summaryrefslogtreecommitdiff
path: root/gcc/config/loongarch/loongarch.cc
blob: 6e24111a79d390174d4b5756576e6b482ec1bb86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
/* Subroutines used for LoongArch code generation.
   Copyright (C) 2021-2022 Free Software Foundation, Inc.
   Contributed by Loongson Ltd.
   Based on MIPS and RISC-V target for GNU compiler.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#define IN_TARGET_CODE 1

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "memmodel.h"
#include "gimple.h"
#include "cfghooks.h"
#include "df.h"
#include "tm_p.h"
#include "stringpool.h"
#include "attribs.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "insn-attr.h"
#include "output.h"
#include "alias.h"
#include "fold-const.h"
#include "varasm.h"
#include "stor-layout.h"
#include "calls.h"
#include "explow.h"
#include "expr.h"
#include "libfuncs.h"
#include "reload.h"
#include "common/common-target.h"
#include "langhooks.h"
#include "cfgrtl.h"
#include "cfganal.h"
#include "sched-int.h"
#include "gimplify.h"
#include "target-globals.h"
#include "tree-pass.h"
#include "context.h"
#include "builtins.h"
#include "rtl-iter.h"

/* This file should be included last.  */
#include "target-def.h"

/* True if X is an UNSPEC wrapper around a SYMBOL_REF or LABEL_REF.  */
#define UNSPEC_ADDRESS_P(X)					\
  (GET_CODE (X) == UNSPEC					\
   && XINT (X, 1) >= UNSPEC_ADDRESS_FIRST			\
   && XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES)

/* Extract the symbol or label from UNSPEC wrapper X.  */
#define UNSPEC_ADDRESS(X) XVECEXP (X, 0, 0)

/* Extract the symbol type from UNSPEC wrapper X.  */
#define UNSPEC_ADDRESS_TYPE(X) \
  ((enum loongarch_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST))

/* True if INSN is a loongarch.md pattern or asm statement.  */
/* ???	This test exists through the compiler, perhaps it should be
   moved to rtl.h.  */
#define USEFUL_INSN_P(INSN)						\
  (NONDEBUG_INSN_P (INSN)						\
   && GET_CODE (PATTERN (INSN)) != USE					\
   && GET_CODE (PATTERN (INSN)) != CLOBBER)

/* True if bit BIT is set in VALUE.  */
#define BITSET_P(VALUE, BIT) (((VALUE) & (1 << (BIT))) != 0)

/* Classifies an address.

   ADDRESS_REG
       A natural register + offset address.  The register satisfies
       loongarch_valid_base_register_p and the offset is a const_arith_operand.

   ADDRESS_REG_REG
       A base register indexed by (optionally scaled) register.

   ADDRESS_CONST_INT
       A signed 16-bit constant address.

   ADDRESS_SYMBOLIC:
       A constant symbolic address.  */
enum loongarch_address_type
{
  ADDRESS_REG,
  ADDRESS_REG_REG,
  ADDRESS_CONST_INT,
  ADDRESS_SYMBOLIC
};


/* Information about an address described by loongarch_address_type.

   ADDRESS_CONST_INT
       No fields are used.

   ADDRESS_REG
       REG is the base register and OFFSET is the constant offset.

   ADDRESS_REG_REG
       A base register indexed by (optionally scaled) register.

   ADDRESS_SYMBOLIC
       SYMBOL_TYPE is the type of symbol that the address references.  */
struct loongarch_address_info
{
  enum loongarch_address_type type;
  rtx reg;
  rtx offset;
  enum loongarch_symbol_type symbol_type;
};

/* Method of loading instant numbers:

   METHOD_NORMAL:
     Load 0-31 bit of the immediate number.

   METHOD_LU32I:
     Load 32-51 bit of the immediate number.

   METHOD_LU52I:
     Load 52-63 bit of the immediate number.

   METHOD_INSV:
     immediate like 0xfff00000fffffxxx
   */
enum loongarch_load_imm_method
{
  METHOD_NORMAL,
  METHOD_LU32I,
  METHOD_LU52I,
  METHOD_INSV
};

struct loongarch_integer_op
{
  enum rtx_code code;
  unsigned HOST_WIDE_INT value;
  enum loongarch_load_imm_method method;
};

/* The largest number of operations needed to load an integer constant.
   The worst accepted case for 64-bit constants is LU12I.W,LU32I.D,LU52I.D,ORI
   or LU12I.W,LU32I.D,LU52I.D,ADDI.D DECL_ASSEMBLER_NAME.  */
#define LARCH_MAX_INTEGER_OPS 4

/* Arrays that map GCC register numbers to debugger register numbers.  */
int loongarch_dwarf_regno[FIRST_PSEUDO_REGISTER];

/* Index [M][R] is true if register R is allowed to hold a value of mode M.  */
static bool loongarch_hard_regno_mode_ok_p[MAX_MACHINE_MODE]
					  [FIRST_PSEUDO_REGISTER];

/* Index C is true if character C is a valid PRINT_OPERAND punctation
   character.  */
static bool loongarch_print_operand_punct[256];

/* Cached value of can_issue_more.  This is cached in loongarch_variable_issue
   hook and returned from loongarch_sched_reorder2.  */
static int cached_can_issue_more;

/* Index R is the smallest register class that contains register R.  */
const enum reg_class loongarch_regno_to_class[FIRST_PSEUDO_REGISTER] = {
    GR_REGS,	     GR_REGS,	      GR_REGS,	       GR_REGS,
    JIRL_REGS,       JIRL_REGS,       JIRL_REGS,       JIRL_REGS,
    JIRL_REGS,       JIRL_REGS,       JIRL_REGS,       JIRL_REGS,
    SIBCALL_REGS,    SIBCALL_REGS,    SIBCALL_REGS,    SIBCALL_REGS,
    SIBCALL_REGS,    SIBCALL_REGS,    SIBCALL_REGS,    SIBCALL_REGS,
    SIBCALL_REGS,    GR_REGS,	      GR_REGS,	       JIRL_REGS,
    JIRL_REGS,       JIRL_REGS,       JIRL_REGS,       JIRL_REGS,
    JIRL_REGS,       JIRL_REGS,       JIRL_REGS,       JIRL_REGS,

    FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
    FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
    FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
    FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
    FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
    FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
    FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
    FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
    FCC_REGS,	FCC_REGS,	FCC_REGS,	FCC_REGS,
    FCC_REGS,	FCC_REGS,	FCC_REGS,	FCC_REGS,
    FRAME_REGS,	FRAME_REGS
};

/* Which cost information to use.  */
static const struct loongarch_rtx_cost_data *loongarch_cost;

/* Information about a single argument.  */
struct loongarch_arg_info
{
  /* True if the argument is at least partially passed on the stack.  */
  bool stack_p;

  /* The number of integer registers allocated to this argument.  */
  unsigned int num_gprs;

  /* The offset of the first register used, provided num_gprs is nonzero.
     If passed entirely on the stack, the value is MAX_ARGS_IN_REGISTERS.  */
  unsigned int gpr_offset;

  /* The number of floating-point registers allocated to this argument.  */
  unsigned int num_fprs;

  /* The offset of the first register used, provided num_fprs is nonzero.  */
  unsigned int fpr_offset;
};

/* Invoke MACRO (COND) for each fcmp.cond.{s/d} condition.  */
#define LARCH_FP_CONDITIONS(MACRO) \
  MACRO (f),	\
  MACRO (un),	\
  MACRO (eq),	\
  MACRO (ueq),	\
  MACRO (olt),	\
  MACRO (ult),	\
  MACRO (ole),	\
  MACRO (ule),	\
  MACRO (sf),	\
  MACRO (ngle),	\
  MACRO (seq),	\
  MACRO (ngl),	\
  MACRO (lt),	\
  MACRO (nge),	\
  MACRO (le),	\
  MACRO (ngt)

/* Enumerates the codes above as LARCH_FP_COND_<X>.  */
#define DECLARE_LARCH_COND(X) LARCH_FP_COND_##X
enum loongarch_fp_condition
{
  LARCH_FP_CONDITIONS (DECLARE_LARCH_COND)
};
#undef DECLARE_LARCH_COND

/* Index X provides the string representation of LARCH_FP_COND_<X>.  */
#define STRINGIFY(X) #X
const char *const
loongarch_fp_conditions[16]= {LARCH_FP_CONDITIONS (STRINGIFY)};
#undef STRINGIFY

/* Implement TARGET_FUNCTION_ARG_BOUNDARY.  Every parameter gets at
   least PARM_BOUNDARY bits of alignment, but will be given anything up
   to PREFERRED_STACK_BOUNDARY bits if the type requires it.  */

static unsigned int
loongarch_function_arg_boundary (machine_mode mode, const_tree type)
{
  unsigned int alignment;

  /* Use natural alignment if the type is not aggregate data.  */
  if (type && !AGGREGATE_TYPE_P (type))
    alignment = TYPE_ALIGN (TYPE_MAIN_VARIANT (type));
  else
    alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);

  return MIN (PREFERRED_STACK_BOUNDARY, MAX (PARM_BOUNDARY, alignment));
}

/* If MODE represents an argument that can be passed or returned in
   floating-point registers, return the number of registers, else 0.  */

static unsigned
loongarch_pass_mode_in_fpr_p (machine_mode mode)
{
  if (GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FP_ARG)
    {
      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	return 1;

      if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
	return 2;
    }

  return 0;
}

typedef struct
{
  const_tree type;
  HOST_WIDE_INT offset;
} loongarch_aggregate_field;

/* Identify subfields of aggregates that are candidates for passing in
   floating-point registers.  */

static int
loongarch_flatten_aggregate_field (const_tree type,
				   loongarch_aggregate_field fields[2], int n,
				   HOST_WIDE_INT offset)
{
  switch (TREE_CODE (type))
    {
    case RECORD_TYPE:
      /* Can't handle incomplete types nor sizes that are not fixed.  */
      if (!COMPLETE_TYPE_P (type)
	  || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
	  || !tree_fits_uhwi_p (TYPE_SIZE (type)))
	return -1;

      for (tree f = TYPE_FIELDS (type); f; f = DECL_CHAIN (f))
	if (TREE_CODE (f) == FIELD_DECL)
	  {
	    if (!TYPE_P (TREE_TYPE (f)))
	      return -1;

	    HOST_WIDE_INT pos = offset + int_byte_position (f);
	    n = loongarch_flatten_aggregate_field (TREE_TYPE (f), fields, n,
						   pos);
	    if (n < 0)
	      return -1;
	  }
      return n;

    case ARRAY_TYPE:
      {
	HOST_WIDE_INT n_elts;
	loongarch_aggregate_field subfields[2];
	tree index = TYPE_DOMAIN (type);
	tree elt_size = TYPE_SIZE_UNIT (TREE_TYPE (type));
	int n_subfields = loongarch_flatten_aggregate_field (TREE_TYPE (type),
							     subfields, 0,
							     offset);

	/* Can't handle incomplete types nor sizes that are not fixed.  */
	if (n_subfields <= 0
	    || !COMPLETE_TYPE_P (type)
	    || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
	    || !index
	    || !TYPE_MAX_VALUE (index)
	    || !tree_fits_uhwi_p (TYPE_MAX_VALUE (index))
	    || !TYPE_MIN_VALUE (index)
	    || !tree_fits_uhwi_p (TYPE_MIN_VALUE (index))
	    || !tree_fits_uhwi_p (elt_size))
	  return -1;

	n_elts = 1 + tree_to_uhwi (TYPE_MAX_VALUE (index))
		 - tree_to_uhwi (TYPE_MIN_VALUE (index));
	gcc_assert (n_elts >= 0);

	for (HOST_WIDE_INT i = 0; i < n_elts; i++)
	  for (int j = 0; j < n_subfields; j++)
	    {
	      if (n >= 2)
		return -1;

	      fields[n] = subfields[j];
	      fields[n++].offset += i * tree_to_uhwi (elt_size);
	    }

	return n;
      }

    case COMPLEX_TYPE:
      {
	/* Complex type need consume 2 field, so n must be 0.  */
	if (n != 0)
	  return -1;

	HOST_WIDE_INT elt_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)));

	if (elt_size <= UNITS_PER_FP_ARG)
	  {
	    fields[0].type = TREE_TYPE (type);
	    fields[0].offset = offset;
	    fields[1].type = TREE_TYPE (type);
	    fields[1].offset = offset + elt_size;

	    return 2;
	  }

	return -1;
      }

    default:
      if (n < 2
	  && ((SCALAR_FLOAT_TYPE_P (type)
	       && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_FP_ARG)
	      || (INTEGRAL_TYPE_P (type)
		  && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_WORD)))
	{
	  fields[n].type = type;
	  fields[n].offset = offset;
	  return n + 1;
	}
      else
	return -1;
    }
}

/* Identify candidate aggregates for passing in floating-point registers.
   Candidates have at most two fields after flattening.  */

static int
loongarch_flatten_aggregate_argument (const_tree type,
				      loongarch_aggregate_field fields[2])
{
  if (!type || TREE_CODE (type) != RECORD_TYPE)
    return -1;

  return loongarch_flatten_aggregate_field (type, fields, 0, 0);
}

/* See whether TYPE is a record whose fields should be returned in one or
   two floating-point registers.  If so, populate FIELDS accordingly.  */

static unsigned
loongarch_pass_aggregate_num_fpr (const_tree type,
					loongarch_aggregate_field fields[2])
{
  int n = loongarch_flatten_aggregate_argument (type, fields);

  for (int i = 0; i < n; i++)
    if (!SCALAR_FLOAT_TYPE_P (fields[i].type))
      return 0;

  return n > 0 ? n : 0;
}

/* See whether TYPE is a record whose fields should be returned in one
   floating-point register and one integer register.  If so, populate
   FIELDS accordingly.  */

static bool
loongarch_pass_aggregate_in_fpr_and_gpr_p (const_tree type,
					   loongarch_aggregate_field fields[2])
{
  unsigned num_int = 0, num_float = 0;
  int n = loongarch_flatten_aggregate_argument (type, fields);

  for (int i = 0; i < n; i++)
    {
      num_float += SCALAR_FLOAT_TYPE_P (fields[i].type);
      num_int += INTEGRAL_TYPE_P (fields[i].type);
    }

  return num_int == 1 && num_float == 1;
}

/* Return the representation of an argument passed or returned in an FPR
   when the value has mode VALUE_MODE and the type has TYPE_MODE.  The
   two modes may be different for structures like:

   struct __attribute__((packed)) foo { float f; }

   where the SFmode value "f" is passed in REGNO but the struct itself
   has mode BLKmode.  */

static rtx
loongarch_pass_fpr_single (machine_mode type_mode, unsigned regno,
			   machine_mode value_mode)
{
  rtx x = gen_rtx_REG (value_mode, regno);

  if (type_mode != value_mode)
    {
      x = gen_rtx_EXPR_LIST (VOIDmode, x, const0_rtx);
      x = gen_rtx_PARALLEL (type_mode, gen_rtvec (1, x));
    }
  return x;
}

/* Pass or return a composite value in the FPR pair REGNO and REGNO + 1.
   MODE is the mode of the composite.  MODE1 and OFFSET1 are the mode and
   byte offset for the first value, likewise MODE2 and OFFSET2 for the
   second value.  */

static rtx
loongarch_pass_fpr_pair (machine_mode mode, unsigned regno1,
			 machine_mode mode1, HOST_WIDE_INT offset1,
			 unsigned regno2, machine_mode mode2,
			 HOST_WIDE_INT offset2)
{
  return gen_rtx_PARALLEL (
    mode, gen_rtvec (2,
		     gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode1, regno1),
					GEN_INT (offset1)),
		     gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode2, regno2),
					GEN_INT (offset2))));
}

/* Fill INFO with information about a single argument, and return an
   RTL pattern to pass or return the argument.  CUM is the cumulative
   state for earlier arguments.  MODE is the mode of this argument and
   TYPE is its type (if known).  NAMED is true if this is a named
   (fixed) argument rather than a variable one.  RETURN_P is true if
   returning the argument, or false if passing the argument.  */

static rtx
loongarch_get_arg_info (struct loongarch_arg_info *info,
			const CUMULATIVE_ARGS *cum, machine_mode mode,
			const_tree type, bool named, bool return_p)
{
  unsigned num_bytes, num_words;
  unsigned fpr_base = return_p ? FP_RETURN : FP_ARG_FIRST;
  unsigned gpr_base = return_p ? GP_RETURN : GP_ARG_FIRST;
  unsigned alignment = loongarch_function_arg_boundary (mode, type);

  memset (info, 0, sizeof (*info));
  info->gpr_offset = cum->num_gprs;
  info->fpr_offset = cum->num_fprs;

  if (named)
    {
      loongarch_aggregate_field fields[2];
      unsigned fregno = fpr_base + info->fpr_offset;
      unsigned gregno = gpr_base + info->gpr_offset;

      /* Pass one- or two-element floating-point aggregates in FPRs.  */
      if ((info->num_fprs
	   = loongarch_pass_aggregate_num_fpr (type, fields))
	  && info->fpr_offset + info->num_fprs <= MAX_ARGS_IN_REGISTERS)
	switch (info->num_fprs)
	  {
	  case 1:
	    return loongarch_pass_fpr_single (mode, fregno,
					      TYPE_MODE (fields[0].type));

	  case 2:
	    return loongarch_pass_fpr_pair (mode, fregno,
					    TYPE_MODE (fields[0].type),
					    fields[0].offset,
					    fregno + 1,
					    TYPE_MODE (fields[1].type),
					    fields[1].offset);

	  default:
	    gcc_unreachable ();
	  }

      /* Pass real and complex floating-point numbers in FPRs.  */
      if ((info->num_fprs = loongarch_pass_mode_in_fpr_p (mode))
	  && info->fpr_offset + info->num_fprs <= MAX_ARGS_IN_REGISTERS)
	switch (GET_MODE_CLASS (mode))
	  {
	  case MODE_FLOAT:
	    return gen_rtx_REG (mode, fregno);

	  case MODE_COMPLEX_FLOAT:
	    return loongarch_pass_fpr_pair (mode, fregno,
					    GET_MODE_INNER (mode), 0,
					    fregno + 1, GET_MODE_INNER (mode),
					    GET_MODE_UNIT_SIZE (mode));

	  default:
	    gcc_unreachable ();
	  }

      /* Pass structs with one float and one integer in an FPR and a GPR.  */
      if (loongarch_pass_aggregate_in_fpr_and_gpr_p (type, fields)
	  && info->gpr_offset < MAX_ARGS_IN_REGISTERS
	  && info->fpr_offset < MAX_ARGS_IN_REGISTERS)
	{
	  info->num_gprs = 1;
	  info->num_fprs = 1;

	  if (!SCALAR_FLOAT_TYPE_P (fields[0].type))
	    std::swap (fregno, gregno);

	  return loongarch_pass_fpr_pair (mode, fregno,
					  TYPE_MODE (fields[0].type),
					  fields[0].offset, gregno,
					  TYPE_MODE (fields[1].type),
					  fields[1].offset);
	}
    }

  /* Work out the size of the argument.  */
  num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
  num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;

  /* Doubleword-aligned varargs start on an even register boundary.  */
  if (!named && num_bytes != 0 && alignment > BITS_PER_WORD)
    info->gpr_offset += info->gpr_offset & 1;

  /* Partition the argument between registers and stack.  */
  info->num_fprs = 0;
  info->num_gprs = MIN (num_words, MAX_ARGS_IN_REGISTERS - info->gpr_offset);
  info->stack_p = (num_words - info->num_gprs) != 0;

  if (info->num_gprs || return_p)
    return gen_rtx_REG (mode, gpr_base + info->gpr_offset);

  return NULL_RTX;
}

/* Implement TARGET_FUNCTION_ARG.  */

static rtx
loongarch_function_arg (cumulative_args_t cum_v, const function_arg_info &arg)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  struct loongarch_arg_info info;

  if (arg.end_marker_p ())
    return NULL;

  return loongarch_get_arg_info (&info, cum, arg.mode, arg.type, arg.named,
				 false);
}

/* Implement TARGET_FUNCTION_ARG_ADVANCE.  */

static void
loongarch_function_arg_advance (cumulative_args_t cum_v,
				const function_arg_info &arg)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  struct loongarch_arg_info info;

  loongarch_get_arg_info (&info, cum, arg.mode, arg.type, arg.named, false);

  /* Advance the register count.  This has the effect of setting
     num_gprs to MAX_ARGS_IN_REGISTERS if a doubleword-aligned
     argument required us to skip the final GPR and pass the whole
     argument on the stack.  */
  cum->num_fprs = info.fpr_offset + info.num_fprs;
  cum->num_gprs = info.gpr_offset + info.num_gprs;
}

/* Implement TARGET_ARG_PARTIAL_BYTES.  */

static int
loongarch_arg_partial_bytes (cumulative_args_t cum,
			     const function_arg_info &generic_arg)
{
  struct loongarch_arg_info arg;

  loongarch_get_arg_info (&arg, get_cumulative_args (cum), generic_arg.mode,
			  generic_arg.type, generic_arg.named, false);
  return arg.stack_p ? arg.num_gprs * UNITS_PER_WORD : 0;
}

/* Implement FUNCTION_VALUE and LIBCALL_VALUE.  For normal calls,
   VALTYPE is the return type and MODE is VOIDmode.  For libcalls,
   VALTYPE is null and MODE is the mode of the return value.  */

static rtx
loongarch_function_value_1 (const_tree type, const_tree func,
			    machine_mode mode)
{
  struct loongarch_arg_info info;
  CUMULATIVE_ARGS args;

  if (type)
    {
      int unsigned_p = TYPE_UNSIGNED (type);

      mode = TYPE_MODE (type);

      /* Since TARGET_PROMOTE_FUNCTION_MODE unconditionally promotes,
	 return values, promote the mode here too.  */
      mode = promote_function_mode (type, mode, &unsigned_p, func, 1);
    }

  memset (&args, 0, sizeof (args));
  return loongarch_get_arg_info (&info, &args, mode, type, true, true);
}


