if choose_multiplier
	 might need pre/post shifts of BITS_PER_WORD or more.  */
    }

  /* Exclude the case where TYPE_OVERFLOW_TRAPS (type) as that should
     expand using the [su]divv optabs.  */
  if (TYPE_OVERFLOW_TRAPS (type))
    return false;
  
  if (!target_supports_divmod_p (divmod_optab, div_optab, mode)) 
    return false;

  return true;
}

/* This function looks for:
   t1 = a TRUNC_DIV_EXPR b;
   t2 = a TRUNC_MOD_EXPR b;
   and transforms it to the following sequence:
   complex_tmp = DIVMOD (a, b);
   t1 = REALPART_EXPR(a);
   t2 = IMAGPART_EXPR(b);
   For conditions enabling the transform see divmod_candidate_p().

   The pass has three parts:
   1) Find top_stmt which is trunc_div or trunc_mod stmt and dominates all
      other trunc_div_expr and trunc_mod_expr stmts.
   2) Add top_stmt and all trunc_div and trunc_mod stmts dominated by top_stmt
      to stmts vector.
   3) Insert DIVMOD call just before top_stmt and update entries in
      stmts vector to use return value of DIMOVD (REALEXPR_PART for div,
      IMAGPART_EXPR for mod).  */

static bool
convert_to_divmod (gassign *stmt)
{
  if (stmt_can_throw_internal (cfun, stmt)
      || !divmod_candidate_p (stmt))
    return false;

  tree op1 = gimple_assign_rhs1 (stmt);
  tree op2 = gimple_assign_rhs2 (stmt);
  
  imm_use_iterator use_iter;
  gimple *use_stmt;
  auto_vec<gimple *> stmts; 

  gimple *top_stmt = stmt; 
  basic_block top_bb = gimple_bb (stmt);

  /* Part 1: Try to set top_stmt to "topmost" stmt that dominates
     at-least stmt and possibly other trunc_div/trunc_mod stmts
     having same operands as stmt.  */

  FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, op1)
    {
      if (is_gimple_assign (use_stmt)
	  && (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR
	      || gimple_assign_rhs_code (use_stmt) == TRUNC_MOD_EXPR)
	  && operand_equal_p (op1, gimple_assign_rhs1 (use_stmt), 0)
	  && operand_equal_p (op2, gimple_assign_rhs2 (use_stmt), 0))
	{
	  if (stmt_can_throw_internal (cfun, use_stmt))
	    continue;

	  basic_block bb = gimple_bb (use_stmt);

	  if (bb == top_bb)
	    {
	      if (gimple_uid (use_stmt) < gimple_uid (top_stmt))
		top_stmt = use_stmt;
	    }
	  else if (dominated_by_p (CDI_DOMINATORS, top_bb, bb))
	    {
	      top_bb = bb;
	      top_stmt = use_stmt;
	    }
	}
    }

  tree top_op1 = gimple_assign_rhs1 (top_stmt);
  tree top_op2 = gimple_assign_rhs2 (top_stmt);

  stmts.safe_push (top_stmt);
  bool div_seen = (gimple_assign_rhs_code (top_stmt) == TRUNC_DIV_EXPR);

  /* Part 2: Add all trunc_div/trunc_mod statements domianted by top_bb
     to stmts vector. The 2nd loop will always add stmt to stmts vector, since
     gimple_bb (top_stmt) dominates gimple_bb (stmt), so the
     2nd loop ends up adding at-least single trunc_mod_expr stmt.  */  

  FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, top_op1)
    {
      if (is_gimple_assign (use_stmt)
	  && (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR
	      || gimple_assign_rhs_code (use_stmt) == TRUNC_MOD_EXPR)
	  && operand_equal_p (top_op1, gimple_assign_rhs1 (use_stmt), 0)
	  && operand_equal_p (top_op2, gimple_assign_rhs2 (use_stmt), 0))
	{
	  if (use_stmt == top_stmt
	      || stmt_can_throw_internal (cfun, use_stmt)
	      || !dominated_by_p (CDI_DOMINATORS, gimple_bb (use_stmt), top_bb))
	    continue;

	  stmts.safe_push (use_stmt);
	  if (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR)
	    div_seen = true;
	}
    }

  if (!div_seen)
    return false;