/* Implement TARGET_FUNCTION_VALUE.  */

static rtx
loongarch_function_value (const_tree valtype, const_tree fn_decl_or_type,
			  bool outgoing ATTRIBUTE_UNUSED)
{
  return loongarch_function_value_1 (valtype, fn_decl_or_type, VOIDmode);
}

/* Implement TARGET_LIBCALL_VALUE.  */

static rtx
loongarch_libcall_value (machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
{
  return loongarch_function_value_1 (NULL_TREE, NULL_TREE, mode);
}


/* Implement TARGET_PASS_BY_REFERENCE.  */

static bool
loongarch_pass_by_reference (cumulative_args_t cum_v,
			     const function_arg_info &arg)
{
  HOST_WIDE_INT size = arg.type_size_in_bytes ();
  struct loongarch_arg_info info;
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);

  /* ??? std_gimplify_va_arg_expr passes NULL for cum.  Fortunately, we
     never pass variadic arguments in floating-point registers, so we can
     avoid the call to loongarch_get_arg_info in this case.  */
  if (cum != NULL)
    {
      /* Don't pass by reference if we can use a floating-point register.  */
      loongarch_get_arg_info (&info, cum, arg.mode, arg.type, arg.named,
			      false);
      if (info.num_fprs)
	return false;
    }

  /* Pass by reference if the data do not fit in two integer registers.  */
  return !IN_RANGE (size, 0, 2 * UNITS_PER_WORD);
}

/* Implement TARGET_RETURN_IN_MEMORY.  */

static bool
loongarch_return_in_memory (const_tree type,
			    const_tree fndecl ATTRIBUTE_UNUSED)
{
  CUMULATIVE_ARGS args;
  cumulative_args_t cum = pack_cumulative_args (&args);

  /* The rules for returning in memory are the same as for passing the
     first named argument by reference.  */
  memset (&args, 0, sizeof (args));
  function_arg_info arg (const_cast<tree> (type), /*named=*/true);
  return loongarch_pass_by_reference (cum, arg);
}

/* Implement TARGET_SETUP_INCOMING_VARARGS.  */

static void
loongarch_setup_incoming_varargs (cumulative_args_t cum,
				  const function_arg_info &arg,
				  int *pretend_size ATTRIBUTE_UNUSED,
				  int no_rtl)
{
  CUMULATIVE_ARGS local_cum;
  int gp_saved;

  /* The caller has advanced CUM up to, but not beyond, the last named
     argument.  Advance a local copy of CUM past the last "real" named
     argument, to find out how many registers are left over.  */
  local_cum = *get_cumulative_args (cum);
  loongarch_function_arg_advance (pack_cumulative_args (&local_cum), arg);

  /* Found out how many registers we need to save.  */
  gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs;

  if (!no_rtl && gp_saved > 0)
    {
      rtx ptr = plus_constant (Pmode, virtual_incoming_args_rtx,
			       REG_PARM_STACK_SPACE (cfun->decl)
				 - gp_saved * UNITS_PER_WORD);
      rtx mem = gen_frame_mem (BLKmode, ptr);
      set_mem_alias_set (mem, get_varargs_alias_set ());

      move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST, mem, gp_saved);
    }
  if (REG_PARM_STACK_SPACE (cfun->decl) == 0)
    cfun->machine->varargs_size = gp_saved * UNITS_PER_WORD;
}

/* Make the last instruction frame-related and note that it performs
   the operation described by FRAME_PATTERN.  */

static void
loongarch_set_frame_expr (rtx frame_pattern)
{
  rtx insn;

  insn = get_last_insn ();
  RTX_FRAME_RELATED_P (insn) = 1;
  REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR, frame_pattern,
				      REG_NOTES (insn));
}

/* Return a frame-related rtx that stores REG at MEM.
   REG must be a single register.  */

static rtx
loongarch_frame_set (rtx mem, rtx reg)
{
  rtx set = gen_rtx_SET (mem, reg);
  RTX_FRAME_RELATED_P (set) = 1;
  return set;
}

/* Return true if the current function must save register REGNO.  */

static bool
loongarch_save_reg_p (unsigned int regno)
{
  bool call_saved = !global_regs[regno] && !call_used_regs[regno];
  bool might_clobber
    = crtl->saves_all_registers || df_regs_ever_live_p (regno);

  if (call_saved && might_clobber)
    return true;

  if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
    return true;

  if (regno == RETURN_ADDR_REGNUM && crtl->calls_eh_return)
    return true;

  return false;
}

/* Determine which GPR save/restore routine to call.  */

static unsigned
loongarch_save_libcall_count (unsigned mask)
{
  for (unsigned n = GP_REG_LAST; n > GP_REG_FIRST; n--)
    if (BITSET_P (mask, n))
      return CALLEE_SAVED_REG_NUMBER (n) + 1;
  abort ();
}

/* Populate the current function's loongarch_frame_info structure.

   LoongArch stack frames grown downward.  High addresses are at the top.

     +-------------------------------+
     |				     |
     |  incoming stack arguments     |
     |				     |
     +-------------------------------+ <-- incoming stack pointer
     |				     |
     |  callee-allocated save area   |
     |  for arguments that are       |
     |  split between registers and  |
     |  the stack		     |
     |				     |
     +-------------------------------+ <-- arg_pointer_rtx (virtual)
     |				     |
     |  callee-allocated save area   |
     |  for register varargs	     |
     |				     |
     +-------------------------------+ <-- hard_frame_pointer_rtx;
     |				     |     stack_pointer_rtx + gp_sp_offset
     |  GPR save area		     |       + UNITS_PER_WORD
     |				     |
     +-------------------------------+ <-- stack_pointer_rtx + fp_sp_offset
     |				     |       + UNITS_PER_HWVALUE
     |  FPR save area		     |
     |				     |
     +-------------------------------+ <-- frame_pointer_rtx (virtual)
     |				     |
     |  local variables		     |
     |				     |
   P +-------------------------------+
     |				     |
     |  outgoing stack arguments     |
     |				     |
     +-------------------------------+ <-- stack_pointer_rtx

   Dynamic stack allocations such as alloca insert data at point P.
   They decrease stack_pointer_rtx but leave frame_pointer_rtx and
   hard_frame_pointer_rtx unchanged.  */

static void
loongarch_compute_frame_info (void)
{
  struct loongarch_frame_info *frame;
  HOST_WIDE_INT offset;
  unsigned int regno, i, num_x_saved = 0, num_f_saved = 0;

  frame = &cfun->machine->frame;
  memset (frame, 0, sizeof (*frame));

  /* Find out which GPRs we need to save.  */
  for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
    if (loongarch_save_reg_p (regno))
      frame->mask |= 1 << (regno - GP_REG_FIRST), num_x_saved++;

  /* If this function calls eh_return, we must also save and restore the
     EH data registers.  */
  if (crtl->calls_eh_return)
    for (i = 0; (regno = EH_RETURN_DATA_REGNO (i)) != INVALID_REGNUM; i++)
      frame->mask |= 1 << (regno - GP_REG_FIRST), num_x_saved++;

  /* Find out which FPRs we need to save.  This loop must iterate over
     the same space as its companion in loongarch_for_each_saved_reg.  */
  if (TARGET_HARD_FLOAT)
    for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
      if (loongarch_save_reg_p (regno))
	frame->fmask |= 1 << (regno - FP_REG_FIRST), num_f_saved++;

  /* At the bottom of the frame are any outgoing stack arguments.  */
  offset = LARCH_STACK_ALIGN (crtl->outgoing_args_size);
  /* Next are local stack variables.  */
  offset += LARCH_STACK_ALIGN (get_frame_size ());
  /* The virtual frame pointer points above the local variables.  */
  frame->frame_pointer_offset = offset;
  /* Next are the callee-saved FPRs.  */
  if (frame->fmask)
    offset += LARCH_STACK_ALIGN (num_f_saved * UNITS_PER_FP_REG);
  frame->fp_sp_offset = offset - UNITS_PER_FP_REG;
  /* Next are the callee-saved GPRs.  */
  if (frame->mask)
    {
      unsigned x_save_size = LARCH_STACK_ALIGN (num_x_saved * UNITS_PER_WORD);
      unsigned num_save_restore
	= 1 + loongarch_save_libcall_count (frame->mask);

      /* Only use save/restore routines if they don't alter the stack size.  */
      if (LARCH_STACK_ALIGN (num_save_restore * UNITS_PER_WORD) == x_save_size)
	frame->save_libcall_adjustment = x_save_size;

      offset += x_save_size;
    }
  frame->gp_sp_offset = offset - UNITS_PER_WORD;
  /* The hard frame pointer points above the callee-saved GPRs.  */
  frame->hard_frame_pointer_offset = offset;
  /* Above the hard frame pointer is the callee-allocated varags save area.  */
  offset += LARCH_STACK_ALIGN (cfun->machine->varargs_size);
  /* Next is the callee-allocated area for pretend stack arguments.  */
  offset += LARCH_STACK_ALIGN (crtl->args.pretend_args_size);
  /* Arg pointer must be below pretend args, but must be above alignment
     padding.  */
  frame->arg_pointer_offset = offset - crtl->args.pretend_args_size;
  frame->total_size = offset;
  /* Next points the incoming stack pointer and any incoming arguments.  */

  /* Only use save/restore routines when the GPRs are atop the frame.  */
  if (frame->hard_frame_pointer_offset != frame->total_size)
    frame->save_libcall_adjustment = 0;
}

/* Implement INITIAL_ELIMINATION_OFFSET.  FROM is either the frame pointer
   or argument pointer.  TO is either the stack pointer or hard frame
   pointer.  */

HOST_WIDE_INT
loongarch_initial_elimination_offset (int from, int to)
{
  HOST_WIDE_INT src, dest;

  loongarch_compute_frame_info ();

  if (to == HARD_FRAME_POINTER_REGNUM)
    dest = cfun->machine->frame.hard_frame_pointer_offset;
  else if (to == STACK_POINTER_REGNUM)
    dest = 0; /* The stack pointer is the base of all offsets, hence 0.  */
  else
    gcc_unreachable ();

  if (from == FRAME_POINTER_REGNUM)
    src = cfun->machine->frame.frame_pointer_offset;
  else if (from == ARG_POINTER_REGNUM)
    src = cfun->machine->frame.arg_pointer_offset;
  else
    gcc_unreachable ();

  return src - dest;
}

/* A function to save or store a register.  The first argument is the
   register and the second is the stack slot.  */
typedef void (*loongarch_save_restore_fn) (rtx, rtx);

/* Use FN to save or restore register REGNO.  MODE is the register's
   mode and OFFSET is the offset of its save slot from the current
   stack pointer.  */

static void
loongarch_save_restore_reg (machine_mode mode, int regno, HOST_WIDE_INT offset,
			    loongarch_save_restore_fn fn)
{
  rtx mem;

  mem = gen_frame_mem (mode, plus_constant (Pmode, stack_pointer_rtx, offset));
  fn (gen_rtx_REG (mode, regno), mem);
}

/* Call FN for each register that is saved by the current function.
   SP_OFFSET is the offset of the current stack pointer from the start
   of the frame.  */

static void
loongarch_for_each_saved_reg (HOST_WIDE_INT sp_offset,
			      loongarch_save_restore_fn fn)
{
  HOST_WIDE_INT offset;

  /* Save the link register and s-registers.  */
  offset = cfun->machine->frame.gp_sp_offset - sp_offset;
  for (int regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
    if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
      {
	loongarch_save_restore_reg (word_mode, regno, offset, fn);
	offset -= UNITS_PER_WORD;
      }

  /* This loop must iterate over the same space as its companion in
     loongarch_compute_frame_info.  */
  offset = cfun->machine->frame.fp_sp_offset - sp_offset;
  for (int regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
    if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST))
      {
	machine_mode mode = TARGET_DOUBLE_FLOAT ? DFmode : SFmode;

	loongarch_save_restore_reg (mode, regno, offset, fn);
	offset -= GET_MODE_SIZE (mode);
      }
}

/* Emit a move from SRC to DEST.  Assume that the move expanders can
   handle all moves if !can_create_pseudo_p ().  The distinction is
   important because, unlike emit_move_insn, the move expanders know
   how to force Pmode objects into the constant pool even when the
   constant pool address is not itself legitimate.  */

rtx
loongarch_emit_move (rtx dest, rtx src)
{
  return (can_create_pseudo_p () ? emit_move_insn (dest, src)
				 : emit_move_insn_1 (dest, src));
}

/* Save register REG to MEM.  Make the instruction frame-related.  */

static void
loongarch_save_reg (rtx reg, rtx mem)
{
  loongarch_emit_move (mem, reg);
  loongarch_set_frame_expr (loongarch_frame_set (mem, reg));
}

/* Restore register REG from MEM.  */

static void
loongarch_restore_reg (rtx reg, rtx mem)
{
  rtx insn = loongarch_emit_move (reg, mem);
  rtx dwarf = NULL_RTX;
  dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
  REG_NOTES (insn) = dwarf;

  RTX_FRAME_RELATED_P (insn) = 1;
}

/* For stack frames that can't be allocated with a single ADDI instruction,
   compute the best value to initially allocate.  It must at a minimum
   allocate enough space to spill the callee-saved registers.  */

static HOST_WIDE_INT
loongarch_first_stack_step (struct loongarch_frame_info *frame)
{
  if (IMM12_OPERAND (frame->total_size))
    return frame->total_size;

  HOST_WIDE_INT min_first_step
    = LARCH_STACK_ALIGN (frame->total_size - frame->fp_sp_offset);
  HOST_WIDE_INT max_first_step = IMM_REACH / 2 - PREFERRED_STACK_BOUNDARY / 8;
  HOST_WIDE_INT min_second_step = frame->total_size - max_first_step;
  gcc_assert (min_first_step <= max_first_step);

  /* As an optimization, use the least-significant bits of the total frame
     size, so that the second adjustment step is just LU12I + ADD.  */
  if (!IMM12_OPERAND (min_second_step)
      && frame->total_size % IMM_REACH < IMM_REACH / 2
      && frame->total_size % IMM_REACH >= min_first_step)
    return frame->total_size % IMM_REACH;

  return max_first_step;
}

static void
loongarch_emit_stack_tie (void)
{
  emit_insn (gen_stack_tie (Pmode, stack_pointer_rtx, hard_frame_pointer_rtx));
}

#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)

#if PROBE_INTERVAL > 16384
#error Cannot use indexed addressing mode for stack probing
#endif

/* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE,
   inclusive.  These are offsets from the current stack pointer.  */

static void
loongarch_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size)
{
  /* See if we have a constant small number of probes to generate.  If so,
     that's the easy case.  */
  if ((TARGET_64BIT && (first + size <= 32768))
      || (!TARGET_64BIT && (first + size <= 2048)))
    {
      HOST_WIDE_INT i;

      /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
	 it exceeds SIZE.  If only one probe is needed, this will not
	 generate any code.  Then probe at FIRST + SIZE.  */
      for (i = PROBE_INTERVAL; i < size; i += PROBE_INTERVAL)
	emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
					 -(first + i)));

      emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
				       -(first + size)));
    }

  /* Otherwise, do the same as above, but in a loop.  Note that we must be
     extra careful with variables wrapping around because we might be at
     the very top (or the very bottom) of the address space and we have
     to be able to handle this case properly; in particular, we use an
     equality test for the loop condition.  */
  else
    {
      HOST_WIDE_INT rounded_size;
      rtx r13 = LARCH_PROLOGUE_TEMP (Pmode);
      rtx r12 = LARCH_PROLOGUE_TEMP2 (Pmode);
      rtx r14 = LARCH_PROLOGUE_TEMP3 (Pmode);

      /* Sanity check for the addressing mode we're going to use.  */
      gcc_assert (first <= 16384);


      /* Step 1: round SIZE to the previous multiple of the interval.  */

      rounded_size = ROUND_DOWN (size, PROBE_INTERVAL);

      /* TEST_ADDR = SP + FIRST */
      if (first != 0)
	{
	  emit_move_insn (r14, GEN_INT (first));
	  emit_insn (gen_rtx_SET (r13, gen_rtx_MINUS (Pmode,
						      stack_pointer_rtx,
						      r14)));
	}
      else
	emit_move_insn (r13, stack_pointer_rtx);

      /* Step 2: compute initial and final value of the loop counter.  */

      emit_move_insn (r14, GEN_INT (PROBE_INTERVAL));
      /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE.  */
      if (rounded_size == 0)
	emit_move_insn (r12, r13);
      else
	{
	  emit_move_insn (r12, GEN_INT (rounded_size));
	  emit_insn (gen_rtx_SET (r12, gen_rtx_MINUS (Pmode, r13, r12)));
	  /* Step 3: the loop

	     do
	     {
	     TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
	     probe at TEST_ADDR
	     }
	     while (TEST_ADDR != LAST_ADDR)

	     probes at FIRST + N * PROBE_INTERVAL for values of N from 1
	     until it is equal to ROUNDED_SIZE.  */

	  emit_insn (gen_probe_stack_range (Pmode, r13, r13, r12, r14));
	}

      /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
	 that SIZE is equal to ROUNDED_SIZE.  */

      if (size != rounded_size)
	{
	  if (TARGET_64BIT)
	    emit_stack_probe (plus_constant (Pmode, r12, rounded_size - size));
	  else
	    {
	      HOST_WIDE_INT i;
	      for (i = 2048; i < (size - rounded_size); i += 2048)
		{
		  emit_stack_probe (plus_constant (Pmode, r12, -i));
		  emit_insn (gen_rtx_SET (r12,
					  plus_constant (Pmode, r12, -2048)));
		}
	      rtx r1 = plus_constant (Pmode, r12,
				      -(size - rounded_size - i + 2048));
	      emit_stack_probe (r1);
	    }
	}
    }

  /* Make sure nothing is scheduled before we are done.  */
  emit_insn (gen_blockage ());
}

/* Probe a range of stack addresses from REG1 to REG2 inclusive.  These are
   absolute addresses.  */
const char *
loongarch_output_probe_stack_range (rtx reg1, rtx reg2, rtx reg3)
{
  static int labelno = 0;
  char loop_lab[32], tmp[64];
  rtx xops[3];

  ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++);

  /* Loop.  */
  ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);

  /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL.  */
  xops[0] = reg1;
  xops[1] = GEN_INT (-PROBE_INTERVAL);
  xops[2] = reg3;
  if (TARGET_64BIT)
    output_asm_insn ("sub.d\t%0,%0,%2", xops);
  else
    output_asm_insn ("sub.w\t%0,%0,%2", xops);

  /* Probe at TEST_ADDR, test if TEST_ADDR == LAST_ADDR and branch.  */
  xops[1] = reg2;
  strcpy (tmp, "bne\t%0,%1,");
  if (TARGET_64BIT)
    output_asm_insn ("st.d\t$r0,%0,0", xops);
  else
    output_asm_insn ("st.w\t$r0,%0,0", xops);
  output_asm_insn (strcat (tmp, &loop_lab[1]), xops);

  return "";
}

/* Expand the "prologue" pattern.  */

void
loongarch_expand_prologue (void)
{
  struct loongarch_frame_info *frame = &cfun->machine->frame;
  HOST_WIDE_INT size = frame->total_size;
  HOST_WIDE_INT tmp;
  rtx insn;

  if (flag_stack_usage_info)
    current_function_static_stack_size = size;

  if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK
      || flag_stack_clash_protection)
    {
      if (crtl->is_leaf && !cfun->calls_alloca)
	{
	  if (size > PROBE_INTERVAL && size > get_stack_check_protect ())
	    {
	      tmp = size - get_stack_check_protect ();
	      loongarch_emit_probe_stack_range (get_stack_check_protect (),
						tmp);
	    }
	}
      else if (size > 0)
	loongarch_emit_probe_stack_range (get_stack_check_protect (), size);
    }

  /* Save the registers.  */
  if ((frame->mask | frame->fmask) != 0)
    {
      HOST_WIDE_INT step1 = MIN (size, loongarch_first_stack_step (frame));

      insn = gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
			    GEN_INT (-step1));
      RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
      size -= step1;
      loongarch_for_each_saved_reg (size, loongarch_save_reg);
    }


  /* Set up the frame pointer, if we're using one.  */
  if (frame_pointer_needed)
    {
      insn = gen_add3_insn (hard_frame_pointer_rtx, stack_pointer_rtx,
			    GEN_INT (frame->hard_frame_pointer_offset - size));
      RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;

      loongarch_emit_stack_tie ();
    }

  /* Allocate the rest of the frame.  */
  if (size > 0)
    {
      if (IMM12_OPERAND (-size))
	{
	  insn = gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
				GEN_INT (-size));
	  RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
	}
      else
	{
	  loongarch_emit_move (LARCH_PROLOGUE_TEMP (Pmode), GEN_INT (-size));
	  emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
				    LARCH_PROLOGUE_TEMP (Pmode)));

	  /* Describe the effect of the previous instructions.  */
	  insn = plus_constant (Pmode, stack_pointer_rtx, -size);
	  insn = gen_rtx_SET (stack_pointer_rtx, insn);
	  loongarch_set_frame_expr (insn);
	}
    }
}

/* Return nonzero if this function is known to have a null epilogue.
   This allows the optimizer to omit jumps to jumps if no stack
   was created.  */

bool
loongarch_can_use_return_insn (void)
{
  return reload_completed && cfun->machine->frame.total_size == 0;
}

/* Expand an "epilogue" or "sibcall_epilogue" pattern; SIBCALL_P
   says which.  */

void
loongarch_expand_epilogue (bool sibcall_p)
{
  /* Split the frame into two.  STEP1 is the amount of stack we should
     deallocate before restoring the registers.  STEP2 is the amount we
     should deallocate afterwards.