  /* Part 3: Create libcall to internal fn DIVMOD:
     divmod_tmp = DIVMOD (op1, op2).  */

  gcall *call_stmt = gimple_build_call_internal (IFN_DIVMOD, 2, op1, op2);
  tree res = make_temp_ssa_name (build_complex_type (TREE_TYPE (op1)),
				 call_stmt, "divmod_tmp");
  gimple_call_set_lhs (call_stmt, res);
  /* We rejected throwing statements above.  */
  gimple_call_set_nothrow (call_stmt, true);

  /* Insert the call before top_stmt.  */
  gimple_stmt_iterator top_stmt_gsi = gsi_for_stmt (top_stmt);
  gsi_insert_before (&top_stmt_gsi, call_stmt, GSI_SAME_STMT);

  widen_mul_stats.divmod_calls_inserted++;		

  /* Update all statements in stmts vector:
     lhs = op1 TRUNC_DIV_EXPR op2 -> lhs = REALPART_EXPR<divmod_tmp>
     lhs = op1 TRUNC_MOD_EXPR op2 -> lhs = IMAGPART_EXPR<divmod_tmp>.  */

  for (unsigned i = 0; stmts.iterate (i, &use_stmt); ++i)
    {
      tree new_rhs;

      switch (gimple_assign_rhs_code (use_stmt))
	{
	  case TRUNC_DIV_EXPR:
	    new_rhs = fold_build1 (REALPART_EXPR, TREE_TYPE (op1), res);
	    break;

	  case TRUNC_MOD_EXPR:
	    new_rhs = fold_build1 (IMAGPART_EXPR, TREE_TYPE (op1), res);
	    break;

	  default:
	    gcc_unreachable ();
	}

      gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
      gimple_assign_set_rhs_from_tree (&gsi, new_rhs);
      update_stmt (use_stmt);
    }

  return true; 
}    

/* Process a single gimple assignment STMT, which has a RSHIFT_EXPR as
   its rhs, and try to convert it into a MULT_HIGHPART_EXPR.  The return
   value is true iff we converted the statement.  */

static bool
convert_mult_to_highpart (gassign *stmt, gimple_stmt_iterator *gsi)
{
  tree lhs = gimple_assign_lhs (stmt);
  tree stype = TREE_TYPE (lhs);
  tree sarg0 = gimple_assign_rhs1 (stmt);
  tree sarg1 = gimple_assign_rhs2 (stmt);

  if (TREE_CODE (stype) != INTEGER_TYPE
      || TREE_CODE (sarg1) != INTEGER_CST
      || TREE_CODE (sarg0) != SSA_NAME
      || !tree_fits_uhwi_p (sarg1)
      || !has_single_use (sarg0))
    return false;

  gassign *def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (sarg0));
  if (!def)
    return false;

  enum tree_code mcode = gimple_assign_rhs_code (def);
  if (mcode == NOP_EXPR)
    {
      tree tmp = gimple_assign_rhs1 (def);
      if (TREE_CODE (tmp) != SSA_NAME || !has_single_use (tmp))
	return false;
      def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (tmp));
      if (!def)
	return false;
      mcode = gimple_assign_rhs_code (def);
    }

  if (mcode != WIDEN_MULT_EXPR
      || gimple_bb (def) != gimple_bb (stmt))
    return false;
  tree mtype = TREE_TYPE (gimple_assign_lhs (def));
  if (TREE_CODE (mtype) != INTEGER_TYPE
      || TYPE_PRECISION (mtype) != TYPE_PRECISION (stype))
    return false;

  tree mop1 = gimple_assign_rhs1 (def);
  tree mop2 = gimple_assign_rhs2 (def);
  tree optype = TREE_TYPE (mop1);
  bool unsignedp = TYPE_UNSIGNED (optype);
  unsigned int prec = TYPE_PRECISION (optype);

  if (unsignedp != TYPE_UNSIGNED (mtype)
      || TYPE_PRECISION (mtype) != 2 * prec)
    return false;

  unsigned HOST_WIDE_INT bits = tree_to_uhwi (sarg1);
  if (bits < prec || bits >= 2 * prec)
    return false;