     Start off by assuming that no registers need to be restored.  */
  struct loongarch_frame_info *frame = &cfun->machine->frame;
  HOST_WIDE_INT step1 = frame->total_size;
  HOST_WIDE_INT step2 = 0;
  rtx ra = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
  rtx insn;

  /* We need to add memory barrier to prevent read from deallocated stack.  */
  bool need_barrier_p
    = (get_frame_size () + cfun->machine->frame.arg_pointer_offset) != 0;

  if (!sibcall_p && loongarch_can_use_return_insn ())
    {
      emit_jump_insn (gen_return ());
      return;
    }

  /* Move past any dynamic stack allocations.  */
  if (cfun->calls_alloca)
    {
      /* Emit a barrier to prevent loads from a deallocated stack.  */
      loongarch_emit_stack_tie ();
      need_barrier_p = false;

      rtx adjust = GEN_INT (-frame->hard_frame_pointer_offset);
      if (!IMM12_OPERAND (INTVAL (adjust)))
	{
	  loongarch_emit_move (LARCH_PROLOGUE_TEMP (Pmode), adjust);
	  adjust = LARCH_PROLOGUE_TEMP (Pmode);
	}

      insn = emit_insn (gen_add3_insn (stack_pointer_rtx,
				       hard_frame_pointer_rtx,
				       adjust));

      rtx dwarf = NULL_RTX;
      rtx minus_offset = GEN_INT (-frame->hard_frame_pointer_offset);
      rtx cfa_adjust_value = gen_rtx_PLUS (Pmode,
					   hard_frame_pointer_rtx,
					   minus_offset);

      rtx cfa_adjust_rtx = gen_rtx_SET (stack_pointer_rtx, cfa_adjust_value);
      dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA, cfa_adjust_rtx, dwarf);
      RTX_FRAME_RELATED_P (insn) = 1;

      REG_NOTES (insn) = dwarf;
    }

  /* If we need to restore registers, deallocate as much stack as
     possible in the second step without going out of range.  */
  if ((frame->mask | frame->fmask) != 0)
    {
      step2 = loongarch_first_stack_step (frame);
      step1 -= step2;
    }

  /* Set TARGET to BASE + STEP1.  */
  if (step1 > 0)
    {
      /* Emit a barrier to prevent loads from a deallocated stack.  */
      loongarch_emit_stack_tie ();
      need_barrier_p = false;

      /* Get an rtx for STEP1 that we can add to BASE.  */
      rtx adjust = GEN_INT (step1);
      if (!IMM12_OPERAND (step1))
	{
	  loongarch_emit_move (LARCH_PROLOGUE_TEMP (Pmode), adjust);
	  adjust = LARCH_PROLOGUE_TEMP (Pmode);
	}

      insn = emit_insn (gen_add3_insn (stack_pointer_rtx,
				       stack_pointer_rtx,
				       adjust));

      rtx dwarf = NULL_RTX;
      rtx cfa_adjust_rtx = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
					 GEN_INT (step2));

      dwarf = alloc_reg_note (REG_CFA_DEF_CFA, cfa_adjust_rtx, dwarf);
      RTX_FRAME_RELATED_P (insn) = 1;

      REG_NOTES (insn) = dwarf;
    }

  /* Restore the registers.  */
  loongarch_for_each_saved_reg (frame->total_size - step2,
				loongarch_restore_reg);

  if (need_barrier_p)
    loongarch_emit_stack_tie ();

  /* Deallocate the final bit of the frame.  */
  if (step2 > 0)
    {
      insn = emit_insn (gen_add3_insn (stack_pointer_rtx,
				       stack_pointer_rtx,
				       GEN_INT (step2)));

      rtx dwarf = NULL_RTX;
      rtx cfa_adjust_rtx = gen_rtx_PLUS (Pmode, stack_pointer_rtx, const0_rtx);
      dwarf = alloc_reg_note (REG_CFA_DEF_CFA, cfa_adjust_rtx, dwarf);
      RTX_FRAME_RELATED_P (insn) = 1;

      REG_NOTES (insn) = dwarf;
    }

  /* Add in the __builtin_eh_return stack adjustment.  */
  if (crtl->calls_eh_return)
    emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
			      EH_RETURN_STACKADJ_RTX));

  if (!sibcall_p)
    emit_jump_insn (gen_simple_return_internal (ra));
}

#define LU32I_B (0xfffffULL << 32)
#define LU52I_B (0xfffULL << 52)

/* Fill CODES with a sequence of rtl operations to load VALUE.
   Return the number of operations needed.  */

static unsigned int
loongarch_build_integer (struct loongarch_integer_op *codes,
			 HOST_WIDE_INT value)

{
  unsigned int cost = 0;

  /* Get the lower 32 bits of the value.  */
  HOST_WIDE_INT low_part = TARGET_64BIT ? value << 32 >> 32 : value;

  if (IMM12_OPERAND (low_part) || IMM12_OPERAND_UNSIGNED (low_part))
    {
      /* The value of the lower 32 bit be loaded with one instruction.
	 lu12i.w.  */
      codes[0].code = UNKNOWN;
      codes[0].method = METHOD_NORMAL;
      codes[0].value = low_part;
      cost++;
    }
  else
    {
      /* lu12i.w + ior.  */
      codes[0].code = UNKNOWN;
      codes[0].method = METHOD_NORMAL;
      codes[0].value = low_part & ~(IMM_REACH - 1);
      cost++;
      HOST_WIDE_INT iorv = low_part & (IMM_REACH - 1);
      if (iorv != 0)
	{
	  codes[1].code = IOR;
	  codes[1].method = METHOD_NORMAL;
	  codes[1].value = iorv;
	  cost++;
	}
    }

  if (TARGET_64BIT)
    {
      bool lu32i[2] = {(value & LU32I_B) == 0, (value & LU32I_B) == LU32I_B};
      bool lu52i[2] = {(value & LU52I_B) == 0, (value & LU52I_B) == LU52I_B};

      int sign31 = (value & (1UL << 31)) >> 31;
      /* Determine whether the upper 32 bits are sign-extended from the lower
	 32 bits. If it is, the instructions to load the high order can be
	 ommitted.  */
      if (lu32i[sign31] && lu52i[sign31])
	return cost;
      /* Determine whether bits 32-51 are sign-extended from the lower 32
	 bits. If so, directly load 52-63 bits.  */
      else if (lu32i[sign31])
	{
	  codes[cost].method = METHOD_LU52I;
	  codes[cost].value = (value >> 52) << 52;
	  return cost + 1;
	}

      codes[cost].method = METHOD_LU32I;
      codes[cost].value = ((value << 12) >> 44) << 32;
      cost++;

      /* Determine whether the 52-61 bits are sign-extended from the low order,
	 and if not, load the 52-61 bits.  */
      if (!lu52i[(value & (1ULL << 51)) >> 51])
	{
	  codes[cost].method = METHOD_LU52I;
	  codes[cost].value = (value >> 52) << 52;
	  cost++;
	}
    }

  gcc_assert (cost <= LARCH_MAX_INTEGER_OPS);

  return cost;
}

/* Fill CODES with a sequence of rtl operations to load VALUE.
   Return the number of operations needed.
   Split interger in loongarch_output_move.  */

static unsigned int
loongarch_integer_cost (HOST_WIDE_INT value)
{
  struct loongarch_integer_op codes[LARCH_MAX_INTEGER_OPS];
  return loongarch_build_integer (codes, value);
}

/* Implement TARGET_LEGITIMATE_CONSTANT_P.  */

static bool
loongarch_legitimate_constant_p (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
  return loongarch_const_insns (x) > 0;
}

/* Return true if X is a thread-local symbol.  */

static bool
loongarch_tls_symbol_p (rtx x)
{
  return SYMBOL_REF_P (x) && SYMBOL_REF_TLS_MODEL (x) != 0;
}

/* Return true if SYMBOL_REF X is associated with a global symbol
   (in the STB_GLOBAL sense).  */

bool
loongarch_global_symbol_p (const_rtx x)
{
  if (LABEL_REF_P (x))
    return false;

  const_tree decl = SYMBOL_REF_DECL (x);

  if (!decl)
    return !SYMBOL_REF_LOCAL_P (x) || SYMBOL_REF_EXTERNAL_P (x);

  /* Weakref symbols are not TREE_PUBLIC, but their targets are global
     or weak symbols.  Relocations in the object file will be against
     the target symbol, so it's that symbol's binding that matters here.  */
  return DECL_P (decl) && (TREE_PUBLIC (decl) || DECL_WEAK (decl));
}

bool
loongarch_global_symbol_noweak_p (const_rtx x)
{
  if (LABEL_REF_P (x))
    return false;

  const_tree decl = SYMBOL_REF_DECL (x);

  if (!decl)
    return !SYMBOL_REF_LOCAL_P (x) || SYMBOL_REF_EXTERNAL_P (x);

  return DECL_P (decl) && TREE_PUBLIC (decl);
}

bool
loongarch_weak_symbol_p (const_rtx x)
{
  const_tree decl;
  if (LABEL_REF_P (x) || !(decl = SYMBOL_REF_DECL (x)))
    return false;
  return DECL_P (decl) && DECL_WEAK (decl);
}

/* Return true if SYMBOL_REF X binds locally.  */

bool
loongarch_symbol_binds_local_p (const_rtx x)
{
  if (LABEL_REF_P (x))
    return false;

  return (SYMBOL_REF_DECL (x) ? targetm.binds_local_p (SYMBOL_REF_DECL (x))
			      : SYMBOL_REF_LOCAL_P (x));
}

/* Return true if rtx constants of mode MODE should be put into a small
   data section.  */

static bool
loongarch_rtx_constant_in_small_data_p (machine_mode mode)
{
  return (GET_MODE_SIZE (mode) <= g_switch_value);
}

/* Return the method that should be used to access SYMBOL_REF or
   LABEL_REF X.  */

static enum loongarch_symbol_type
loongarch_classify_symbol (const_rtx x)
{
  if (LABEL_REF_P (x))
    return SYMBOL_GOT_DISP;

  gcc_assert (SYMBOL_REF_P (x));

  if (SYMBOL_REF_TLS_MODEL (x))
    return SYMBOL_TLS;

  if (SYMBOL_REF_P (x))
    return SYMBOL_GOT_DISP;

  return SYMBOL_GOT_DISP;
}

/* Return true if X is a symbolic constant.  If it is,
   store the type of the symbol in *SYMBOL_TYPE.  */

bool
loongarch_symbolic_constant_p (rtx x, enum loongarch_symbol_type *symbol_type)
{
  rtx offset;

  split_const (x, &x, &offset);
  if (UNSPEC_ADDRESS_P (x))
    {
      *symbol_type = UNSPEC_ADDRESS_TYPE (x);
      x = UNSPEC_ADDRESS (x);
    }
  else if (SYMBOL_REF_P (x) || LABEL_REF_P (x))
    {
      *symbol_type = loongarch_classify_symbol (x);
      if (*symbol_type == SYMBOL_TLS)
	return true;
    }
  else
    return false;

  if (offset == const0_rtx)
    return true;

  /* Check whether a nonzero offset is valid for the underlying
     relocations.  */
  switch (*symbol_type)
    {
    case SYMBOL_GOT_DISP:
    case SYMBOL_TLSGD:
    case SYMBOL_TLSLDM:
    case SYMBOL_TLS:
      return false;
    }
  gcc_unreachable ();
}

/* Returns the number of instructions necessary to reference a symbol.  */

static int
loongarch_symbol_insns (enum loongarch_symbol_type type, machine_mode mode)
{
  switch (type)
    {
    case SYMBOL_GOT_DISP:
      /* The constant will have to be loaded from the GOT before it
	 is used in an address.  */
      if (mode != MAX_MACHINE_MODE)
	return 0;

      return 3;

    case SYMBOL_TLSGD:
    case SYMBOL_TLSLDM:
      return 1;

    case SYMBOL_TLS:
      /* We don't treat a bare TLS symbol as a constant.  */
      return 0;
    }
  gcc_unreachable ();
}

/* Implement TARGET_CANNOT_FORCE_CONST_MEM.  */

static bool
loongarch_cannot_force_const_mem (machine_mode mode, rtx x)
{
  enum loongarch_symbol_type type;
  rtx base, offset;

  /* As an optimization, reject constants that loongarch_legitimize_move
     can expand inline.

     Suppose we have a multi-instruction sequence that loads constant C
     into register R.  If R does not get allocated a hard register, and
     R is used in an operand that allows both registers and memory
     references, reload will consider forcing C into memory and using
     one of the instruction's memory alternatives.  Returning false
     here will force it to use an input reload instead.  */
  if (CONST_INT_P (x) && loongarch_legitimate_constant_p (mode, x))
    return true;

  split_const (x, &base, &offset);
  if (loongarch_symbolic_constant_p (base, &type))
    {
      /* The same optimization as for CONST_INT.  */
      if (IMM12_INT (offset)
	  && loongarch_symbol_insns (type, MAX_MACHINE_MODE) > 0)
	return true;
    }

  /* TLS symbols must be computed by loongarch_legitimize_move.  */
  if (tls_referenced_p (x))
    return true;

  return false;
}

/* Return true if register REGNO is a valid base register for mode MODE.
   STRICT_P is true if REG_OK_STRICT is in effect.  */

int
loongarch_regno_mode_ok_for_base_p (int regno,
				    machine_mode mode ATTRIBUTE_UNUSED,
				    bool strict_p)
{
  if (!HARD_REGISTER_NUM_P (regno))
    {
      if (!strict_p)
	return true;
      regno = reg_renumber[regno];
    }

  /* These fake registers will be eliminated to either the stack or
     hard frame pointer, both of which are usually valid base registers.
     Reload deals with the cases where the eliminated form isn't valid.  */
  if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
    return true;

  return GP_REG_P (regno);
}

/* Return true if X is a valid base register for mode MODE.
   STRICT_P is true if REG_OK_STRICT is in effect.  */

static bool
loongarch_valid_base_register_p (rtx x, machine_mode mode, bool strict_p)
{
  if (!strict_p && SUBREG_P (x))
    x = SUBREG_REG (x);

  return (REG_P (x)
	  && loongarch_regno_mode_ok_for_base_p (REGNO (x), mode, strict_p));
}

/* Return true if, for every base register BASE_REG, (plus BASE_REG X)
   can address a value of mode MODE.  */

static bool
loongarch_valid_offset_p (rtx x, machine_mode mode)
{
  /* Check that X is a signed 12-bit number,
     or check that X is a signed 16-bit number
     and offset 4 byte aligned.  */
  if (!(const_arith_operand (x, Pmode)
	|| ((mode == E_SImode || mode == E_DImode)
	    && const_imm16_operand (x, Pmode)
	    && (loongarch_signed_immediate_p (INTVAL (x), 14, 2)))))
    return false;

  /* We may need to split multiword moves, so make sure that every word
     is accessible.  */
  if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
      && !IMM12_OPERAND (INTVAL (x) + GET_MODE_SIZE (mode) - UNITS_PER_WORD))
    return false;

  return true;
}

static bool
loongarch_valid_index_p (struct loongarch_address_info *info, rtx x,
			  machine_mode mode, bool strict_p)
{
  rtx index;

  if ((REG_P (x) || SUBREG_P (x))
      && GET_MODE (x) == Pmode)
    {
      index = x;
    }
  else
    return false;

  if (!strict_p
      && SUBREG_P (index)
      && contains_reg_of_mode[GENERAL_REGS][GET_MODE (SUBREG_REG (index))])
    index = SUBREG_REG (index);

  if (loongarch_valid_base_register_p (index, mode, strict_p))
    {
      info->type = ADDRESS_REG_REG;
      info->offset = index;
      return true;
    }

  return false;
}

/* Return true if X is a valid address for machine mode MODE.  If it is,
   fill in INFO appropriately.  STRICT_P is true if REG_OK_STRICT is in
   effect.  */

static bool
loongarch_classify_address (struct loongarch_address_info *info, rtx x,
			    machine_mode mode, bool strict_p)
{
  switch (GET_CODE (x))
    {
    case REG:
    case SUBREG:
      info->type = ADDRESS_REG;
      info->reg = x;
      info->offset = const0_rtx;
      return loongarch_valid_base_register_p (info->reg, mode, strict_p);

    case PLUS:
      if (loongarch_valid_base_register_p (XEXP (x, 0), mode, strict_p)
	  && loongarch_valid_index_p (info, XEXP (x, 1), mode, strict_p))
	{
	  info->reg = XEXP (x, 0);
	  return true;
	}

      if (loongarch_valid_base_register_p (XEXP (x, 1), mode, strict_p)
	 && loongarch_valid_index_p (info, XEXP (x, 0), mode, strict_p))
	{
	  info->reg = XEXP (x, 1);
	  return true;
	}

      info->type = ADDRESS_REG;
      info->reg = XEXP (x, 0);
      info->offset = XEXP (x, 1);
      return (loongarch_valid_base_register_p (info->reg, mode, strict_p)
	      && loongarch_valid_offset_p (info->offset, mode));
    default:
      return false;
    }
}

/* Implement TARGET_LEGITIMATE_ADDRESS_P.  */

static bool
loongarch_legitimate_address_p (machine_mode mode, rtx x, bool strict_p)
{
  struct loongarch_address_info addr;

  return loongarch_classify_address (&addr, x, mode, strict_p);
}

/* Return true if ADDR matches the pattern for the indexed address
   instruction.  */

static bool
loongarch_index_address_p (rtx addr, machine_mode mode ATTRIBUTE_UNUSED)
{
  if (GET_CODE (addr) != PLUS
      || !REG_P (XEXP (addr, 0))
      || !REG_P (XEXP (addr, 1)))
    return false;
  return true;
}

/* Return the number of instructions needed to load or store a value
   of mode MODE at address X.  Return 0 if X isn't valid for MODE.
   Assume that multiword moves may need to be split into word moves
   if MIGHT_SPLIT_P, otherwise assume that a single load or store is
   enough.  */

int
loongarch_address_insns (rtx x, machine_mode mode, bool might_split_p)
{
  struct loongarch_address_info addr;
  int factor;

  if (!loongarch_classify_address (&addr, x, mode, false))
    return 0;

  /* BLKmode is used for single unaligned loads and stores and should
     not count as a multiword mode.  (GET_MODE_SIZE (BLKmode) is pretty
     meaningless, so we have to single it out as a special case one way
     or the other.)  */
  if (mode != BLKmode && might_split_p)
    factor = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
  else
    factor = 1;

  if (loongarch_classify_address (&addr, x, mode, false))
    switch (addr.type)
      {
      case ADDRESS_REG:
	return factor;

      case ADDRESS_REG_REG:
	return factor;

      case ADDRESS_CONST_INT:
	return factor;

      case ADDRESS_SYMBOLIC:
	return factor * loongarch_symbol_insns (addr.symbol_type, mode);
      }
  return 0;
}

/* Return true if X fits within an unsigned field of BITS bits that is
   shifted left SHIFT bits before being used.  */

bool
loongarch_unsigned_immediate_p (unsigned HOST_WIDE_INT x, int bits,
				int shift = 0)
{
  return (x & ((1 << shift) - 1)) == 0 && x < ((unsigned) 1 << (shift + bits));
}

/* Return true if X fits within a signed field of BITS bits that is
   shifted left SHIFT bits before being used.  */

bool
loongarch_signed_immediate_p (unsigned HOST_WIDE_INT x, int bits,
			      int shift = 0)
{
  x += 1 << (bits + shift - 1);
  return loongarch_unsigned_immediate_p (x, bits, shift);
}

/* Return true if X is a legitimate address with a 12-bit offset.
   MODE is the mode of the value being accessed.  */

bool
loongarch_12bit_offset_address_p (rtx x, machine_mode mode)
{
  struct loongarch_address_info addr;

  return (loongarch_classify_address (&addr, x, mode, false)
	  && addr.type == ADDRESS_REG
	  && CONST_INT_P (addr.offset)
	  && LARCH_U12BIT_OFFSET_P (INTVAL (addr.offset)));
}

/* Return true if X is a legitimate address with a 14-bit offset shifted 2.
   MODE is the mode of the value being accessed.  */

bool
loongarch_14bit_shifted_offset_address_p (rtx x, machine_mode mode)
{
  struct loongarch_address_info addr;

  return (loongarch_classify_address (&addr, x, mode, false)
	  && addr.type == ADDRESS_REG
	  && CONST_INT_P (addr.offset)
	  && LARCH_16BIT_OFFSET_P (INTVAL (addr.offset))
	  && LARCH_SHIFT_2_OFFSET_P (INTVAL (addr.offset)));
}

bool
loongarch_base_index_address_p (rtx x, machine_mode mode)
{
  struct loongarch_address_info addr;

  return (loongarch_classify_address (&addr, x, mode, false)
	  && addr.type == ADDRESS_REG_REG
	  && REG_P (addr.offset));
}

/* Return the number of instructions needed to load constant X,
   Return 0 if X isn't a valid constant.  */

int
loongarch_const_insns (rtx x)
{
  enum loongarch_symbol_type symbol_type;
  rtx offset;

  switch (GET_CODE (x))
    {
    case CONST_INT:
      return loongarch_integer_cost (INTVAL (x));

    case CONST_VECTOR:
      /* Fall through.  */
    case CONST_DOUBLE:
      return x == CONST0_RTX (GET_MODE (x)) ? 1 : 0;

    case CONST:
      /* See if we can refer to X directly.  */
      if (loongarch_symbolic_constant_p (x, &symbol_type))
	return loongarch_symbol_insns (symbol_type, MAX_MACHINE_MODE);

      /* Otherwise try splitting the constant into a base and offset.
	 If the offset is a 12-bit value, we can load the base address
	 into a register and then use ADDI.{W/D} to add in the offset.
	 If the offset is larger, we can load the base and offset
	 into separate registers and add them together with ADD.{W/D}.
	 However, the latter is only possible before reload; during
	 and after reload, we must have the option of forcing the
	 constant into the pool instead.  */
      split_const (x, &x, &offset);
      if (offset != 0)
	{
	  int n = loongarch_const_insns (x);
	  if (n != 0)
	    {
	      if (IMM12_INT (offset))
		return n + 1;
	      else if (!targetm.cannot_force_const_mem (GET_MODE (x), x))
		return n + 1 + loongarch_integer_cost (INTVAL (offset));
	    }
	}
      return 0;

    case SYMBOL_REF:
    case LABEL_REF:
      return loongarch_symbol_insns (
	loongarch_classify_symbol (x), MAX_MACHINE_MODE);

    default:
      return 0;
    }
}

/* X is a doubleword constant that can be handled by splitting it into
   two words and loading each word separately.  Return the number of
   instructions required to do this.  */

int
loongarch_split_const_insns (rtx x)
{
  unsigned int low, high;

  low = loongarch_const_insns (loongarch_subword (x, false));
  high = loongarch_const_insns (loongarch_subword (x, true));
  gcc_assert (low > 0 && high > 0);
  return low + high;
}

/* Return the number of instructions needed to implement INSN,
   given that it loads from or stores to MEM.  */

int
loongarch_load_store_insns (rtx mem, rtx_insn *insn)
{
  machine_mode mode;
  bool might_split_p;
  rtx set;

  gcc_assert (MEM_P (mem));
  mode = GET_MODE (mem);

  /* Try to prove that INSN does not need to be split.  */
  might_split_p = GET_MODE_SIZE (mode) > UNITS_PER_WORD;
  if (might_split_p)
    {
      set = single_set (insn);
      if (set
	  && !loongarch_split_move_insn_p (SET_DEST (set), SET_SRC (set)))
	might_split_p = false;
    }

  return loongarch_address_insns (XEXP (mem, 0), mode, might_split_p);
}

/* Return the number of instructions needed for an integer division.  */

int
loongarch_idiv_insns (machine_mode mode ATTRIBUTE_UNUSED)
{
  int count;

  count = 1;
  if (TARGET_CHECK_ZERO_DIV)
    count += 2;

  return count;
}

/* Emit an instruction of the form (set TARGET (CODE OP0 OP1)).  */

void
loongarch_emit_binary (enum rtx_code code, rtx target, rtx op0, rtx op1)
{
  emit_insn (gen_rtx_SET (target, gen_rtx_fmt_ee (code, GET_MODE (target),
						  op0, op1)));
}

/* Compute (CODE OP0 OP1) and store the result in a new register
   of mode MODE.  Return that new register.  */

static rtx
loongarch_force_binary (machine_mode mode, enum rtx_code code, rtx op0,
			rtx op1)
{
  rtx reg;

  reg = gen_reg_rtx (mode);
  loongarch_emit_binary (code, reg, op0, op1);
  return reg;
}

/* Copy VALUE to a register and return that register.  If new pseudos
   are allowed, copy it into a new register, otherwise use DEST.  */

static rtx
loongarch_force_temporary (rtx dest, rtx value)
{
  if (can_create_pseudo_p ())
    return force_reg (Pmode, value);
  else
    {
      loongarch_emit_move (dest, value);
      return dest;
    }
}

/* Wrap symbol or label BASE in an UNSPEC address of type SYMBOL_TYPE,
   then add CONST_INT OFFSET to the result.  */

static rtx
loongarch_unspec_address_offset (rtx base, rtx offset,
				 enum loongarch_symbol_type symbol_type)
{
  base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base),
			 UNSPEC_ADDRESS_FIRST + symbol_type);
  if (offset != const0_rtx)
    base = gen_rtx_PLUS (Pmode, base, offset);
  return gen_rtx_CONST (Pmode, base);
}

/* Return an UNSPEC address with underlying address ADDRESS and symbol
   type SYMBOL_TYPE.  */

rtx
loongarch_unspec_address (rtx address, enum loongarch_symbol_type symbol_type)
{
  rtx base, offset;

  split_const (address, &base, &offset);
  return loongarch_unspec_address_offset (base, offset, symbol_type);
}

/* If OP is an UNSPEC address, return the address to which it refers,
   otherwise return OP itself.  */

rtx
loongarch_strip_unspec_address (rtx op)
{
  rtx base, offset;

  split_const (op, &base, &offset);
  if (UNSPEC_ADDRESS_P (base))
    op = plus_constant (Pmode, UNSPEC_ADDRESS (base), INTVAL (offset));
  return op;
}

/* Return a legitimate address for REG + OFFSET.  TEMP is as for
   loongarch_force_temporary; it is only needed when OFFSET is not a
   IMM12_OPERAND.  */

static rtx
loongarch_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset)
{
  if (!IMM12_OPERAND (offset))
    {
      rtx high;

      /* Leave OFFSET as a 12-bit offset and put the excess in HIGH.
	 The addition inside the macro CONST_HIGH_PART may cause an
	 overflow, so we need to force a sign-extension check.  */
      high = gen_int_mode (CONST_HIGH_PART (offset), Pmode);
      offset = CONST_LOW_PART (offset);
      high = loongarch_force_temporary (temp, high);
      reg = loongarch_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg));
    }
  return plus_constant (Pmode, reg, offset);
}

/* The __tls_get_attr symbol.  */
static GTY (()) rtx loongarch_tls_symbol;

/* Load an entry from the GOT for a TLS GD access.  */

static rtx
loongarch_got_load_tls_gd (rtx dest, rtx sym)
{
  return gen_got_load_tls_gd (Pmode, dest, sym);
}

/* Load an entry from the GOT for a TLS LD access.  */

static rtx
loongarch_got_load_tls_ld (rtx dest, rtx sym)
{
  return gen_got_load_tls_ld (Pmode, dest, sym);
}

/* Load an entry from the GOT for a TLS IE access.  */

static rtx
loongarch_got_load_tls_ie (rtx dest, rtx sym)
{
  return gen_got_load_tls_ie (Pmode, dest, sym);
}

/* Add in the thread pointer for a TLS LE access.  */

static rtx
loongarch_got_load_tls_le (rtx dest, rtx sym)
{
  return gen_got_load_tls_le (Pmode, dest, sym);
}

/* Return an instruction sequence that calls __tls_get_addr.  SYM is
   the TLS symbol we are referencing and TYPE is the symbol type to use
   (either global dynamic or local dynamic).  V0 is an RTX for the
   return value location.  */

static rtx_insn *
loongarch_call_tls_get_addr (rtx sym, enum loongarch_symbol_type type, rtx v0)
{
  rtx loc, a0;
  rtx_insn *insn;

  a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST);

  if (!loongarch_tls_symbol)
    loongarch_tls_symbol = init_one_libfunc ("__tls_get_addr");

  loc = loongarch_unspec_address (sym, type);

  start_sequence ();

  if (type == SYMBOL_TLSLDM)
    emit_insn (loongarch_got_load_tls_ld (a0, loc));
  else if (type == SYMBOL_TLSGD)
    emit_insn (loongarch_got_load_tls_gd (a0, loc));
  else
    gcc_unreachable ();

  insn = emit_call_insn (gen_call_value_internal (v0, loongarch_tls_symbol,
						  const0_rtx));
  RTL_CONST_CALL_P (insn) = 1;
  use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0);
  insn = get_insns ();

  end_sequence ();

  return insn;
}

/* Generate the code to access LOC, a thread-local SYMBOL_REF, and return
   its address.  The return value will be both a valid address and a valid
   SET_SRC (either a REG or a LO_SUM).  */

static rtx
loongarch_legitimize_tls_address (rtx loc)
{
  rtx dest, tp, tmp;
  enum tls_model model = SYMBOL_REF_TLS_MODEL (loc);
  rtx_insn *insn;

  switch (model)
    {
    case TLS_MODEL_LOCAL_DYNAMIC:
      tmp = gen_rtx_REG (Pmode, GP_RETURN);
      dest = gen_reg_rtx (Pmode);
      insn = loongarch_call_tls_get_addr (loc, SYMBOL_TLSLDM, tmp);
      emit_libcall_block (insn, dest, tmp, loc);
      break;

    case TLS_MODEL_GLOBAL_DYNAMIC:
      tmp = gen_rtx_REG (Pmode, GP_RETURN);
      dest = gen_reg_rtx (Pmode);
      insn = loongarch_call_tls_get_addr (loc, SYMBOL_TLSGD, tmp);
      emit_libcall_block (insn, dest, tmp, loc);
      break;

    case TLS_MODEL_INITIAL_EXEC:
      /* la.tls.ie; tp-relative add  */
      tp = gen_rtx_REG (Pmode, THREAD_POINTER_REGNUM);
      tmp = gen_reg_rtx (Pmode);
      emit_insn (loongarch_got_load_tls_ie (tmp, loc));
      dest = gen_reg_rtx (Pmode);
      emit_insn (gen_add3_insn (dest, tmp, tp));
      break;

    case TLS_MODEL_LOCAL_EXEC:
      /* la.tls.le; tp-relative add  */
      tp = gen_rtx_REG (Pmode, THREAD_POINTER_REGNUM);
      tmp = gen_reg_rtx (Pmode);
      emit_insn (loongarch_got_load_tls_le (tmp, loc));
      dest = gen_reg_rtx (Pmode);
      emit_insn (gen_add3_insn (dest, tmp, tp));
      break;

    default:
      gcc_unreachable ();
    }
  return dest;
}

rtx
loongarch_legitimize_call_address (rtx addr)
{
  if (!call_insn_operand (addr, VOIDmode))
    {
      rtx reg = gen_reg_rtx (Pmode);
      loongarch_emit_move (reg, addr);
      return reg;
    }
  return addr;
}

/* If X is a PLUS of a CONST_INT, return the two terms in *BASE_PTR
   and *OFFSET_PTR.  Return X in *BASE_PTR and 0 in *OFFSET_PTR otherwise.  */

static void
loongarch_split_plus (rtx x, rtx *base_ptr, HOST_WIDE_INT *offset_ptr)
{
  if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
    {
      *base_ptr = XEXP (x, 0);
      *offset_ptr = INTVAL (XEXP (x, 1));
    }
  else
    {
      *base_ptr = x;
      *offset_ptr = 0;
    }
}

/* If X is not a valid address for mode MODE, force it into a register.  */

static rtx
loongarch_force_address (rtx x, machine_mode mode)
{
  if (!loongarch_legitimate_address_p (mode, x, false))
    x = force_reg (Pmode, x);
  return x;
}

/* This function is used to implement LEGITIMIZE_ADDRESS.  If X can
   be legitimized in a way that the generic machinery might not expect,
   return a new address, otherwise return NULL.  MODE is the mode of
   the memory being accessed.  */

static rtx
loongarch_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
			      machine_mode mode)
{
  rtx base, addr;
  HOST_WIDE_INT offset;

  if (loongarch_tls_symbol_p (x))
    return loongarch_legitimize_tls_address (x);

  /* Handle BASE + OFFSET using loongarch_add_offset.  */
  loongarch_split_plus (x, &base, &offset);
  if (offset != 0)
    {
      if (!loongarch_valid_base_register_p (base, mode, false))
	base = copy_to_mode_reg (Pmode, base);
      addr = loongarch_add_offset (NULL, base, offset);
      return loongarch_force_address (addr, mode);
    }

  return x;
}

/* Load VALUE into DEST.  TEMP is as for loongarch_force_temporary.  */

void
loongarch_move_integer (rtx temp, rtx dest, unsigned HOST_WIDE_INT value)
{
  struct loongarch_integer_op codes[LARCH_MAX_INTEGER_OPS];
  machine_mode mode;
  unsigned int i, num_ops;
  rtx x;

  mode = GET_MODE (dest);
  num_ops = loongarch_build_integer (codes, value);

  /* Apply each binary operation to X.  Invariant: X is a legitimate
     source operand for a SET pattern.  */
  x = GEN_INT (codes[0].value);
  for (i = 1; i < num_ops; i++)
    {
      if (!can_create_pseudo_p ())
	{
	  emit_insn (gen_rtx_SET (temp, x));
	  x = temp;
	}
      else
	x = force_reg (mode, x);

      switch (codes[i].method)
	{
	case METHOD_NORMAL:
	  x = gen_rtx_fmt_ee (codes[i].code, mode, x,
			      GEN_INT (codes[i].value));
	  break;
	case METHOD_LU32I:
	  emit_insn (
	    gen_rtx_SET (x,
			 gen_rtx_IOR (DImode,
				      gen_rtx_ZERO_EXTEND (
					DImode, gen_rtx_SUBREG (SImode, x, 0)),
				      GEN_INT (codes[i].value))));
	  break;
	case METHOD_LU52I:
	  emit_insn (gen_lu52i_d (x, x, GEN_INT (0xfffffffffffff),
				  GEN_INT (codes[i].value)));
	  break;
	case METHOD_INSV:
	  emit_insn (
	    gen_rtx_SET (gen_rtx_ZERO_EXTRACT (DImode, x, GEN_INT (20),
					       GEN_INT (32)),
			 gen_rtx_REG (DImode, 0)));
	  break;
	default:
	  gcc_unreachable ();
	}
    }

  emit_insn (gen_rtx_SET (dest, x));
}

/* Subroutine of loongarch_legitimize_move.  Move constant SRC into register
   DEST given that SRC satisfies immediate_operand but doesn't satisfy
   move_operand.  */

static void
loongarch_legitimize_const_move (machine_mode mode, rtx dest, rtx src)
{
  rtx base, offset;

  /* Split moves of big integers into smaller pieces.  */
  if (splittable_const_int_operand (src, mode))
    {
      loongarch_move_integer (dest, dest, INTVAL (src));
      return;
    }

  /* Generate the appropriate access sequences for TLS symbols.  */
  if (loongarch_tls_symbol_p (src))
    {
      loongarch_emit_move (dest, loongarch_legitimize_tls_address (src));
      return;
    }

  /* If we have (const (plus symbol offset)), and that expression cannot
     be forced into memory, load the symbol first and add in the offset.
     prefer to do this even if the constant _can_ be forced into memory,
     as it usually produces better code.  */
  split_const (src, &base, &offset);
  if (offset != const0_rtx
      && (targetm.cannot_force_const_mem (mode, src)
	  || (can_create_pseudo_p ())))
    {
      base = loongarch_force_temporary (dest, base);
      loongarch_emit_move (dest,
			   loongarch_add_offset (NULL, base, INTVAL (offset)));
      return;
    }

  src = force_const_mem (mode, src);

  loongarch_emit_move (dest, src);
}

/* If (set DEST SRC) is not a valid move instruction, emit an equivalent
   sequence that is valid.  */

bool
loongarch_legitimize_move (machine_mode mode, rtx dest, rtx src)
{
  if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode))
    {
      loongarch_emit_move (dest, force_reg (mode, src));
      return true;
    }

  /* Both src and dest are non-registers;  one special case is supported where
     the source is (const_int 0) and the store can source the zero register.
     */
  if (!register_operand (dest, mode) && !register_operand (src, mode)
      && !const_0_operand (src, mode))
    {
      loongarch_emit_move (dest, force_reg (mode, src));
      return true;
    }

  /* We need to deal with constants that would be legitimate
     immediate_operands but aren't legitimate move_operands.  */
  if (CONSTANT_P (src) && !move_operand (src, mode))
    {
      loongarch_legitimize_const_move (mode, dest, src);
      set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src));
      return true;
    }

  return false;
}

/* Return true if OP refers to small data symbols directly.  */

static int
loongarch_small_data_pattern_1 (rtx x)
{
  subrtx_var_iterator::array_type array;
  FOR_EACH_SUBRTX_VAR (iter, array, x, ALL)
    {
      rtx x = *iter;

      /* We make no particular guarantee about which symbolic constants are
	 acceptable as asm operands versus which must be forced into a GPR.  */
      if (GET_CODE (x) == ASM_OPERANDS)
	iter.skip_subrtxes ();
      else if (MEM_P (x))
	{
	  if (loongarch_small_data_pattern_1 (XEXP (x, 0)))
	    return true;
	  iter.skip_subrtxes ();
	}
    }
  return false;
}

/* Return true if OP refers to small data symbols directly.  */

bool
loongarch_small_data_pattern_p (rtx op)
{
  return loongarch_small_data_pattern_1 (op);
}

/* Rewrite *LOC so that it refers to small data using explicit
   relocations.  */

static void
loongarch_rewrite_small_data_1 (rtx *loc)
{
  subrtx_ptr_iterator::array_type array;
  FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
    {
      rtx *loc = *iter;
      if (MEM_P (*loc))
	{
	  loongarch_rewrite_small_data_1 (&XEXP (*loc, 0));
	  iter.skip_subrtxes ();
	}
    }
}

/* Rewrite instruction pattern PATTERN so that it refers to small data
   using explicit relocations.  */

rtx
loongarch_rewrite_small_data (rtx pattern)
{
  pattern = copy_insn (pattern);
  loongarch_rewrite_small_data_1 (&pattern);
  return pattern;
}

/* The cost of loading values from the constant pool.  It should be
   larger than the cost of any constant we want to synthesize inline.  */
#define CONSTANT_POOL_COST COSTS_N_INSNS (8)

/* Return true if there is a instruction that implements CODE
   and if that instruction accepts X as an immediate operand.  */

static int
loongarch_immediate_operand_p (int code, HOST_WIDE_INT x)
{
  switch (code)
    {
    case ASHIFT:
    case ASHIFTRT:
    case LSHIFTRT:
      /* All shift counts are truncated to a valid constant.  */
      return true;

    case ROTATE:
    case ROTATERT:
      return true;

    case AND:
    case IOR:
    case XOR:
      /* These instructions take 12-bit unsigned immediates.  */
      return IMM12_OPERAND_UNSIGNED (x);

    case PLUS:
    case LT:
    case LTU:
      /* These instructions take 12-bit signed immediates.  */
      return IMM12_OPERAND (x);

    case EQ:
    case NE:
    case GT:
    case GTU:
      /* The "immediate" forms of these instructions are really
	 implemented as comparisons with register 0.  */
      return x == 0;

    case GE:
    case GEU:
      /* Likewise, meaning that the only valid immediate operand is 1.  */
      return x == 1;

    case LE:
      /* We add 1 to the immediate and use SLT.  */
      return IMM12_OPERAND (x + 1);

    case LEU:
      /* Likewise SLTU, but reject the always-true case.  */
      return IMM12_OPERAND (x + 1) && x + 1 != 0;

    case SIGN_EXTRACT:
    case ZERO_EXTRACT:
      /* The bit position and size are immediate operands.  */
      return 1;

    default:
      /* By default assume that $0 can be used for 0.  */
      return x == 0;
    }
}

/* Return the cost of binary operation X, given that the instruction
   sequence for a word-sized or smaller operation has cost SINGLE_COST
   and that the sequence of a double-word operation has cost DOUBLE_COST.
   If SPEED is true, optimize for speed otherwise optimize for size.  */

static int
loongarch_binary_cost (rtx x, int single_cost, int double_cost, bool speed)
{
  int cost;

  if (GET_MODE_SIZE (GET_MODE (x)) == UNITS_PER_WORD * 2)
    cost = double_cost;
  else
    cost = single_cost;
  return (cost
	  + set_src_cost (XEXP (x, 0), GET_MODE (x), speed)
	  + rtx_cost (XEXP (x, 1), GET_MODE (x), GET_CODE (x), 1, speed));
}

/* Return the cost of floating-point multiplications of mode MODE.  */

static int
loongarch_fp_mult_cost (machine_mode mode)
{
  return mode == DFmode ? loongarch_cost->fp_mult_df
			: loongarch_cost->fp_mult_sf;
}

/* Return the cost of floating-point divisions of mode MODE.  */

static int
loongarch_fp_div_cost (machine_mode mode)
{
  return mode == DFmode ? loongarch_cost->fp_div_df
			: loongarch_cost->fp_div_sf;
}

/* Return the cost of sign-extending OP to mode MODE, not including the
   cost of OP itself.  */

static int
loongarch_sign_extend_cost (rtx op)
{
  if (MEM_P (op))
    /* Extended loads are as cheap as unextended ones.  */
    return 0;

  return COSTS_N_INSNS (1);
}

/* Return the cost of zero-extending OP to mode MODE, not including the
   cost of OP itself.  */

static int
loongarch_zero_extend_cost (rtx op)
{
  if (MEM_P (op))
    /* Extended loads are as cheap as unextended ones.  */
    return 0;

  /* We can use ANDI.  */
  return COSTS_N_INSNS (1);
}

/* Return the cost of moving between two registers of mode MODE,
   assuming that the move will be in pieces of at most UNITS bytes.  */

static int
loongarch_set_reg_reg_piece_cost (machine_mode mode, unsigned int units)
{
  return COSTS_N_INSNS ((GET_MODE_SIZE (mode) + units - 1) / units);
}

/* Return the cost of moving between two registers of mode MODE.  */

static int
loongarch_set_reg_reg_cost (machine_mode mode)
{
  switch (GET_MODE_CLASS (mode))
    {
    case MODE_CC:
      return loongarch_set_reg_reg_piece_cost (mode, GET_MODE_SIZE (CCmode));

    case MODE_FLOAT:
    case MODE_COMPLEX_FLOAT:
    case MODE_VECTOR_FLOAT:
      if (TARGET_HARD_FLOAT)
	return loongarch_set_reg_reg_piece_cost (mode, UNITS_PER_HWFPVALUE);
      /* Fall through.  */

    default:
      return loongarch_set_reg_reg_piece_cost (mode, UNITS_PER_WORD);
    }
}

/* Implement TARGET_RTX_COSTS.  */

static bool
loongarch_rtx_costs (rtx x, machine_mode mode, int outer_code,
		     int opno ATTRIBUTE_UNUSED, int *total, bool speed)
{
  int code = GET_CODE (x);
  bool float_mode_p = FLOAT_MODE_P (mode);
  int cost;
  rtx addr;

  if (outer_code == COMPARE)
    {
      gcc_assert (CONSTANT_P (x));
      *total = 0;
      return true;
    }

  switch (code)
    {
    case CONST_INT:
      if (TARGET_64BIT && outer_code == AND && UINTVAL (x) == 0xffffffff)
	{
	  *total = 0;
	  return true;
	}

      /* When not optimizing for size, we care more about the cost
	 of hot code, and hot code is often in a loop.  If a constant
	 operand needs to be forced into a register, we will often be
	 able to hoist the constant load out of the loop, so the load
	 should not contribute to the cost.  */
      if (speed || loongarch_immediate_operand_p (outer_code, INTVAL (x)))
	{
	  *total = 0;
	  return true;
	}
      /* Fall through.  */