  /* For the time being, require operands to have the same sign.  */
  if (unsignedp != TYPE_UNSIGNED (TREE_TYPE (mop2)))
    return false;

  machine_mode mode = TYPE_MODE (optype);
  optab tab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
  if (optab_handler (tab, mode) == CODE_FOR_nothing)
    return false;

  location_t loc = gimple_location (stmt);
  tree highpart1 = build_and_insert_binop (gsi, loc, "highparttmp",
					   MULT_HIGHPART_EXPR, mop1, mop2);
  tree highpart2 = highpart1;
  tree ntype = optype;

  if (TYPE_UNSIGNED (stype) != TYPE_UNSIGNED (optype))
    {
      ntype = TYPE_UNSIGNED (stype) ? unsigned_type_for (optype)
				    : signed_type_for (optype);
      highpart2 = build_and_insert_cast (gsi, loc, ntype, highpart1);
    }
  if (bits > prec)
    highpart2 = build_and_insert_binop (gsi, loc, "highparttmp",
					RSHIFT_EXPR, highpart2, 
					build_int_cst (ntype, bits - prec));

  gassign *new_stmt = gimple_build_assign (lhs, NOP_EXPR, highpart2);
  gsi_replace (gsi, new_stmt, true);

  widen_mul_stats.highpart_mults_inserted++;
  return true;
}

/* If target has spaceship<MODE>3 expander, pattern recognize
   <bb 2> [local count: 1073741824]:
   if (a_2(D) == b_3(D))
     goto <bb 6>; [34.00%]
   else
     goto <bb 3>; [66.00%]

   <bb 3> [local count: 708669601]:
   if (a_2(D) < b_3(D))
     goto <bb 6>; [1.04%]
   else
     goto <bb 4>; [98.96%]

   <bb 4> [local count: 701299439]:
   if (a_2(D) > b_3(D))
     goto <bb 5>; [48.89%]
   else
     goto <bb 6>; [51.11%]

   <bb 5> [local count: 342865295]:

   <bb 6> [local count: 1073741824]:
   and turn it into:
   <bb 2> [local count: 1073741824]:
   _1 = .SPACESHIP (a_2(D), b_3(D));
   if (_1 == 0)
     goto <bb 6>; [34.00%]
   else
     goto <bb 3>; [66.00%]

   <bb 3> [local count: 708669601]:
   if (_1 == -1)
     goto <bb 6>; [1.04%]
   else
     goto <bb 4>; [98.96%]

   <bb 4> [local count: 701299439]:
   if (_1 == 1)
     goto <bb 5>; [48.89%]
   else
     goto <bb 6>; [51.11%]

   <bb 5> [local count: 342865295]:

   <bb 6> [local count: 1073741824]:
   so that the backend can emit optimal comparison and
   conditional jump sequence.  */

static void
optimize_spaceship (gimple *stmt)
{
  enum tree_code code = gimple_cond_code (stmt);
  if (code != EQ_EXPR && code != NE_EXPR)
    return;
  tree arg1 = gimple_cond_lhs (stmt);
  tree arg2 = gimple_cond_rhs (stmt);
  if (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg1))
      || optab_handler (spaceship_optab,
			TYPE_MODE (TREE_TYPE (arg1))) == CODE_FOR_nothing
      || operand_equal_p (arg1, arg2, 0))
    return;

  basic_block bb0 = gimple_bb (stmt), bb1, bb2 = NULL;
  edge em1 = NULL, e1 = NULL, e2 = NULL;
  bb1 = EDGE_SUCC (bb0, 1)->dest;
  if (((EDGE_SUCC (bb0, 0)->flags & EDGE_TRUE_VALUE) != 0) ^ (code == EQ_EXPR))
    bb1 = EDGE_SUCC (bb0, 0)->dest;