    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST_DOUBLE:
      cost = loongarch_const_insns (x);
      if (cost > 0)
	{
	  if (cost == 1 && outer_code == SET
	      && !(float_mode_p && TARGET_HARD_FLOAT))
	    cost = 0;
	  else if ((outer_code == SET || GET_MODE (x) == VOIDmode))
	    cost = 1;
	  *total = COSTS_N_INSNS (cost);
	  return true;
	}
      /* The value will need to be fetched from the constant pool.  */
      *total = CONSTANT_POOL_COST;
      return true;

    case MEM:
      /* If the address is legitimate, return the number of
	 instructions it needs.  */
      addr = XEXP (x, 0);
      /* Check for a scaled indexed address.  */
      if (loongarch_index_address_p (addr, mode))
	{
	  *total = COSTS_N_INSNS (2);
	  return true;
	}
      cost = loongarch_address_insns (addr, mode, true);
      if (cost > 0)
	{
	  *total = COSTS_N_INSNS (cost + 1);
	  return true;
	}
      /* Otherwise use the default handling.  */
      return false;

    case FFS:
      *total = COSTS_N_INSNS (6);
      return false;

    case NOT:
      *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 2 : 1);
      return false;

    case AND:
      /* Check for a *clear_upper32 pattern and treat it like a zero
	 extension.  See the pattern's comment for details.  */
      if (TARGET_64BIT && mode == DImode && CONST_INT_P (XEXP (x, 1))
	  && UINTVAL (XEXP (x, 1)) == 0xffffffff)
	{
	  *total = (loongarch_zero_extend_cost (XEXP (x, 0))
		    + set_src_cost (XEXP (x, 0), mode, speed));
	  return true;
	}
      /* (AND (NOT op0) (NOT op1) is a nor operation that can be done in
	 a single instruction.  */
      if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
	{
	  cost = GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 2 : 1;
	  *total = (COSTS_N_INSNS (cost)
		    + set_src_cost (XEXP (XEXP (x, 0), 0), mode, speed)
		    + set_src_cost (XEXP (XEXP (x, 1), 0), mode, speed));
	  return true;
	}

      /* Fall through.  */

    case IOR:
    case XOR:
      /* Double-word operations use two single-word operations.  */
      *total = loongarch_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (2),
				      speed);
      return true;

    case ASHIFT:
    case ASHIFTRT:
    case LSHIFTRT:
    case ROTATE:
    case ROTATERT:
      if (CONSTANT_P (XEXP (x, 1)))
	*total = loongarch_binary_cost (x, COSTS_N_INSNS (1),
					COSTS_N_INSNS (4), speed);
      else
	*total = loongarch_binary_cost (x, COSTS_N_INSNS (1),
					COSTS_N_INSNS (12), speed);
      return true;

    case ABS:
      if (float_mode_p)
	*total = loongarch_cost->fp_add;
      else
	*total = COSTS_N_INSNS (4);
      return false;

    case LT:
    case LTU:
    case LE:
    case LEU:
    case GT:
    case GTU:
    case GE:
    case GEU:
    case EQ:
    case NE:
    case UNORDERED:
    case LTGT:
    case UNGE:
    case UNGT:
    case UNLE:
    case UNLT:
      /* Branch comparisons have VOIDmode, so use the first operand's
	 mode instead.  */
      mode = GET_MODE (XEXP (x, 0));
      if (FLOAT_MODE_P (mode))
	{
	  *total = loongarch_cost->fp_add;
	  return false;
	}
      *total = loongarch_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (4),
				      speed);
      return true;

    case MINUS:
    case PLUS:
      if (float_mode_p)
	{
	  *total = loongarch_cost->fp_add;
	  return false;
	}

      /* If it's an add + mult (which is equivalent to shift left) and
	 it's immediate operand satisfies const_immalsl_operand predicate.  */
      if ((mode == SImode || (TARGET_64BIT && mode == DImode))
	  && GET_CODE (XEXP (x, 0)) == MULT)
	{
	  rtx op2 = XEXP (XEXP (x, 0), 1);
	  if (const_immalsl_operand (op2, mode))
	    {
	      *total = (COSTS_N_INSNS (1)
			+ set_src_cost (XEXP (XEXP (x, 0), 0), mode, speed)
			+ set_src_cost (XEXP (x, 1), mode, speed));
	      return true;
	    }
	}

      /* Double-word operations require three single-word operations and
	 an SLTU.  */
      *total = loongarch_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (4),
				      speed);
      return true;

    case NEG:
      if (float_mode_p)
	*total = loongarch_cost->fp_add;
      else
	*total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 4 : 1);
      return false;

    case FMA:
      *total = loongarch_fp_mult_cost (mode);
      return false;

    case MULT:
      if (float_mode_p)
	*total = loongarch_fp_mult_cost (mode);
      else if (mode == DImode && !TARGET_64BIT)
	*total = (speed
		  ? loongarch_cost->int_mult_si * 3 + 6
		  : COSTS_N_INSNS (7));
      else if (!speed)
	*total = COSTS_N_INSNS (1) + 1;
      else if (mode == DImode)
	*total = loongarch_cost->int_mult_di;
      else
	*total = loongarch_cost->int_mult_si;
      return false;

    case DIV:
      /* Check for a reciprocal.  */
      if (float_mode_p
	  && flag_unsafe_math_optimizations
	  && XEXP (x, 0) == CONST1_RTX (mode))
	{
	  if (outer_code == SQRT || GET_CODE (XEXP (x, 1)) == SQRT)
	    /* An rsqrt<mode>a or rsqrt<mode>b pattern.  Count the
	       division as being free.  */
	    *total = set_src_cost (XEXP (x, 1), mode, speed);
	  else
	    *total = (loongarch_fp_div_cost (mode)
		      + set_src_cost (XEXP (x, 1), mode, speed));
	  return true;
	}
      /* Fall through.  */

    case SQRT:
    case MOD:
      if (float_mode_p)
	{
	  *total = loongarch_fp_div_cost (mode);
	  return false;
	}
      /* Fall through.  */

    case UDIV:
    case UMOD:
      if (!speed)
	{
	  *total = COSTS_N_INSNS (loongarch_idiv_insns (mode));
	}
      else if (mode == DImode)
	*total = loongarch_cost->int_div_di;
      else
	*total = loongarch_cost->int_div_si;
      return false;

    case SIGN_EXTEND:
      *total = loongarch_sign_extend_cost (XEXP (x, 0));
      return false;

    case ZERO_EXTEND:
      *total = loongarch_zero_extend_cost (XEXP (x, 0));
      return false;
    case TRUNCATE:
      /* Costings for highpart multiplies.  Matching patterns of the form:

	 (lshiftrt:DI (mult:DI (sign_extend:DI (...)
			       (sign_extend:DI (...))
		      (const_int 32)
      */
      if ((GET_CODE (XEXP (x, 0)) == ASHIFTRT
	   || GET_CODE (XEXP (x, 0)) == LSHIFTRT)
	  && CONST_INT_P (XEXP (XEXP (x, 0), 1))
	  && ((INTVAL (XEXP (XEXP (x, 0), 1)) == 32
	       && GET_MODE (XEXP (x, 0)) == DImode)
	      || (TARGET_64BIT
		  && INTVAL (XEXP (XEXP (x, 0), 1)) == 64
		  && GET_MODE (XEXP (x, 0)) == TImode))
	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
	  && ((GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SIGN_EXTEND
	       && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SIGN_EXTEND)
	      || (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ZERO_EXTEND
		  && (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1))
		      == ZERO_EXTEND))))
	{
	  if (!speed)
	    *total = COSTS_N_INSNS (1) + 1;
	  else if (mode == DImode)
	    *total = loongarch_cost->int_mult_di;
	  else
	    *total = loongarch_cost->int_mult_si;

	  /* Sign extension is free, zero extension costs for DImode when
	     on a 64bit core / when DMUL is present.  */
	  for (int i = 0; i < 2; ++i)
	    {
	      rtx op = XEXP (XEXP (XEXP (x, 0), 0), i);
	      if (TARGET_64BIT
		  && GET_CODE (op) == ZERO_EXTEND
		  && GET_MODE (op) == DImode)
		*total += rtx_cost (op, DImode, MULT, i, speed);
	      else
		*total += rtx_cost (XEXP (op, 0), VOIDmode, GET_CODE (op), 0,
				    speed);
	    }

	  return true;
	}
      return false;

    case FLOAT:
    case UNSIGNED_FLOAT:
    case FIX:
    case FLOAT_EXTEND:
    case FLOAT_TRUNCATE:
      *total = loongarch_cost->fp_add;
      return false;

    case SET:
      if (register_operand (SET_DEST (x), VOIDmode)
	  && reg_or_0_operand (SET_SRC (x), VOIDmode))
	{
	  *total = loongarch_set_reg_reg_cost (GET_MODE (SET_DEST (x)));
	  return true;
	}
      return false;

    default:
      return false;
    }
}

/* Implement TARGET_ADDRESS_COST.  */

static int
loongarch_address_cost (rtx addr, machine_mode mode,
			addr_space_t as ATTRIBUTE_UNUSED,
			bool speed ATTRIBUTE_UNUSED)
{
  return loongarch_address_insns (addr, mode, false);
}

/* Return one word of double-word value OP, taking into account the fixed
   endianness of certain registers.  HIGH_P is true to select the high part,
   false to select the low part.  */

rtx
loongarch_subword (rtx op, bool high_p)
{
  unsigned int byte;
  machine_mode mode;

  byte = high_p ? UNITS_PER_WORD : 0;
  mode = GET_MODE (op);
  if (mode == VOIDmode)
    mode = TARGET_64BIT ? TImode : DImode;

  if (FP_REG_RTX_P (op))
    return gen_rtx_REG (word_mode, REGNO (op) + high_p);

  if (MEM_P (op))
    return loongarch_rewrite_small_data (adjust_address (op, word_mode, byte));

  return simplify_gen_subreg (word_mode, op, mode, byte);
}

/* Return true if a move from SRC to DEST should be split into two.
   SPLIT_TYPE describes the split condition.  */

bool
loongarch_split_move_p (rtx dest, rtx src)
{
  /* FPR-to-FPR moves can be done in a single instruction, if they're
     allowed at all.  */
  unsigned int size = GET_MODE_SIZE (GET_MODE (dest));
  if (size == 8 && FP_REG_RTX_P (src) && FP_REG_RTX_P (dest))
    return false;

  /* Check for floating-point loads and stores.  */
  if (size == 8)
    {
      if (FP_REG_RTX_P (dest) && MEM_P (src))
	return false;
      if (FP_REG_RTX_P (src) && MEM_P (dest))
	return false;
    }
  /* Otherwise split all multiword moves.  */
  return size > UNITS_PER_WORD;
}

/* Split a move from SRC to DEST, given that loongarch_split_move_p holds.
   SPLIT_TYPE describes the split condition.  */

void
loongarch_split_move (rtx dest, rtx src, rtx insn_)
{
  rtx low_dest;

  gcc_checking_assert (loongarch_split_move_p (dest, src));
  if (FP_REG_RTX_P (dest) || FP_REG_RTX_P (src))
    {
      if (!TARGET_64BIT && GET_MODE (dest) == DImode)
	emit_insn (gen_move_doubleword_fprdi (dest, src));
      else if (!TARGET_64BIT && GET_MODE (dest) == DFmode)
	emit_insn (gen_move_doubleword_fprdf (dest, src));
      else if (TARGET_64BIT && GET_MODE (dest) == TFmode)
	emit_insn (gen_move_doubleword_fprtf (dest, src));
      else
	gcc_unreachable ();
    }
  else
    {
      /* The operation can be split into two normal moves.  Decide in
	 which order to do them.  */
      low_dest = loongarch_subword (dest, false);
      if (REG_P (low_dest) && reg_overlap_mentioned_p (low_dest, src))
	{
	  loongarch_emit_move (loongarch_subword (dest, true),
			       loongarch_subword (src, true));
	  loongarch_emit_move (low_dest, loongarch_subword (src, false));
	}
      else
	{
	  loongarch_emit_move (low_dest, loongarch_subword (src, false));
	  loongarch_emit_move (loongarch_subword (dest, true),
			       loongarch_subword (src, true));
	}
    }

  /* This is a hack.  See if the next insn uses DEST and if so, see if we
     can forward SRC for DEST.  This is most useful if the next insn is a
     simple store.  */
  rtx_insn *insn = (rtx_insn *) insn_;
  struct loongarch_address_info addr = {};
  if (insn)
    {
      rtx_insn *next = next_nonnote_nondebug_insn_bb (insn);
      if (next)
	{
	  rtx set = single_set (next);
	  if (set && SET_SRC (set) == dest)
	    {
	      if (MEM_P (src))
		{
		  rtx tmp = XEXP (src, 0);
		  loongarch_classify_address (&addr, tmp, GET_MODE (tmp),
					      true);
		  if (addr.reg && !reg_overlap_mentioned_p (dest, addr.reg))
		    validate_change (next, &SET_SRC (set), src, false);
		}
	      else
		validate_change (next, &SET_SRC (set), src, false);
	    }
	}
    }
}

/* Return true if a move from SRC to DEST in INSN should be split.  */

bool
loongarch_split_move_insn_p (rtx dest, rtx src)
{
  return loongarch_split_move_p (dest, src);
}

/* Split a move from SRC to DEST in INSN, given that
   loongarch_split_move_insn_p holds.  */

void
loongarch_split_move_insn (rtx dest, rtx src, rtx insn)
{
  loongarch_split_move (dest, src, insn);
}

/* Implement TARGET_CONSTANT_ALIGNMENT.  */

static HOST_WIDE_INT
loongarch_constant_alignment (const_tree exp, HOST_WIDE_INT align)
{
  if (TREE_CODE (exp) == STRING_CST || TREE_CODE (exp) == CONSTRUCTOR)
    return MAX (align, BITS_PER_WORD);
  return align;
}

const char *
loongarch_output_move_index (rtx x, machine_mode mode, bool ldr)
{
  int index = exact_log2 (GET_MODE_SIZE (mode));
  if (!IN_RANGE (index, 0, 3))
    return NULL;

  struct loongarch_address_info info;
  if ((loongarch_classify_address (&info, x, mode, false)
       && !(info.type == ADDRESS_REG_REG))
      || !loongarch_legitimate_address_p (mode, x, false))
    return NULL;

  const char *const insn[][4] =
    {
      {
	"stx.b\t%z1,%0",
	"stx.h\t%z1,%0",
	"stx.w\t%z1,%0",
	"stx.d\t%z1,%0",
      },
      {
	"ldx.bu\t%0,%1",
	"ldx.hu\t%0,%1",
	"ldx.w\t%0,%1",
	"ldx.d\t%0,%1",
      }
    };

  return insn[ldr][index];
}

const char *
loongarch_output_move_index_float (rtx x, machine_mode mode, bool ldr)
{
  int index = exact_log2 (GET_MODE_SIZE (mode));
  if (!IN_RANGE (index, 2, 3))
    return NULL;

  struct loongarch_address_info info;
  if ((loongarch_classify_address (&info, x, mode, false)
       && !(info.type == ADDRESS_REG_REG))
      || !loongarch_legitimate_address_p (mode, x, false))
    return NULL;

  const char *const insn[][2] =
    {
	{
	  "fstx.s\t%1,%0",
	  "fstx.d\t%1,%0"
	},
	{
	  "fldx.s\t%0,%1",
	  "fldx.d\t%0,%1"
	},
    };

  return insn[ldr][index-2];
}

/* Return the appropriate instructions to move SRC into DEST.  Assume
   that SRC is operand 1 and DEST is operand 0.  */

const char *
loongarch_output_move (rtx dest, rtx src)
{
  enum rtx_code dest_code = GET_CODE (dest);
  enum rtx_code src_code = GET_CODE (src);
  machine_mode mode = GET_MODE (dest);
  bool dbl_p = (GET_MODE_SIZE (mode) == 8);

  if (loongarch_split_move_p (dest, src))
    return "#";

  if ((src_code == REG && GP_REG_P (REGNO (src)))
      || (src == CONST0_RTX (mode)))
    {
      if (dest_code == REG)
	{
	  if (GP_REG_P (REGNO (dest)))
	    return "or\t%0,%z1,$r0";

	  if (FP_REG_P (REGNO (dest)))
	    return dbl_p ? "movgr2fr.d\t%0,%z1" : "movgr2fr.w\t%0,%z1";
	}
      if (dest_code == MEM)
	{
	  const char *insn = NULL;
	  insn = loongarch_output_move_index (XEXP (dest, 0), GET_MODE (dest),
					      false);
	  if (insn)
	    return insn;

	  rtx offset = XEXP (dest, 0);
	  if (GET_CODE (offset) == PLUS)
	    offset = XEXP (offset, 1);
	  switch (GET_MODE_SIZE (mode))
	    {
	    case 1:
	      return "st.b\t%z1,%0";
	    case 2:
	      return "st.h\t%z1,%0";
	    case 4:
	      if (const_arith_operand (offset, Pmode))
		return "st.w\t%z1,%0";
	      else
		return "stptr.w\t%z1,%0";
	    case 8:
	      if (const_arith_operand (offset, Pmode))
		return "st.d\t%z1,%0";
	      else
		return "stptr.d\t%z1,%0";
	    default:
	      gcc_unreachable ();
	    }
	}
    }
  if (dest_code == REG && GP_REG_P (REGNO (dest)))
    {
      if (src_code == REG)
	if (FP_REG_P (REGNO (src)))
	  return dbl_p ? "movfr2gr.d\t%0,%1" : "movfr2gr.s\t%0,%1";

      if (src_code == MEM)
	{
	  const char *insn = NULL;
	  insn = loongarch_output_move_index (XEXP (src, 0), GET_MODE (src),
					      true);
	  if (insn)
	    return insn;

	  rtx offset = XEXP (src, 0);
	  if (GET_CODE (offset) == PLUS)
	    offset = XEXP (offset, 1);
	  switch (GET_MODE_SIZE (mode))
	    {
	    case 1:
	      return "ld.bu\t%0,%1";
	    case 2:
	      return "ld.hu\t%0,%1";
	    case 4:
	      if (const_arith_operand (offset, Pmode))
		return "ld.w\t%0,%1";
	      else
		return "ldptr.w\t%0,%1";
	    case 8:
	      if (const_arith_operand (offset, Pmode))
		return "ld.d\t%0,%1";
	      else
		return "ldptr.d\t%0,%1";
	    default:
	      gcc_unreachable ();
	    }
	}

      if (src_code == CONST_INT)
	{
	  if (LU12I_INT (src))
	    return "lu12i.w\t%0,%1>>12\t\t\t# %X1";
	  else if (IMM12_INT (src))
	    return "addi.w\t%0,$r0,%1\t\t\t# %X1";
	  else if (IMM12_INT_UNSIGNED (src))
	    return "ori\t%0,$r0,%1\t\t\t# %X1";
	  else if (LU52I_INT (src))
	    return "lu52i.d\t%0,$r0,%X1>>52\t\t\t# %1";
	  else
	    gcc_unreachable ();
	}

      if (symbolic_operand (src, VOIDmode))
	{
	  if ((TARGET_CMODEL_TINY && (!loongarch_global_symbol_p (src)
				      || loongarch_symbol_binds_local_p (src)))
	      || (TARGET_CMODEL_TINY_STATIC && !loongarch_weak_symbol_p (src)))
	    {
	      /* The symbol must be aligned to 4 byte.  */
	      unsigned int align;

	      if (LABEL_REF_P (src))
		align = 32 /* Whatever.  */;
	      else if (CONSTANT_POOL_ADDRESS_P (src))
		align = GET_MODE_ALIGNMENT (get_pool_mode (src));
	      else if (TREE_CONSTANT_POOL_ADDRESS_P (src))
		{
		  tree exp = SYMBOL_REF_DECL (src);
		  align = TYPE_ALIGN (TREE_TYPE (exp));
		  align = loongarch_constant_alignment (exp, align);
		}
	      else if (SYMBOL_REF_DECL (src))
		align = DECL_ALIGN (SYMBOL_REF_DECL (src));
	      else if (SYMBOL_REF_HAS_BLOCK_INFO_P (src)
		       && SYMBOL_REF_BLOCK (src) != NULL)
		align = SYMBOL_REF_BLOCK (src)->alignment;
	      else
		align = BITS_PER_UNIT;

	      if (align % (4 * 8) == 0)
		return "pcaddi\t%0,%%pcrel(%1)>>2";
	    }
	  if (TARGET_CMODEL_TINY
	      || TARGET_CMODEL_TINY_STATIC
	      || TARGET_CMODEL_NORMAL
	      || TARGET_CMODEL_LARGE)
	    {
	      if (!loongarch_global_symbol_p (src)
		  || loongarch_symbol_binds_local_p (src))
		return "la.local\t%0,%1";
	      else
		return "la.global\t%0,%1";
	    }
	  if (TARGET_CMODEL_EXTREME)
	    {
	      sorry ("Normal symbol loading not implemented in extreme mode.");
	      gcc_unreachable ();
	    }