  gimple *g = last_stmt (bb1);
  if (g == NULL
      || gimple_code (g) != GIMPLE_COND
      || !single_pred_p (bb1)
      || (operand_equal_p (gimple_cond_lhs (g), arg1, 0)
	  ? !operand_equal_p (gimple_cond_rhs (g), arg2, 0)
	  : (!operand_equal_p (gimple_cond_lhs (g), arg2, 0)
	     || !operand_equal_p (gimple_cond_rhs (g), arg1, 0)))
      || !cond_only_block_p (bb1))
    return;

  enum tree_code ccode = (operand_equal_p (gimple_cond_lhs (g), arg1, 0)
			  ? LT_EXPR : GT_EXPR);
  switch (gimple_cond_code (g))
    {
    case LT_EXPR:
    case LE_EXPR:
      break;
    case GT_EXPR:
    case GE_EXPR:
      ccode = ccode == LT_EXPR ? GT_EXPR : LT_EXPR;
      break;
    default:
      return;
    }

  for (int i = 0; i < 2; ++i)
    {
      /* With NaNs, </<=/>/>= are false, so we need to look for the
	 third comparison on the false edge from whatever non-equality
	 comparison the second comparison is.  */
      if (HONOR_NANS (TREE_TYPE (arg1))
	  && (EDGE_SUCC (bb1, i)->flags & EDGE_TRUE_VALUE) != 0)
	continue;

      bb2 = EDGE_SUCC (bb1, i)->dest;
      g = last_stmt (bb2);
      if (g == NULL
	  || gimple_code (g) != GIMPLE_COND
	  || !single_pred_p (bb2)
	  || (operand_equal_p (gimple_cond_lhs (g), arg1, 0)
	      ? !operand_equal_p (gimple_cond_rhs (g), arg2, 0)
	      : (!operand_equal_p (gimple_cond_lhs (g), arg2, 0)
		 || !operand_equal_p (gimple_cond_rhs (g), arg1, 0)))
	  || !cond_only_block_p (bb2)
	  || EDGE_SUCC (bb2, 0)->dest == EDGE_SUCC (bb2, 1)->dest)
	continue;

      enum tree_code ccode2
	= (operand_equal_p (gimple_cond_lhs (g), arg1, 0) ? LT_EXPR : GT_EXPR);
      switch (gimple_cond_code (g))
	{
	case LT_EXPR:
	case LE_EXPR:
	  break;
	case GT_EXPR:
	case GE_EXPR:
	  ccode2 = ccode2 == LT_EXPR ? GT_EXPR : LT_EXPR;
	  break;
	default:
	  continue;
	}
      if (HONOR_NANS (TREE_TYPE (arg1)) && ccode == ccode2)
	continue;

      if ((ccode == LT_EXPR)
	  ^ ((EDGE_SUCC (bb1, i)->flags & EDGE_TRUE_VALUE) != 0))
	{
	  em1 = EDGE_SUCC (bb1, 1 - i);
	  e1 = EDGE_SUCC (bb2, 0);
	  e2 = EDGE_SUCC (bb2, 1);
	  if ((ccode2 == LT_EXPR) ^ ((e1->flags & EDGE_TRUE_VALUE) == 0))
	    std::swap (e1, e2);
	}
      else
	{
	  e1 = EDGE_SUCC (bb1, 1 - i);
	  em1 = EDGE_SUCC (bb2, 0);
	  e2 = EDGE_SUCC (bb2, 1);
	  if ((ccode2 != LT_EXPR) ^ ((em1->flags & EDGE_TRUE_VALUE) == 0))
	    std::swap (em1, e2);
	}
      break;
    }

  if (em1 == NULL)
    {
      if ((ccode == LT_EXPR)
	  ^ ((EDGE_SUCC (bb1, 0)->flags & EDGE_TRUE_VALUE) != 0))
	{
	  em1 = EDGE_SUCC (bb1, 1);
	  e1 = EDGE_SUCC (bb1, 0);
	  e2 = (e1->flags & EDGE_TRUE_VALUE) ? em1 : e1;
	}
      else
	{
	  em1 = EDGE_SUCC (bb1, 0);
	  e1 = EDGE_SUCC (bb1, 1);
	  e2 = (e1->flags & EDGE_TRUE_VALUE) ? em1 : e1;
	}
    }