	}
    }
  if (src_code == REG && FP_REG_P (REGNO (src)))
    {
      if (dest_code == REG && FP_REG_P (REGNO (dest)))
	return dbl_p ? "fmov.d\t%0,%1" : "fmov.s\t%0,%1";

      if (dest_code == MEM)
	{
	  const char *insn = NULL;
	  insn = loongarch_output_move_index_float (XEXP (dest, 0),
						    GET_MODE (dest),
						    false);
	  if (insn)
	    return insn;

	  return dbl_p ? "fst.d\t%1,%0" : "fst.s\t%1,%0";
	}
    }
  if (dest_code == REG && FP_REG_P (REGNO (dest)))
    {
      if (src_code == MEM)
	{
	  const char *insn = NULL;
	  insn = loongarch_output_move_index_float (XEXP (src, 0),
						    GET_MODE (src),
						    true);
	  if (insn)
	    return insn;

	  return dbl_p ? "fld.d\t%0,%1" : "fld.s\t%0,%1";
	}
    }
  gcc_unreachable ();
}

/* Return true if CMP1 is a suitable second operand for integer ordering
   test CODE.  */

static bool
loongarch_int_order_operand_ok_p (enum rtx_code code, rtx cmp1)
{
  switch (code)
    {
    case GT:
    case GTU:
      return reg_or_0_operand (cmp1, VOIDmode);

    case GE:
    case GEU:
      return cmp1 == const1_rtx;

    case LT:
    case LTU:
      return arith_operand (cmp1, VOIDmode);

    case LE:
      return sle_operand (cmp1, VOIDmode);

    case LEU:
      return sleu_operand (cmp1, VOIDmode);

    default:
      gcc_unreachable ();
    }
}

/* Return true if *CMP1 (of mode MODE) is a valid second operand for
   integer ordering test *CODE, or if an equivalent combination can
   be formed by adjusting *CODE and *CMP1.  When returning true, update
   *CODE and *CMP1 with the chosen code and operand, otherwise leave
   them alone.  */

static bool
loongarch_canonicalize_int_order_test (enum rtx_code *code, rtx *cmp1,
				       machine_mode mode)
{
  HOST_WIDE_INT plus_one;

  if (loongarch_int_order_operand_ok_p (*code, *cmp1))
    return true;

  if (CONST_INT_P (*cmp1))
    switch (*code)
      {
      case LE:
	plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
	if (INTVAL (*cmp1) < plus_one)
	  {
	    *code = LT;
	    *cmp1 = force_reg (mode, GEN_INT (plus_one));
	    return true;
	  }
	break;

      case LEU:
	plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
	if (plus_one != 0)
	  {
	    *code = LTU;
	    *cmp1 = force_reg (mode, GEN_INT (plus_one));
	    return true;
	  }
	break;

      default:
	break;
      }
  return false;
}

/* Compare CMP0 and CMP1 using ordering test CODE and store the result
   in TARGET.  CMP0 and TARGET are register_operands.  If INVERT_PTR
   is nonnull, it's OK to set TARGET to the inverse of the result and
   flip *INVERT_PTR instead.  */

static void
loongarch_emit_int_order_test (enum rtx_code code, bool *invert_ptr,
			       rtx target, rtx cmp0, rtx cmp1)
{
  machine_mode mode;

  /* First see if there is a LoongArch instruction that can do this operation.
     If not, try doing the same for the inverse operation.  If that also
     fails, force CMP1 into a register and try again.  */
  mode = GET_MODE (cmp0);
  if (loongarch_canonicalize_int_order_test (&code, &cmp1, mode))
    loongarch_emit_binary (code, target, cmp0, cmp1);
  else
    {
      enum rtx_code inv_code = reverse_condition (code);
      if (!loongarch_canonicalize_int_order_test (&inv_code, &cmp1, mode))
	{
	  cmp1 = force_reg (mode, cmp1);
	  loongarch_emit_int_order_test (code, invert_ptr, target, cmp0, cmp1);
	}
      else if (invert_ptr == 0)
	{
	  rtx inv_target;

	  inv_target = loongarch_force_binary (GET_MODE (target),
					       inv_code, cmp0, cmp1);
	  loongarch_emit_binary (XOR, target, inv_target, const1_rtx);
	}
      else
	{
	  *invert_ptr = !*invert_ptr;
	  loongarch_emit_binary (inv_code, target, cmp0, cmp1);
	}
    }
}

/* Return a register that is zero if CMP0 and CMP1 are equal.
   The register will have the same mode as CMP0.  */

static rtx
loongarch_zero_if_equal (rtx cmp0, rtx cmp1)
{
  if (cmp1 == const0_rtx)
    return cmp0;

  if (uns_arith_operand (cmp1, VOIDmode))
    return expand_binop (GET_MODE (cmp0), xor_optab, cmp0, cmp1, 0, 0,
			 OPTAB_DIRECT);

  return expand_binop (GET_MODE (cmp0), sub_optab, cmp0, cmp1, 0, 0,
		       OPTAB_DIRECT);
}

/* Allocate a floating-point condition-code register of mode MODE.  */

static rtx
loongarch_allocate_fcc (machine_mode mode)
{
  unsigned int regno, count;

  gcc_assert (TARGET_HARD_FLOAT);

  if (mode == FCCmode)
    count = 1;
  else
    gcc_unreachable ();

  cfun->machine->next_fcc += -cfun->machine->next_fcc & (count - 1);
  if (cfun->machine->next_fcc > FCC_REG_LAST - FCC_REG_FIRST)
    cfun->machine->next_fcc = 0;

  regno = FCC_REG_FIRST + cfun->machine->next_fcc;
  cfun->machine->next_fcc += count;
  return gen_rtx_REG (mode, regno);
}

/* Sign- or zero-extend OP0 and OP1 for integer comparisons.  */

static void
loongarch_extend_comparands (rtx_code code, rtx *op0, rtx *op1)
{
  /* Comparisons consider all XLEN bits, so extend sub-XLEN values.  */
  if (GET_MODE_SIZE (word_mode) > GET_MODE_SIZE (GET_MODE (*op0)))
    {
      /* TODO: checkout It is more profitable to zero-extend QImode values.  */
      if (unsigned_condition (code) == code && GET_MODE (*op0) == QImode)
	{
	  *op0 = gen_rtx_ZERO_EXTEND (word_mode, *op0);
	  if (CONST_INT_P (*op1))
	    *op1 = GEN_INT ((uint8_t) INTVAL (*op1));
	  else
	    *op1 = gen_rtx_ZERO_EXTEND (word_mode, *op1);
	}
      else
	{
	  *op0 = gen_rtx_SIGN_EXTEND (word_mode, *op0);
	  if (*op1 != const0_rtx)
	    *op1 = gen_rtx_SIGN_EXTEND (word_mode, *op1);
	}
    }
}

/* Convert a comparison into something that can be used in a branch.  On
   entry, *OP0 and *OP1 are the values being compared and *CODE is the code
   used to compare them.  Update them to describe the final comparison.  */

static void
loongarch_emit_int_compare (enum rtx_code *code, rtx *op0, rtx *op1)
{
  static const enum rtx_code
  mag_comparisons[][2] = {{LEU, LTU}, {GTU, GEU}, {LE, LT}, {GT, GE}};

  if (splittable_const_int_operand (*op1, VOIDmode))
    {
      HOST_WIDE_INT rhs = INTVAL (*op1);

      if (*code == EQ || *code == NE)
	{
	  /* Convert e.g. OP0 == 2048 into OP0 - 2048 == 0.  */
	  if (IMM12_OPERAND (-rhs))
	    {
	      *op0 = loongarch_force_binary (GET_MODE (*op0), PLUS, *op0,
					     GEN_INT (-rhs));
	      *op1 = const0_rtx;
	    }
	}
      else
	{
	  /* Convert e.g. (OP0 <= 0xFFF) into (OP0 < 0x1000).  */
	  for (size_t i = 0; i < ARRAY_SIZE (mag_comparisons); i++)
	    {
	      HOST_WIDE_INT new_rhs;
	      bool increment = *code == mag_comparisons[i][0];
	      bool decrement = *code == mag_comparisons[i][1];
	      if (!increment && !decrement)
		continue;

	      new_rhs = rhs + (increment ? 1 : -1);
	      if (loongarch_integer_cost (new_rhs)
		    < loongarch_integer_cost (rhs)
		  && (rhs < 0) == (new_rhs < 0))
		{
		  *op1 = GEN_INT (new_rhs);
		  *code = mag_comparisons[i][increment];
		}
	      break;
	    }
	}
    }

  loongarch_extend_comparands (*code, op0, op1);

  *op0 = force_reg (word_mode, *op0);
  if (*op1 != const0_rtx)
    *op1 = force_reg (word_mode, *op1);
}

/* Like loongarch_emit_int_compare, but for floating-point comparisons.  */

static void
loongarch_emit_float_compare (enum rtx_code *code, rtx *op0, rtx *op1)
{
  rtx cmp_op0 = *op0;
  rtx cmp_op1 = *op1;

  /* Floating-point tests use a separate FCMP.cond.fmt
     comparison to set a register.  The branch or conditional move will
     then compare that register against zero.

     Set CMP_CODE to the code of the comparison instruction and
     *CODE to the code that the branch or move should use.  */
  enum rtx_code cmp_code = *code;
  /* Three FP conditions cannot be implemented by reversing the
     operands for FCMP.cond.fmt, instead a reversed condition code is
     required and a test for false.  */
  *code = NE;
  *op0 = loongarch_allocate_fcc (FCCmode);

  *op1 = const0_rtx;
  loongarch_emit_binary (cmp_code, *op0, cmp_op0, cmp_op1);
}

/* Try performing the comparison in OPERANDS[1], whose arms are OPERANDS[2]
   and OPERAND[3].  Store the result in OPERANDS[0].

   On 64-bit targets, the mode of the comparison and target will always be
   SImode, thus possibly narrower than that of the comparison's operands.  */

void
loongarch_expand_scc (rtx operands[])
{
  rtx target = operands[0];
  enum rtx_code code = GET_CODE (operands[1]);
  rtx op0 = operands[2];
  rtx op1 = operands[3];

  loongarch_extend_comparands (code, &op0, &op1);
  op0 = force_reg (word_mode, op0);

  gcc_assert (GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT);

  if (code == EQ || code == NE)
    {
      rtx zie = loongarch_zero_if_equal (op0, op1);
      loongarch_emit_binary (code, target, zie, const0_rtx);
    }
  else
    loongarch_emit_int_order_test (code, 0, target, op0, op1);
}

/* Compare OPERANDS[1] with OPERANDS[2] using comparison code
   CODE and jump to OPERANDS[3] if the condition holds.  */

void
loongarch_expand_conditional_branch (rtx *operands)
{
  enum rtx_code code = GET_CODE (operands[0]);
  rtx op0 = operands[1];
  rtx op1 = operands[2];
  rtx condition;

  if (FLOAT_MODE_P (GET_MODE (op1)))
    loongarch_emit_float_compare (&code, &op0, &op1);
  else
    loongarch_emit_int_compare (&code, &op0, &op1);

  condition = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
  emit_jump_insn (gen_condjump (condition, operands[3]));
}

/* Perform the comparison in OPERANDS[1].  Move OPERANDS[2] into OPERANDS[0]
   if the condition holds, otherwise move OPERANDS[3] into OPERANDS[0].  */

void
loongarch_expand_conditional_move (rtx *operands)
{
  enum rtx_code code = GET_CODE (operands[1]);
  rtx op0 = XEXP (operands[1], 0);
  rtx op1 = XEXP (operands[1], 1);

  if (FLOAT_MODE_P (GET_MODE (op1)))
    loongarch_emit_float_compare (&code, &op0, &op1);
  else
    {
      loongarch_extend_comparands (code, &op0, &op1);

      op0 = force_reg (word_mode, op0);

      if (code == EQ || code == NE)
	{
	  op0 = loongarch_zero_if_equal (op0, op1);
	  op1 = const0_rtx;
	}
      else
	{
	  /* The comparison needs a separate scc instruction.  Store the
	     result of the scc in *OP0 and compare it against zero.  */
	  bool invert = false;
	  rtx target = gen_reg_rtx (GET_MODE (op0));
	  loongarch_emit_int_order_test (code, &invert, target, op0, op1);
	  code = invert ? EQ : NE;
	  op0 = target;
	  op1 = const0_rtx;
	}
    }

  rtx cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1);
  /* There is no direct support for general conditional GP move involving
     two registers using SEL.  */
  if (INTEGRAL_MODE_P (GET_MODE (operands[2]))
      && register_operand (operands[2], VOIDmode)
      && register_operand (operands[3], VOIDmode))
    {
      machine_mode mode = GET_MODE (operands[0]);
      rtx temp = gen_reg_rtx (mode);
      rtx temp2 = gen_reg_rtx (mode);

      emit_insn (gen_rtx_SET (temp,
			      gen_rtx_IF_THEN_ELSE (mode, cond,
						    operands[2], const0_rtx)));

      /* Flip the test for the second operand.  */
      cond = gen_rtx_fmt_ee ((code == EQ) ? NE : EQ, GET_MODE (op0), op0, op1);

      emit_insn (gen_rtx_SET (temp2,
			      gen_rtx_IF_THEN_ELSE (mode, cond,
						    operands[3], const0_rtx)));

      /* Merge the two results, at least one is guaranteed to be zero.  */
      emit_insn (gen_rtx_SET (operands[0], gen_rtx_IOR (mode, temp, temp2)));
    }
  else
    emit_insn (gen_rtx_SET (operands[0],
			    gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]), cond,
						  operands[2], operands[3])));
}

/* Implement TARGET_EXPAND_BUILTIN_VA_START.  */

static void
loongarch_va_start (tree valist, rtx nextarg)
{
  nextarg = plus_constant (Pmode, nextarg, -cfun->machine->varargs_size);
  std_expand_builtin_va_start (valist, nextarg);
}

/* Implement TARGET_FUNCTION_OK_FOR_SIBCALL.  */

static bool
loongarch_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED,
				   tree exp ATTRIBUTE_UNUSED)
{
  /* Always OK.  */
  return true;
}

/* Emit straight-line code to move LENGTH bytes from SRC to DEST.
   Assume that the areas do not overlap.  */

static void
loongarch_block_move_straight (rtx dest, rtx src, HOST_WIDE_INT length)
{
  HOST_WIDE_INT offset, delta;
  unsigned HOST_WIDE_INT bits;
  int i;
  machine_mode mode;
  rtx *regs;

  bits = MIN (BITS_PER_WORD, MIN (MEM_ALIGN (src), MEM_ALIGN (dest)));

  mode = int_mode_for_size (bits, 0).require ();
  delta = bits / BITS_PER_UNIT;

  /* Allocate a buffer for the temporary registers.  */
  regs = XALLOCAVEC (rtx, length / delta);

  /* Load as many BITS-sized chunks as possible.  Use a normal load if
     the source has enough alignment, otherwise use left/right pairs.  */
  for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
    {
      regs[i] = gen_reg_rtx (mode);
      loongarch_emit_move (regs[i], adjust_address (src, mode, offset));
    }

  for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
    loongarch_emit_move (adjust_address (dest, mode, offset), regs[i]);

  /* Mop up any left-over bytes.  */
  if (offset < length)
    {
      src = adjust_address (src, BLKmode, offset);
      dest = adjust_address (dest, BLKmode, offset);
      move_by_pieces (dest, src, length - offset,
		      MIN (MEM_ALIGN (src), MEM_ALIGN (dest)),
		      (enum memop_ret) 0);
    }
}

/* Helper function for doing a loop-based block operation on memory
   reference MEM.  Each iteration of the loop will operate on LENGTH
   bytes of MEM.

   Create a new base register for use within the loop and point it to
   the start of MEM.  Create a new memory reference that uses this
   register.  Store them in *LOOP_REG and *LOOP_MEM respectively.  */

static void
loongarch_adjust_block_mem (rtx mem, HOST_WIDE_INT length, rtx *loop_reg,
			    rtx *loop_mem)
{
  *loop_reg = copy_addr_to_reg (XEXP (mem, 0));

  /* Although the new mem does not refer to a known location,
     it does keep up to LENGTH bytes of alignment.  */
  *loop_mem = change_address (mem, BLKmode, *loop_reg);
  set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT));
}

/* Move LENGTH bytes from SRC to DEST using a loop that moves BYTES_PER_ITER
   bytes at a time.  LENGTH must be at least BYTES_PER_ITER.  Assume that
   the memory regions do not overlap.  */

static void
loongarch_block_move_loop (rtx dest, rtx src, HOST_WIDE_INT length,
			   HOST_WIDE_INT bytes_per_iter)
{
  rtx_code_label *label;
  rtx src_reg, dest_reg, final_src, test;
  HOST_WIDE_INT leftover;

  leftover = length % bytes_per_iter;
  length -= leftover;

  /* Create registers and memory references for use within the loop.  */
  loongarch_adjust_block_mem (src, bytes_per_iter, &src_reg, &src);
  loongarch_adjust_block_mem (dest, bytes_per_iter, &dest_reg, &dest);

  /* Calculate the value that SRC_REG should have after the last iteration
     of the loop.  */
  final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length), 0,
				   0, OPTAB_WIDEN);

  /* Emit the start of the loop.  */
  label = gen_label_rtx ();
  emit_label (label);

  /* Emit the loop body.  */
  loongarch_block_move_straight (dest, src, bytes_per_iter);

  /* Move on to the next block.  */
  loongarch_emit_move (src_reg,
		       plus_constant (Pmode, src_reg, bytes_per_iter));
  loongarch_emit_move (dest_reg,
		       plus_constant (Pmode, dest_reg, bytes_per_iter));

  /* Emit the loop condition.  */
  test = gen_rtx_NE (VOIDmode, src_reg, final_src);
  if (Pmode == DImode)
    emit_jump_insn (gen_cbranchdi4 (test, src_reg, final_src, label));
  else
    emit_jump_insn (gen_cbranchsi4 (test, src_reg, final_src, label));

  /* Mop up any left-over bytes.  */
  if (leftover)
    loongarch_block_move_straight (dest, src, leftover);
  else
    /* Temporary fix for PR79150.  */
    emit_insn (gen_nop ());
}

/* Expand a cpymemsi instruction, which copies LENGTH bytes from
   memory reference SRC to memory reference DEST.  */

bool
loongarch_expand_block_move (rtx dest, rtx src, rtx length)
{
  int max_move_bytes = LARCH_MAX_MOVE_BYTES_STRAIGHT;

  if (CONST_INT_P (length)
      && INTVAL (length) <= loongarch_max_inline_memcpy_size)
    {
      if (INTVAL (length) <= max_move_bytes)
	{
	  loongarch_block_move_straight (dest, src, INTVAL (length));
	  return true;
	}
      else if (optimize)
	{
	  loongarch_block_move_loop (dest, src, INTVAL (length),
				     LARCH_MAX_MOVE_BYTES_PER_LOOP_ITER);
	  return true;
	}
    }
  return false;
}

/* Return true if loongarch_expand_block_move is the preferred
   implementation of the 'cpymemsi' template.  */

bool
loongarch_do_optimize_block_move_p (void)
{
  /* if -m[no-]memcpy is given explicitly.  */
  if (target_flags_explicit & MASK_MEMCPY)
    return !TARGET_MEMCPY;

  /* if not, don't optimize under -Os.  */
  return !optimize_size;
}


/* Expand a QI or HI mode atomic memory operation.

   GENERATOR contains a pointer to the gen_* function that generates
   the SI mode underlying atomic operation using masks that we
   calculate.

   RESULT is the return register for the operation.  Its value is NULL
   if unused.

   MEM is the location of the atomic access.

   OLDVAL is the first operand for the operation.

   NEWVAL is the optional second operand for the operation.  Its value
   is NULL if unused.  */

void
loongarch_expand_atomic_qihi (union loongarch_gen_fn_ptrs generator,
			      rtx result, rtx mem, rtx oldval, rtx newval,
			      rtx model)
{
  rtx orig_addr, memsi_addr, memsi, shift, shiftsi, unshifted_mask;
  rtx unshifted_mask_reg, mask, inverted_mask, si_op;
  rtx res = NULL;
  machine_mode mode;

  mode = GET_MODE (mem);

  /* Compute the address of the containing SImode value.  */
  orig_addr = force_reg (Pmode, XEXP (mem, 0));
  memsi_addr = loongarch_force_binary (Pmode, AND, orig_addr,
				       force_reg (Pmode, GEN_INT (-4)));

  /* Create a memory reference for it.  */
  memsi = gen_rtx_MEM (SImode, memsi_addr);
  set_mem_alias_set (memsi, ALIAS_SET_MEMORY_BARRIER);
  MEM_VOLATILE_P (memsi) = MEM_VOLATILE_P (mem);

  /* Work out the byte offset of the QImode or HImode value,
     counting from the least significant byte.  */
  shift = loongarch_force_binary (Pmode, AND, orig_addr, GEN_INT (3));
  /* Multiply by eight to convert the shift value from bytes to bits.  */
  loongarch_emit_binary (ASHIFT, shift, shift, GEN_INT (3));

  /* Make the final shift an SImode value, so that it can be used in
     SImode operations.  */
  shiftsi = force_reg (SImode, gen_lowpart (SImode, shift));

  /* Set MASK to an inclusive mask of the QImode or HImode value.  */
  unshifted_mask = GEN_INT (GET_MODE_MASK (mode));
  unshifted_mask_reg = force_reg (SImode, unshifted_mask);
  mask = loongarch_force_binary (SImode, ASHIFT, unshifted_mask_reg, shiftsi);

  /* Compute the equivalent exclusive mask.  */
  inverted_mask = gen_reg_rtx (SImode);
  emit_insn (gen_rtx_SET (inverted_mask, gen_rtx_NOT (SImode, mask)));

  /* Shift the old value into place.  */
  if (oldval != const0_rtx)
    {
      oldval = convert_modes (SImode, mode, oldval, true);
      oldval = force_reg (SImode, oldval);
      oldval = loongarch_force_binary (SImode, ASHIFT, oldval, shiftsi);
    }

  /* Do the same for the new value.  */
  if (newval && newval != const0_rtx)
    {
      newval = convert_modes (SImode, mode, newval, true);
      newval = force_reg (SImode, newval);
      newval = loongarch_force_binary (SImode, ASHIFT, newval, shiftsi);
    }

  /* Do the SImode atomic access.  */
  if (result)
    res = gen_reg_rtx (SImode);

  if (newval)
    si_op = generator.fn_7 (res, memsi, mask, inverted_mask, oldval, newval,
			    model);
  else if (result)
    si_op = generator.fn_6 (res, memsi, mask, inverted_mask, oldval, model);
  else
    si_op = generator.fn_5 (memsi, mask, inverted_mask, oldval, model);

  emit_insn (si_op);

  if (result)
    {
      /* Shift and convert the result.  */
      loongarch_emit_binary (AND, res, res, mask);
      loongarch_emit_binary (LSHIFTRT, res, res, shiftsi);
      loongarch_emit_move (result, gen_lowpart (GET_MODE (result), res));
    }
}

/* Return true if (zero_extract OP WIDTH BITPOS) can be used as the
   source of an "ext" instruction or the destination of an "ins"
   instruction.  OP must be a register operand and the following
   conditions must hold:

   0 <= BITPOS < GET_MODE_BITSIZE (GET_MODE (op))
   0 < WIDTH <= GET_MODE_BITSIZE (GET_MODE (op))
   0 < BITPOS + WIDTH <= GET_MODE_BITSIZE (GET_MODE (op))

   Also reject lengths equal to a word as they are better handled
   by the move patterns.  */

bool
loongarch_use_ins_ext_p (rtx op, HOST_WIDE_INT width, HOST_WIDE_INT bitpos)
{
  if (!register_operand (op, VOIDmode)
      || GET_MODE_BITSIZE (GET_MODE (op)) > BITS_PER_WORD)
    return false;

  if (!IN_RANGE (width, 1, GET_MODE_BITSIZE (GET_MODE (op)) - 1))
    return false;

  if (bitpos < 0 || bitpos + width > GET_MODE_BITSIZE (GET_MODE (op)))
    return false;

  return true;
}

/* Print the text for PRINT_OPERAND punctation character CH to FILE.
   The punctuation characters are:

   '.'	Print the name of the register with a hard-wired zero (zero or $r0).
   '$'	Print the name of the stack pointer register (sp or $r3).

   See also loongarch_init_print_operand_punct.  */

static void
loongarch_print_operand_punctuation (FILE *file, int ch)
{
  switch (ch)
    {
    case '.':
      fputs (reg_names[GP_REG_FIRST + 0], file);
      break;

    case '$':
      fputs (reg_names[STACK_POINTER_REGNUM], file);
      break;

    default:
      gcc_unreachable ();
      break;
    }
}

/* Initialize loongarch_print_operand_punct.  */

static void
loongarch_init_print_operand_punct (void)
{
  const char *p;

  for (p = ".$"; *p; p++)
    loongarch_print_operand_punct[(unsigned char) *p] = true;
}

/* PRINT_OPERAND prefix LETTER refers to the integer branch instruction
   associated with condition CODE.  Print the condition part of the
   opcode to FILE.  */

static void
loongarch_print_int_branch_condition (FILE *file, enum rtx_code code,
				      int letter)
{
  switch (code)
    {
    case EQ:
    case NE:
    case GT:
    case GE:
    case LT:
    case LE:
    case GTU:
    case GEU:
    case LTU:
    case LEU:
      /* Conveniently, the LoongArch names for these conditions are the same
	 as their RTL equivalents.  */
      fputs (GET_RTX_NAME (code), file);
      break;

    default:
      output_operand_lossage ("'%%%c' is not a valid operand prefix", letter);
      break;
    }
}

/* Likewise floating-point branches.  */

static void
loongarch_print_float_branch_condition (FILE *file, enum rtx_code code,
					int letter)
{
  switch (code)
    {
    case EQ:
      fputs ("ceqz", file);
      break;

    case NE:
      fputs ("cnez", file);
      break;

    default:
      output_operand_lossage ("'%%%c' is not a valid operand prefix", letter);
      break;
    }
}

/* Implement TARGET_PRINT_OPERAND_PUNCT_VALID_P.  */

static bool
loongarch_print_operand_punct_valid_p (unsigned char code)
{
  return loongarch_print_operand_punct[code];
}

/* Return true if a FENCE should be emitted to before a memory access to
   implement the release portion of memory model MODEL.  */

static bool
loongarch_memmodel_needs_rel_acq_fence (enum memmodel model)
{
  switch (model)
    {
      case MEMMODEL_ACQ_REL:
      case MEMMODEL_SEQ_CST:
      case MEMMODEL_SYNC_SEQ_CST:
      case MEMMODEL_RELEASE:
      case MEMMODEL_SYNC_RELEASE:
      case MEMMODEL_ACQUIRE:
      case MEMMODEL_CONSUME:
      case MEMMODEL_SYNC_ACQUIRE:
	return true;

      case MEMMODEL_RELAXED:
	return false;

      default:
	gcc_unreachable ();
    }
}

/* Return true if a FENCE should be emitted to before a memory access to
   implement the release portion of memory model MODEL.  */

static bool
loongarch_memmodel_needs_release_fence (enum memmodel model)
{
  switch (model)
    {
    case MEMMODEL_ACQ_REL:
    case MEMMODEL_SEQ_CST:
    case MEMMODEL_SYNC_SEQ_CST:
    case MEMMODEL_RELEASE:
    case MEMMODEL_SYNC_RELEASE:
      return true;

    case MEMMODEL_ACQUIRE:
    case MEMMODEL_CONSUME:
    case MEMMODEL_SYNC_ACQUIRE:
    case MEMMODEL_RELAXED:
      return false;

    default:
      gcc_unreachable ();
    }
}

/* Implement TARGET_PRINT_OPERAND.  The LoongArch-specific operand codes are:

   'X'	Print CONST_INT OP in hexadecimal format.
   'x'	Print the low 16 bits of CONST_INT OP in hexadecimal format.
   'd'	Print CONST_INT OP in decimal.
   'm'	Print one less than CONST_INT OP in decimal.
   'y'	Print exact log2 of CONST_INT OP in decimal.
   'C'	Print the integer branch condition for comparison OP.
   'N'	Print the inverse of the integer branch condition for comparison OP.
   'F'	Print the FPU branch condition for comparison OP.
   'W'	Print the inverse of the FPU branch condition for comparison OP.
   'T'	Print 'f' for (eq:CC ...), 't' for (ne:CC ...),
	      'z' for (eq:?I ...), 'n' for (ne:?I ...).
   't'	Like 'T', but with the EQ/NE cases reversed
   'Y'	Print loongarch_fp_conditions[INTVAL (OP)]
   'Z'	Print OP and a comma for 8CC, otherwise print nothing.
   'z'	Print $0 if OP is zero, otherwise print OP normally.
   'b'	Print the address of a memory operand, without offset.
   'V'	Print exact log2 of CONST_INT OP element 0 of a replicated
	  CONST_VECTOR in decimal.
   'A'	Print a _DB suffix if the memory model requires a release.
   'G'	Print a DBAR insn if the memory model requires a release.
   'i'	Print i if the operand is not a register.  */

static void
loongarch_print_operand (FILE *file, rtx op, int letter)
{
  enum rtx_code code;

  if (loongarch_print_operand_punct_valid_p (letter))
    {
      loongarch_print_operand_punctuation (file, letter);
      return;
    }

  gcc_assert (op);
  code = GET_CODE (op);

  switch (letter)
    {
    case 'X':
      if (CONST_INT_P (op))
	fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op));
      else
	output_operand_lossage ("invalid use of '%%%c'", letter);
      break;

    case 'x':
      if (CONST_INT_P (op))
	fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op) & 0xffff);
      else
	output_operand_lossage ("invalid use of '%%%c'", letter);
      break;

    case 'd':
      if (CONST_INT_P (op))
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (op));
      else
	output_operand_lossage ("invalid use of '%%%c'", letter);
      break;

    case 'm':
      if (CONST_INT_P (op))
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (op) - 1);
      else
	output_operand_lossage ("invalid use of '%%%c'", letter);
      break;

    case 'y':
      if (CONST_INT_P (op))
	{
	  int val = exact_log2 (INTVAL (op));
	  if (val != -1)
	    fprintf (file, "%d", val);
	  else
	    output_operand_lossage ("invalid use of '%%%c'", letter);
	}
      else
	output_operand_lossage ("invalid use of '%%%c'", letter);
      break;

    case 'V':
      if (CONST_VECTOR_P (op))
	{
	  machine_mode mode = GET_MODE_INNER (GET_MODE (op));
	  unsigned HOST_WIDE_INT val = UINTVAL (CONST_VECTOR_ELT (op, 0));
	  int vlog2 = exact_log2 (val & GET_MODE_MASK (mode));
	  if (vlog2 != -1)
	    fprintf (file, "%d", vlog2);
	  else
	    output_operand_lossage ("invalid use of '%%%c'", letter);
	}
      else
	output_operand_lossage ("invalid use of '%%%c'", letter);
      break;

    case 'C':
      loongarch_print_int_branch_condition (file, code, letter);
      break;

    case 'N':
      loongarch_print_int_branch_condition (file, reverse_condition (code),
					    letter);
      break;

    case 'F':
      loongarch_print_float_branch_condition (file, code, letter);
      break;

    case 'W':
      loongarch_print_float_branch_condition (file, reverse_condition (code),
					      letter);
      break;

    case 'T':
    case 't':
      {
	int truth = (code == NE) == (letter == 'T');
	fputc ("zfnt"[truth * 2 + FCC_REG_P (REGNO (XEXP (op, 0)))], file);
      }
      break;

    case 'Y':
      if (code == CONST_INT
	  && UINTVAL (op) < ARRAY_SIZE (loongarch_fp_conditions))
	fputs (loongarch_fp_conditions[UINTVAL (op)], file);
      else
	output_operand_lossage ("'%%%c' is not a valid operand prefix",
				letter);
      break;

    case 'Z':
      loongarch_print_operand (file, op, 0);
      fputc (',', file);
      break;

    case 'A':
      if (loongarch_memmodel_needs_rel_acq_fence ((enum memmodel) INTVAL (op)))
	fputs ("_db", file);
      break;

    case 'G':
      if (loongarch_memmodel_needs_release_fence ((enum memmodel) INTVAL (op)))
	fputs ("dbar\t0", file);
      break;

    case 'i':
      if (code != REG)
	fputs ("i", file);
      break;

    default:
      switch (code)
	{
	case REG:
	  {
	    unsigned int regno = REGNO (op);
	    if (letter && letter != 'z')
	      output_operand_lossage ("invalid use of '%%%c'", letter);
	    fprintf (file, "%s", reg_names[regno]);
	  }
	  break;

	case MEM:
	  if (letter == 'D')
	    output_address (GET_MODE (op),
			    plus_constant (Pmode, XEXP (op, 0), 4));
	  else if (letter == 'b')
	    {
	      gcc_assert (REG_P (XEXP (op, 0)));
	      loongarch_print_operand (file, XEXP (op, 0), 0);
	    }
	  else if (letter && letter != 'z')
	    output_operand_lossage ("invalid use of '%%%c'", letter);
	  else
	    output_address (GET_MODE (op), XEXP (op, 0));
	  break;

	default:
	  if (letter == 'z' && op == CONST0_RTX (GET_MODE (op)))
	    fputs (reg_names[GP_REG_FIRST], file);
	  else if (letter && letter != 'z')
	    output_operand_lossage ("invalid use of '%%%c'", letter);
	  else
	    output_addr_const (file, loongarch_strip_unspec_address (op));
	  break;
	}
    }
}

/* Implement TARGET_PRINT_OPERAND_ADDRESS.  */

static void
loongarch_print_operand_address (FILE *file, machine_mode /* mode  */, rtx x)
{
  struct loongarch_address_info addr;

  if (loongarch_classify_address (&addr, x, word_mode, true))
    switch (addr.type)
      {
      case ADDRESS_REG:
	fprintf (file, "%s,", reg_names[REGNO (addr.reg)]);
	loongarch_print_operand (file, addr.offset, 0);
	return;

      case ADDRESS_REG_REG:
	fprintf (file, "%s,%s", reg_names[REGNO (addr.reg)],
				reg_names[REGNO (addr.offset)]);
	return;

      case ADDRESS_CONST_INT:
	fprintf (file, "%s,", reg_names[GP_REG_FIRST]);
	output_addr_const (file, x);
	return;

      case ADDRESS_SYMBOLIC:
	output_addr_const (file, loongarch_strip_unspec_address (x));
	return;
      }
  if (CONST_INT_P (x))
    output_addr_const (file, x);
  else
    gcc_unreachable ();
}

/* Implement TARGET_ASM_SELECT_RTX_SECTION.  */

static section *
loongarch_select_rtx_section (machine_mode mode, rtx x,
			      unsigned HOST_WIDE_INT align)
{
  /* ??? Consider using mergeable small data sections.  */
  if (loongarch_rtx_constant_in_small_data_p (mode))
    return get_named_section (NULL, ".sdata", 0);

  return default_elf_select_rtx_section (mode, x, align);
}

/* Implement TARGET_ASM_FUNCTION_RODATA_SECTION.

   The complication here is that jump tables will use absolute addresses,
   and should therefore not be included in the read-only part of a DSO.
   Handle such cases by selecting a normal data section instead of a
   read-only one.  The logic apes that in default_function_rodata_section.  */

static section *
loongarch_function_rodata_section (tree decl, bool)
{
  return default_function_rodata_section (decl, false);
}

/* Implement TARGET_IN_SMALL_DATA_P.  */

static bool
loongarch_in_small_data_p (const_tree decl)
{
  int size;

  if (TREE_CODE (decl) == STRING_CST || TREE_CODE (decl) == FUNCTION_DECL)
    return false;

  if (VAR_P (decl) && DECL_SECTION_NAME (decl) != 0)
    {
      const char *name;

      /* Reject anything that isn't in a known small-data section.  */
      name = DECL_SECTION_NAME (decl);
      if (strcmp (name, ".sdata") != 0 && strcmp (name, ".sbss") != 0)
	return false;

      /* If a symbol is defined externally, the assembler will use the
	 usual -G rules when deciding how to implement macros.  */
      if (!DECL_EXTERNAL (decl))
	return true;
    }

  /* We have traditionally not treated zero-sized objects as small data,
     so this is now effectively part of the ABI.  */
  size = int_size_in_bytes (TREE_TYPE (decl));
  return size > 0 && size <= g_switch_value;
}

/* The LoongArch debug format wants all automatic variables and arguments
   to be in terms of the virtual frame pointer (stack pointer before
   any adjustment in the function), while the LoongArch linker wants
   the frame pointer to be the stack pointer after the initial
   adjustment.  So, we do the adjustment here.  The arg pointer (which
   is eliminated) points to the virtual frame pointer, while the frame
   pointer (which may be eliminated) points to the stack pointer after
   the initial adjustments.  */

HOST_WIDE_INT
loongarch_debugger_offset (rtx addr, HOST_WIDE_INT offset)
{
  rtx offset2 = const0_rtx;
  rtx reg = eliminate_constant_term (addr, &offset2);

  if (offset == 0)
    offset = INTVAL (offset2);

  if (reg == stack_pointer_rtx
      || reg == frame_pointer_rtx
      || reg == hard_frame_pointer_rtx)
    {
      offset -= cfun->machine->frame.total_size;
      if (reg == hard_frame_pointer_rtx)
	offset += cfun->machine->frame.hard_frame_pointer_offset;
    }

  return offset;
}

/* Implement ASM_OUTPUT_EXTERNAL.  */

void
loongarch_output_external (FILE *file, tree decl, const char *name)
{
  default_elf_asm_output_external (file, decl, name);

  /* We output the name if and only if TREE_SYMBOL_REFERENCED is
     set in order to avoid putting out names that are never really
     used.  */
  if (TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)))
    {
      if (loongarch_in_small_data_p (decl))
	{
	  /* When using assembler macros, emit .extern directives for
	     all small-data externs so that the assembler knows how
	     big they are.

	     In most cases it would be safe (though pointless) to emit
	     .externs for other symbols too.  One exception is when an
	     object is within the -G limit but declared by the user to
	     be in a section other than .sbss or .sdata.  */
	  fputs ("\t.extern\t", file);
	  assemble_name (file, name);
	  fprintf (file, ", " HOST_WIDE_INT_PRINT_DEC "\n",
		   int_size_in_bytes (TREE_TYPE (decl)));
	}
    }
}

/* Implement TARGET_ASM_OUTPUT_DWARF_DTPREL.  */

static void ATTRIBUTE_UNUSED
loongarch_output_dwarf_dtprel (FILE *file, int size, rtx x)
{
  switch (size)
    {
    case 4:
      fputs ("\t.dtprelword\t", file);
      break;

    case 8:
      fputs ("\t.dtpreldword\t", file);
      break;

    default:
      gcc_unreachable ();
    }
  output_addr_const (file, x);
  fputs ("+0x8000", file);
}

/* Implement ASM_OUTPUT_ASCII.  */

void
loongarch_output_ascii (FILE *stream, const char *string, size_t len)
{
  size_t i;
  int cur_pos;

  cur_pos = 17;
  fprintf (stream, "\t.ascii\t\"");
  for (i = 0; i < len; i++)
    {
      int c;

      c = (unsigned char) string[i];
      if (ISPRINT (c))
	{
	  if (c == '\\' || c == '\"')
	    {
	      putc ('\\', stream);
	      cur_pos++;
	    }
	  putc (c, stream);
	  cur_pos++;
	}
      else
	{
	  fprintf (stream, "\\%03o", c);
	  cur_pos += 4;
	}

      if (cur_pos > 72 && i + 1 < len)
	{
	  cur_pos = 17;
	  fprintf (stream, "\"\n\t.ascii\t\"");
	}
    }
  fprintf (stream, "\"\n");
}

/* Implement TARGET_FRAME_POINTER_REQUIRED.  */

static bool
loongarch_frame_pointer_required (void)
{
  /* If the function contains dynamic stack allocations, we need to
     use the frame pointer to access the static parts of the frame.  */
  if (cfun->calls_alloca)
    return true;

  return false;
}

/* Implement TARGET_CAN_ELIMINATE.  Make sure that we're not trying
   to eliminate to the wrong hard frame pointer.  */

static bool
loongarch_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
{
  return (to == HARD_FRAME_POINTER_REGNUM || to == STACK_POINTER_REGNUM);
}

/* Implement RETURN_ADDR_RTX.  We do not support moving back to a
   previous frame.  */

rtx
loongarch_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
{
  if (count != 0)
    return const0_rtx;

  return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM);
}

/* Emit code to change the current function's return address to
   ADDRESS.  SCRATCH is available as a scratch register, if needed.
   ADDRESS and SCRATCH are both word-mode GPRs.  */

void
loongarch_set_return_address (rtx address, rtx scratch)
{
  rtx slot_address;

  gcc_assert (BITSET_P (cfun->machine->frame.mask, RETURN_ADDR_REGNUM));

  if (frame_pointer_needed)
    slot_address = loongarch_add_offset (scratch, hard_frame_pointer_rtx,
					 -UNITS_PER_WORD);
  else
    slot_address = loongarch_add_offset (scratch, stack_pointer_rtx,
					 cfun->machine->frame.gp_sp_offset);

  loongarch_emit_move (gen_frame_mem (GET_MODE (address), slot_address),
		       address);
}

/* Return true if register REGNO can store a value of mode MODE.
   The result of this function is cached in loongarch_hard_regno_mode_ok.  */

static bool
loongarch_hard_regno_mode_ok_uncached (unsigned int regno, machine_mode mode)
{
  unsigned int size;
  enum mode_class mclass;

  if (mode == FCCmode)
    return FCC_REG_P (regno);

  size = GET_MODE_SIZE (mode);
  mclass = GET_MODE_CLASS (mode);

  if (GP_REG_P (regno))
    return ((regno - GP_REG_FIRST) & 1) == 0 || size <= UNITS_PER_WORD;

  if (FP_REG_P (regno))
    {
      if (mclass == MODE_FLOAT
	  || mclass == MODE_COMPLEX_FLOAT
	  || mclass == MODE_VECTOR_FLOAT)
	return size <= UNITS_PER_FPVALUE;

      /* Allow integer modes that fit into a single register.  We need
	 to put integers into FPRs when using instructions like CVT
	 and TRUNC.  There's no point allowing sizes smaller than a word,
	 because the FPU has no appropriate load/store instructions.  */
      if (mclass == MODE_INT)
	return size >= MIN_UNITS_PER_WORD && size <= UNITS_PER_FPREG;
    }

  return false;
}

/* Implement TARGET_HARD_REGNO_MODE_OK.  */

static bool
loongarch_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
{
  return loongarch_hard_regno_mode_ok_p[mode][regno];
}

/* Implement TARGET_HARD_REGNO_NREGS.  */

static unsigned int
loongarch_hard_regno_nregs (unsigned int regno, machine_mode mode)
{
  if (FCC_REG_P (regno))
    /* The size of FP status registers is always 4, because they only hold
       FCCmode values, and FCCmode is always considered to be 4 bytes wide.  */
    return (GET_MODE_SIZE (mode) + 3) / 4;

  if (FP_REG_P (regno))
    return (GET_MODE_SIZE (mode) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG;

  /* All other registers are word-sized.  */
  return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
}

/* Implement CLASS_MAX_NREGS, taking the maximum of the cases
   in loongarch_hard_regno_nregs.  */

int
loongarch_class_max_nregs (enum reg_class rclass, machine_mode mode)
{
  int size;
  HARD_REG_SET left;

  size = 0x8000;
  left = reg_class_contents[rclass];
  if (hard_reg_set_intersect_p (left, reg_class_contents[(int) FCC_REGS]))
    {
      if (loongarch_hard_regno_mode_ok (FCC_REG_FIRST, mode))
	size = MIN (size, 4);

      left &= ~reg_class_contents[FCC_REGS];
    }
  if (hard_reg_set_intersect_p (left, reg_class_contents[(int) FP_REGS]))
    {
      if (loongarch_hard_regno_mode_ok (FP_REG_FIRST, mode))
	size = MIN (size, UNITS_PER_FPREG);

      left &= ~reg_class_contents[FP_REGS];
    }
  if (!hard_reg_set_empty_p (left))
    size = MIN (size, UNITS_PER_WORD);
  return (GET_MODE_SIZE (mode) + size - 1) / size;
}

/* Implement TARGET_CAN_CHANGE_MODE_CLASS.  */

static bool
loongarch_can_change_mode_class (machine_mode, machine_mode,
				 reg_class_t rclass)
{
  return !reg_classes_intersect_p (FP_REGS, rclass);
}

/* Return true if moves in mode MODE can use the FPU's fmov.fmt instruction,
*/

static bool
loongarch_mode_ok_for_mov_fmt_p (machine_mode mode)
{
  switch (mode)
    {
    case E_FCCmode:
    case E_SFmode:
      return TARGET_HARD_FLOAT;

    case E_DFmode:
      return TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT;

    default:
      return 0;
    }
}

/* Implement TARGET_MODES_TIEABLE_P.  */

static bool
loongarch_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
  /* FPRs allow no mode punning, so it's not worth tying modes if we'd
     prefer to put one of them in FPRs.  */
  return (mode1 == mode2
	  || (!loongarch_mode_ok_for_mov_fmt_p (mode1)
	      && !loongarch_mode_ok_for_mov_fmt_p (mode2)));
}