  g = gimple_build_call_internal (IFN_SPACESHIP, 2, arg1, arg2);
  tree lhs = make_ssa_name (integer_type_node);
  gimple_call_set_lhs (g, lhs);
  gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
  gsi_insert_before (&gsi, g, GSI_SAME_STMT);

  gcond *cond = as_a <gcond *> (stmt);
  gimple_cond_set_lhs (cond, lhs);
  gimple_cond_set_rhs (cond, integer_zero_node);
  update_stmt (stmt);

  g = last_stmt (bb1);
  cond = as_a <gcond *> (g);
  gimple_cond_set_lhs (cond, lhs);
  if (em1->src == bb1 && e2 != em1)
    {
      gimple_cond_set_rhs (cond, integer_minus_one_node);
      gimple_cond_set_code (cond, (em1->flags & EDGE_TRUE_VALUE)
				  ? EQ_EXPR : NE_EXPR);
    }
  else
    {
      gcc_assert (e1->src == bb1 && e2 != e1);
      gimple_cond_set_rhs (cond, integer_one_node);
      gimple_cond_set_code (cond, (e1->flags & EDGE_TRUE_VALUE)
				  ? EQ_EXPR : NE_EXPR);
    }
  update_stmt (g);

  if (e2 != e1 && e2 != em1)
    {
      g = last_stmt (bb2);
      cond = as_a <gcond *> (g);
      gimple_cond_set_lhs (cond, lhs);
      if (em1->src == bb2)
	gimple_cond_set_rhs (cond, integer_minus_one_node);
      else
	{
	  gcc_assert (e1->src == bb2);
	  gimple_cond_set_rhs (cond, integer_one_node);
	}
      gimple_cond_set_code (cond,
			    (e2->flags & EDGE_TRUE_VALUE) ? NE_EXPR : EQ_EXPR);
      update_stmt (g);
    }

  wide_int wm1 = wi::minus_one (TYPE_PRECISION (integer_type_node));
  wide_int w2 = wi::two (TYPE_PRECISION (integer_type_node));
  set_range_info (lhs, VR_RANGE, wm1, w2);
}


/* Find integer multiplications where the operands are extended from
   smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
   or MULT_HIGHPART_EXPR where appropriate.  */

namespace {

const pass_data pass_data_optimize_widening_mul =
{
  GIMPLE_PASS, /* type */
  "widening_mul", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_WIDEN_MUL, /* tv_id */
  PROP_ssa, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_update_ssa, /* todo_flags_finish */
};

class pass_optimize_widening_mul : public gimple_opt_pass
{
public:
  pass_optimize_widening_mul (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *)
    {
      return flag_expensive_optimizations && optimize;
    }

  virtual unsigned int execute (function *);

}; // class pass_optimize_widening_mul

/* Walker class to perform the transformation in reverse dominance order. */

class math_opts_dom_walker : public dom_walker
{
public:
  /* Constructor, CFG_CHANGED is a pointer to a boolean flag that will be set
     if walking modidifes the CFG.  */

  math_opts_dom_walker (bool *cfg_changed_p)
    : dom_walker (CDI_DOMINATORS), m_last_result_set (),
      m_cfg_changed_p (cfg_changed_p) {}

  /* The actual actions performed in the walk.  */

  virtual void after_dom_children (basic_block);

  /* Set of results of chains of multiply and add statement combinations that
     were not transformed into FMAs because of active deferring.  */
  hash_set<tree> m_last_result_set;

  /* Pointer to a flag of the user that needs to be set if CFG has been
     modified.  */
  bool *m_cfg_changed_p;
};

void
math_opts_dom_walker::after_dom_children (basic_block bb)
{
  gimple_stmt_iterator gsi;

  fma_deferring_state fma_state (param_avoid_fma_max_bits > 0);

  for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
    {
      gimple *stmt = gsi_stmt (gsi);
      enum tree_code code;

      if (is_gimple_assign (stmt))
	{
	  code = gimple_assign_rhs_code (stmt);
	  switch (code)
	    {
	    case MULT_EXPR:
	      if (!convert_mult_to_widen (stmt, &gsi)
		  && !convert_expand_mult_copysign (stmt, &gsi)
		  && convert_mult_to_fma (stmt,
					  gimple_assign_rhs1 (stmt),
					  gimple_assign_rhs2 (stmt),
					  &fma_state))
		{
		  gsi_remove (&gsi, true);
		  release_defs (stmt);
		  continue;
		}
	      match_arith_overflow (&gsi, stmt, code, m_cfg_changed_p);
	      break;

	    case PLUS_EXPR:
	    case MINUS_EXPR:
	      if (!convert_plusminus_to_widen (&gsi, stmt, code))
		match_arith_overflow (&gsi, stmt, code, m_cfg_changed_p);
	      break;

	    case BIT_NOT_EXPR:
	      if (match_arith_overflow (&gsi, stmt, code, m_cfg_changed_p))
		continue;
	      break;

	    case TRUNC_MOD_EXPR:
	      convert_to_divmod (as_a<gassign *> (stmt));
	      break;

	    case RSHIFT_EXPR:
	      convert_mult_to_highpart (as_a<gassign *> (stmt), &gsi);
	      break;

	    default:;
	    }
	}
      else if (is_gimple_call (stmt))
	{
	  switch (gimple_call_combined_fn (stmt))
	    {
	    CASE_CFN_POW:
	      if (gimple_call_lhs (stmt)
		  && TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
		  && real_equal (&TREE_REAL_CST (gimple_call_arg (stmt, 1)),
				 &dconst2)
		  && convert_mult_to_fma (stmt,
					  gimple_call_arg (stmt, 0),
					  gimple_call_arg (stmt, 0),
					  &fma_state))
		{
		  unlink_stmt_vdef (stmt);
		  if (gsi_remove (&gsi, true)
		      && gimple_purge_dead_eh_edges (bb))
		    *m_cfg_changed_p = true;
		  release_defs (stmt);
		  continue;
		}
	      break;

	    case CFN_COND_MUL:
	      if (convert_mult_to_fma (stmt,
				       gimple_call_arg (stmt, 1),
				       gimple_call_arg (stmt, 2),
				       &fma_state,
				       gimple_call_arg (stmt, 0)))

		{
		  gsi_remove (&gsi, true);
		  release_defs (stmt);
		  continue;
		}
	      break;

	    case CFN_LAST:
	      cancel_fma_deferring (&fma_state);
	      break;

	    default:
	      break;
	    }
	}
      else if (gimple_code (stmt) == GIMPLE_COND)
	optimize_spaceship (stmt);
      gsi_next (&gsi);
    }
  if (fma_state.m_deferring_p
      && fma_state.m_initial_phi)
    {
      gcc_checking_assert (fma_state.m_last_result);
      if (!last_fma_candidate_feeds_initial_phi (&fma_state,
						 &m_last_result_set))
	cancel_fma_deferring (&fma_state);
      else
	m_last_result_set.add (fma_state.m_last_result);
    }
}


unsigned int
pass_optimize_widening_mul::execute (function *fun)
{
  bool cfg_changed = false;

  memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
  calculate_dominance_info (CDI_DOMINATORS);
  renumber_gimple_stmt_uids (cfun);

  math_opts_dom_walker (&cfg_changed).walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));

  statistics_counter_event (fun, "widening multiplications inserted",
			    widen_mul_stats.widen_mults_inserted);
  statistics_counter_event (fun, "widening maccs inserted",
			    widen_mul_stats.maccs_inserted);
  statistics_counter_event (fun, "fused multiply-adds inserted",
			    widen_mul_stats.fmas_inserted);
  statistics_counter_event (fun, "divmod calls inserted",
			    widen_mul_stats.divmod_calls_inserted);
  statistics_counter_event (fun, "highpart multiplications inserted",
			    widen_mul_stats.highpart_mults_inserted);

  return cfg_changed ? TODO_cleanup_cfg : 0;
}

} // anon namespace

gimple_opt_pass *
make_pass_optimize_widening_mul (gcc::context *ctxt)
{
  return new pass_optimize_widening_mul (ctxt);
}