/* Implement TARGET_PREFERRED_RELOAD_CLASS.  */

static reg_class_t
loongarch_preferred_reload_class (rtx x, reg_class_t rclass)
{
  if (reg_class_subset_p (FP_REGS, rclass)
      && loongarch_mode_ok_for_mov_fmt_p (GET_MODE (x)))
    return FP_REGS;

  if (reg_class_subset_p (GR_REGS, rclass))
    rclass = GR_REGS;

  return rclass;
}

/* RCLASS is a class involved in a REGISTER_MOVE_COST calculation.
   Return a "canonical" class to represent it in later calculations.  */

static reg_class_t
loongarch_canonicalize_move_class (reg_class_t rclass)
{
  if (reg_class_subset_p (rclass, GENERAL_REGS))
    rclass = GENERAL_REGS;

  return rclass;
}

/* Return the cost of moving a value from a register of class FROM to a GPR.
   Return 0 for classes that are unions of other classes handled by this
   function.  */

static int
loongarch_move_to_gpr_cost (reg_class_t from)
{
  switch (from)
    {
    case GENERAL_REGS:
      /* MOVE macro.  */
      return 2;

    case FP_REGS:
      /* MOVFR2GR, etc.  */
      return 4;

    default:
      return 0;
    }
}

/* Return the cost of moving a value from a GPR to a register of class TO.
   Return 0 for classes that are unions of other classes handled by this
   function.  */

static int
loongarch_move_from_gpr_cost (reg_class_t to)
{
  switch (to)
    {
    case GENERAL_REGS:
      /*MOVE macro.  */
      return 2;

    case FP_REGS:
      /* MOVGR2FR, etc.  */
      return 4;

    default:
      return 0;
    }
}

/* Implement TARGET_REGISTER_MOVE_COST.  Return 0 for classes that are the
   maximum of the move costs for subclasses; regclass will work out
   the maximum for us.  */

static int
loongarch_register_move_cost (machine_mode mode, reg_class_t from,
			      reg_class_t to)
{
  reg_class_t dregs;
  int cost1, cost2;

  from = loongarch_canonicalize_move_class (from);
  to = loongarch_canonicalize_move_class (to);

  /* Handle moves that can be done without using general-purpose registers.  */
  if (from == FP_REGS)
    {
      if (to == FP_REGS && loongarch_mode_ok_for_mov_fmt_p (mode))
	/* FMOV.FMT.  */
	return 4;
    }

  /* Handle cases in which only one class deviates from the ideal.  */
  dregs = GENERAL_REGS;
  if (from == dregs)
    return loongarch_move_from_gpr_cost (to);
  if (to == dregs)
    return loongarch_move_to_gpr_cost (from);

  /* Handles cases that require a GPR temporary.  */
  cost1 = loongarch_move_to_gpr_cost (from);
  if (cost1 != 0)
    {
      cost2 = loongarch_move_from_gpr_cost (to);
      if (cost2 != 0)
	return cost1 + cost2;
    }

  return 0;
}

/* Implement TARGET_MEMORY_MOVE_COST.  */

static int
loongarch_memory_move_cost (machine_mode mode, reg_class_t rclass, bool in)
{
  return (loongarch_cost->memory_latency
	  + memory_move_secondary_cost (mode, rclass, in));
}

/* Return the register class required for a secondary register when
   copying between one of the registers in RCLASS and value X, which
   has mode MODE.  X is the source of the move if IN_P, otherwise it
   is the destination.  Return NO_REGS if no secondary register is
   needed.  */

static reg_class_t
loongarch_secondary_reload (bool in_p ATTRIBUTE_UNUSED, rtx x,
			    reg_class_t rclass, machine_mode mode,
			    secondary_reload_info *sri ATTRIBUTE_UNUSED)
{
  int regno;

  regno = true_regnum (x);

  if (reg_class_subset_p (rclass, FP_REGS))
    {
      if (regno < 0
	  || (MEM_P (x)
	      && (GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8)))
	/* In this case we can use fld.s, fst.s, fld.d or fst.d.  */
	return NO_REGS;

      if (GP_REG_P (regno) || x == CONST0_RTX (mode))
	/* In this case we can use movgr2fr.s, movfr2gr.s, movgr2fr.d or
	 * movfr2gr.d.  */
	return NO_REGS;

      if (CONSTANT_P (x) && !targetm.cannot_force_const_mem (mode, x))
	/* We can force the constant to memory and use fld.s
	   and fld.d.  As above, we will use pairs of lwc1s if
	   ldc1 is not supported.  */
	return NO_REGS;

      if (FP_REG_P (regno) && loongarch_mode_ok_for_mov_fmt_p (mode))
	/* In this case we can use fmov.{s/d}.  */
	return NO_REGS;

      /* Otherwise, we need to reload through an integer register.  */
      return GR_REGS;
    }
  if (FP_REG_P (regno))
    return reg_class_subset_p (rclass, GR_REGS) ? NO_REGS : GR_REGS;

  return NO_REGS;
}

/* Implement TARGET_VALID_POINTER_MODE.  */

static bool
loongarch_valid_pointer_mode (scalar_int_mode mode)
{
  return mode == SImode || (TARGET_64BIT && mode == DImode);
}

/* Implement TARGET_SCALAR_MODE_SUPPORTED_P.  */

static bool
loongarch_scalar_mode_supported_p (scalar_mode mode)
{
  if (ALL_FIXED_POINT_MODE_P (mode)
      && GET_MODE_PRECISION (mode) <= 2 * BITS_PER_WORD)
    return true;

  return default_scalar_mode_supported_p (mode);
}

/* Return the assembly code for INSN, which has the operands given by
   OPERANDS, and which branches to OPERANDS[0] if some condition is true.
   BRANCH_IF_TRUE is the asm template that should be used if OPERANDS[0]
   is in range of a direct branch.  BRANCH_IF_FALSE is an inverted
   version of BRANCH_IF_TRUE.  */

const char *
loongarch_output_conditional_branch (rtx_insn *insn, rtx *operands,
				     const char *branch_if_true,
				     const char *branch_if_false)
{
  unsigned int length;
  rtx taken;

  gcc_assert (LABEL_P (operands[0]));

  length = get_attr_length (insn);
  if (length <= 4)
    {
      return branch_if_true;
    }

  /* Generate a reversed branch around a direct jump.  */
  rtx_code_label *not_taken = gen_label_rtx ();
  taken = operands[0];

  /* Generate the reversed branch to NOT_TAKEN.  */
  operands[0] = not_taken;
  output_asm_insn (branch_if_false, operands);

  output_asm_insn ("b\t%0", &taken);

  /* Output NOT_TAKEN.  */
  targetm.asm_out.internal_label (asm_out_file, "L",
				  CODE_LABEL_NUMBER (not_taken));
  return "";
}

/* Return the assembly code for INSN, which branches to OPERANDS[0]
   if some equality condition is true.  The condition is given by
   OPERANDS[1] if !INVERTED_P, otherwise it is the inverse of
   OPERANDS[1].  OPERANDS[2] is the comparison's first operand;
   OPERANDS[3] is the second operand and may be zero or a register.  */

const char *
loongarch_output_equal_conditional_branch (rtx_insn *insn, rtx *operands,
					   bool inverted_p)
{
  const char *branch[2];
  if (operands[3] == const0_rtx)
    {
      branch[!inverted_p] = LARCH_BRANCH ("b%C1z", "%2,%0");
      branch[inverted_p] = LARCH_BRANCH ("b%N1z", "%2,%0");
    }
  else
    {
      branch[!inverted_p] = LARCH_BRANCH ("b%C1", "%2,%z3,%0");
      branch[inverted_p] = LARCH_BRANCH ("b%N1", "%2,%z3,%0");
    }

  return loongarch_output_conditional_branch (insn, operands, branch[1],
					      branch[0]);
}

/* Return the assembly code for INSN, which branches to OPERANDS[0]
   if some ordering condition is true.  The condition is given by
   OPERANDS[1] if !INVERTED_P, otherwise it is the inverse of
   OPERANDS[1].  OPERANDS[2] is the comparison's first operand;
   OPERANDS[3] is the second operand and may be zero or a register.  */

const char *
loongarch_output_order_conditional_branch (rtx_insn *insn, rtx *operands,
					   bool inverted_p)
{
  const char *branch[2];

  /* Make BRANCH[1] branch to OPERANDS[0] when the condition is true.
     Make BRANCH[0] branch on the inverse condition.  */
  if (operands[3] != const0_rtx)
    {
      /* Handle degenerate cases that should not, but do, occur.  */
      if (REGNO (operands[2]) == REGNO (operands[3]))
	{
	  switch (GET_CODE (operands[1]))
	    {
	    case LT:
	    case LTU:
	    case GT:
	    case GTU:
	      inverted_p = !inverted_p;
	      /* Fall through.  */
	    case LE:
	    case LEU:
	    case GE:
	    case GEU:
	      branch[!inverted_p] = LARCH_BRANCH ("b", "%0");
	      branch[inverted_p] = "\t# branch never";
	      break;
	    default:
	      gcc_unreachable ();
	    }
	}
      else
	{
	  switch (GET_CODE (operands[1]))
	    {
	    case LE:
	    case LEU:
	    case GT:
	    case GTU:
	    case LT:
	    case LTU:
	    case GE:
	    case GEU:
	      branch[!inverted_p] = LARCH_BRANCH ("b%C1", "%2,%3,%0");
	      branch[inverted_p] = LARCH_BRANCH ("b%N1", "%2,%3,%0");
	      break;
	    default:
	      gcc_unreachable ();
	    }
	}
    }
  else
    {
      switch (GET_CODE (operands[1]))
	{
	  /* These cases are equivalent to comparisons against zero.  */
	case LEU:
	case GTU:
	case LTU:
	case GEU:
	case LE:
	case GT:
	case LT:
	case GE:
	  branch[!inverted_p] = LARCH_BRANCH ("b%C1", "%2,$r0,%0");
	  branch[inverted_p] = LARCH_BRANCH ("b%N1", "%2,$r0,%0");
	  break;
	default:
	  gcc_unreachable ();
	}
    }
  return loongarch_output_conditional_branch (insn, operands, branch[1],
					      branch[0]);
}

/* Return the assembly code for DIV.{W/D} instruction DIVISION, which has
   the operands given by OPERANDS.  Add in a divide-by-zero check if needed.
   */

const char *
loongarch_output_division (const char *division, rtx *operands)
{
  const char *s;

  s = division;
  if (TARGET_CHECK_ZERO_DIV)
    {
      output_asm_insn (s, operands);
      s = "bne\t%2,%.,1f\n\tbreak\t7\n1:";
    }
  return s;
}

/* Implement TARGET_SCHED_ADJUST_COST.  We assume that anti and output
   dependencies have no cost.  */

static int
loongarch_adjust_cost (rtx_insn *, int dep_type, rtx_insn *, int cost,
		       unsigned int)
{
  if (dep_type != 0 && (dep_type != REG_DEP_OUTPUT))
    return 0;
  return cost;
}

/* Return the number of instructions that can be issued per cycle.  */

static int
loongarch_issue_rate (void)
{
  if ((unsigned long) LARCH_ACTUAL_TUNE < N_TUNE_TYPES)
    return loongarch_cpu_issue_rate[LARCH_ACTUAL_TUNE];
  else
    return 1;
}

/* Implement TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD.  This should
   be as wide as the scheduling freedom in the DFA.  */

static int
loongarch_multipass_dfa_lookahead (void)
{
  if ((unsigned long) LARCH_ACTUAL_TUNE < N_ARCH_TYPES)
    return loongarch_cpu_multipass_dfa_lookahead[LARCH_ACTUAL_TUNE];
  else
    return 0;
}

/* Implement TARGET_SCHED_REORDER.  */

static int
loongarch_sched_reorder (FILE *file ATTRIBUTE_UNUSED,
			 int verbose ATTRIBUTE_UNUSED,
			 rtx_insn **ready ATTRIBUTE_UNUSED,
			 int *nreadyp ATTRIBUTE_UNUSED,
			 int cycle ATTRIBUTE_UNUSED)
{
  return loongarch_issue_rate ();
}

/* Implement TARGET_SCHED_REORDER2.  */

static int
loongarch_sched_reorder2 (FILE *file ATTRIBUTE_UNUSED,
			  int verbose ATTRIBUTE_UNUSED,
			  rtx_insn **ready ATTRIBUTE_UNUSED,
			  int *nreadyp ATTRIBUTE_UNUSED,
			  int cycle ATTRIBUTE_UNUSED)
{
  return cached_can_issue_more;
}

/* Implement TARGET_SCHED_INIT.  */

static void
loongarch_sched_init (FILE *file ATTRIBUTE_UNUSED,
		      int verbose ATTRIBUTE_UNUSED,
		      int max_ready ATTRIBUTE_UNUSED)
{}

/* Implement TARGET_SCHED_VARIABLE_ISSUE.  */

static int
loongarch_variable_issue (FILE *file ATTRIBUTE_UNUSED,
			  int verbose ATTRIBUTE_UNUSED, rtx_insn *insn,
			  int more)
{
  /* Ignore USEs and CLOBBERs; don't count them against the issue rate.  */
  if (USEFUL_INSN_P (insn))
    {
      if (get_attr_type (insn) != TYPE_GHOST)
	more--;
    }

  /* Instructions of type 'multi' should all be split before
     the second scheduling pass.  */
  gcc_assert (!reload_completed
	      || recog_memoized (insn) < 0
	      || get_attr_type (insn) != TYPE_MULTI);

  cached_can_issue_more = more;
  return more;
}

/* Given that we have an rtx of the form (prefetch ... WRITE LOCALITY),
   return the first operand of the associated PREF or PREFX insn.  */

rtx
loongarch_prefetch_cookie (rtx write, rtx locality)
{
  /* store_streamed / load_streamed.  */
  if (INTVAL (locality) <= 0)
    return GEN_INT (INTVAL (write) + 4);

  /* store / load.  */
  if (INTVAL (locality) <= 2)
    return write;

  /* store_retained / load_retained.  */
  return GEN_INT (INTVAL (write) + 6);
}

/* Implement TARGET_ASM_OUTPUT_MI_THUNK.  Generate rtl rather than asm text
   in order to avoid duplicating too much logic from elsewhere.  */

static void
loongarch_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
			   HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
			   tree function)
{
  const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk_fndecl));
  rtx this_rtx, temp1, temp2, fnaddr;
  rtx_insn *insn;
  bool use_sibcall_p;

  /* Pretend to be a post-reload pass while generating rtl.  */
  reload_completed = 1;

  /* Mark the end of the (empty) prologue.  */
  emit_note (NOTE_INSN_PROLOGUE_END);

  /* Determine if we can use a sibcall to call FUNCTION directly.  */
  fnaddr = XEXP (DECL_RTL (function), 0);
  use_sibcall_p = const_call_insn_operand (fnaddr, Pmode);

  /* We need two temporary registers in some cases.  */
  temp1 = gen_rtx_REG (Pmode, 12);
  temp2 = gen_rtx_REG (Pmode, 13);

  /* Find out which register contains the "this" pointer.  */
  if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
    this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1);
  else
    this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST);

  /* Add DELTA to THIS_RTX.  */
  if (delta != 0)
    {
      rtx offset = GEN_INT (delta);
      if (!IMM12_OPERAND (delta))
	{
	  loongarch_emit_move (temp1, offset);
	  offset = temp1;
	}
      emit_insn (gen_add3_insn (this_rtx, this_rtx, offset));
    }

  /* If needed, add *(*THIS_RTX + VCALL_OFFSET) to THIS_RTX.  */
  if (vcall_offset != 0)
    {
      rtx addr;

      /* Set TEMP1 to *THIS_RTX.  */
      loongarch_emit_move (temp1, gen_rtx_MEM (Pmode, this_rtx));

      /* Set ADDR to a legitimate address for *THIS_RTX + VCALL_OFFSET.  */
      addr = loongarch_add_offset (temp2, temp1, vcall_offset);

      /* Load the offset and add it to THIS_RTX.  */
      loongarch_emit_move (temp1, gen_rtx_MEM (Pmode, addr));
      emit_insn (gen_add3_insn (this_rtx, this_rtx, temp1));
    }

  /* Jump to the target function.  Use a sibcall if direct jumps are
     allowed, otherwise load the address into a register first.  */
  if (use_sibcall_p)
    {
      insn = emit_call_insn (gen_sibcall_internal (fnaddr, const0_rtx));
      SIBLING_CALL_P (insn) = 1;
    }
  else
    {
      loongarch_emit_move (temp1, fnaddr);
      emit_jump_insn (gen_indirect_jump (temp1));
    }

  /* Run just enough of rest_of_compilation.  This sequence was
     "borrowed" from alpha.c.  */
  insn = get_insns ();
  split_all_insns_noflow ();
  shorten_branches (insn);
  assemble_start_function (thunk_fndecl, fnname);
  final_start_function (insn, file, 1);
  final (insn, file, 1);
  final_end_function ();
  assemble_end_function (thunk_fndecl, fnname);

  /* Stop pretending to be a post-reload pass.  */
  reload_completed = 0;
}

/* Allocate a chunk of memory for per-function machine-dependent data.  */

static struct machine_function *
loongarch_init_machine_status (void)
{
  return ggc_cleared_alloc<machine_function> ();
}

static void
loongarch_option_override_internal (struct gcc_options *opts)
{
  int i, regno, mode;

  if (flag_pic)
    g_switch_value = 0;

  /* Handle target-specific options: compute defaults/conflicts etc.  */
  loongarch_config_target (&la_target, la_opt_switches,
			   la_opt_cpu_arch, la_opt_cpu_tune, la_opt_fpu,
			   la_opt_abi_base, la_opt_abi_ext, la_opt_cmodel, 0);

  if (TARGET_ABI_LP64)
    flag_pcc_struct_return = 0;

  /* Decide which rtx_costs structure to use.  */
  if (optimize_size)
    loongarch_cost = &loongarch_rtx_cost_optimize_size;
  else
    loongarch_cost = &loongarch_cpu_rtx_cost_data[LARCH_ACTUAL_TUNE];

  /* If the user hasn't specified a branch cost, use the processor's
     default.  */
  if (loongarch_branch_cost == 0)
    loongarch_branch_cost = loongarch_cost->branch_cost;


  switch (la_target.cmodel)
    {
      case CMODEL_TINY_STATIC:
      case CMODEL_EXTREME:
	if (opts->x_flag_plt)
	  error ("code model %qs and %qs not support %s mode",
		 "tiny-static", "extreme", "plt");
	break;

      case CMODEL_NORMAL:
      case CMODEL_TINY:
      case CMODEL_LARGE:
	break;

      default:
	gcc_unreachable ();
    }

  loongarch_init_print_operand_punct ();

  /* Set up array to map GCC register number to debug register number.
     Ignore the special purpose register numbers.  */

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      if (GP_REG_P (i) || FP_REG_P (i))
	loongarch_dwarf_regno[i] = i;
      else
	loongarch_dwarf_regno[i] = INVALID_REGNUM;
    }

  /* Set up loongarch_hard_regno_mode_ok.  */
  for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
    for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
      loongarch_hard_regno_mode_ok_p[mode][regno]
	= loongarch_hard_regno_mode_ok_uncached (regno, (machine_mode) mode);

  /* Function to allocate machine-dependent function status.  */
  init_machine_status = &loongarch_init_machine_status;
}


/* Implement TARGET_OPTION_OVERRIDE.  */

static void
loongarch_option_override (void)
{
  loongarch_option_override_internal (&global_options);
}

/* Implement TARGET_CONDITIONAL_REGISTER_USAGE.  */

static void
loongarch_conditional_register_usage (void)
{
  if (!TARGET_HARD_FLOAT)
    accessible_reg_set &= ~(reg_class_contents[FP_REGS]
			    | reg_class_contents[FCC_REGS]);
}

/* Implement EH_USES.  */

bool
loongarch_eh_uses (unsigned int regno ATTRIBUTE_UNUSED)
{
  return false;
}

/* Implement EPILOGUE_USES.  */

bool
loongarch_epilogue_uses (unsigned int regno)
{
  /* Say that the epilogue uses the return address register.  Note that
     in the case of sibcalls, the values "used by the epilogue" are
     considered live at the start of the called function.  */
  if (regno == RETURN_ADDR_REGNUM)
    return true;

  return false;
}

bool
loongarch_load_store_bonding_p (rtx *operands, machine_mode mode, bool load_p)
{
  rtx reg1, reg2, mem1, mem2, base1, base2;
  enum reg_class rc1, rc2;
  HOST_WIDE_INT offset1, offset2;

  if (load_p)
    {
      reg1 = operands[0];
      reg2 = operands[2];
      mem1 = operands[1];
      mem2 = operands[3];
    }
  else
    {
      reg1 = operands[1];
      reg2 = operands[3];
      mem1 = operands[0];
      mem2 = operands[2];
    }

  if (loongarch_address_insns (XEXP (mem1, 0), mode, false) == 0
      || loongarch_address_insns (XEXP (mem2, 0), mode, false) == 0)
    return false;

  loongarch_split_plus (XEXP (mem1, 0), &base1, &offset1);
  loongarch_split_plus (XEXP (mem2, 0), &base2, &offset2);

  /* Base regs do not match.  */
  if (!REG_P (base1) || !rtx_equal_p (base1, base2))
    return false;

  /* Either of the loads is clobbering base register.  It is legitimate to bond
     loads if second load clobbers base register.  However, hardware does not
     support such bonding.  */
  if (load_p
      && (REGNO (reg1) == REGNO (base1) || (REGNO (reg2) == REGNO (base1))))
    return false;

  /* Loading in same registers.  */
  if (load_p && REGNO (reg1) == REGNO (reg2))
    return false;

  /* The loads/stores are not of same type.  */
  rc1 = REGNO_REG_CLASS (REGNO (reg1));
  rc2 = REGNO_REG_CLASS (REGNO (reg2));
  if (rc1 != rc2 && !reg_class_subset_p (rc1, rc2)
      && !reg_class_subset_p (rc2, rc1))
    return false;

  if (abs (offset1 - offset2) != GET_MODE_SIZE (mode))
    return false;

  return true;
}

/* Implement TARGET_TRAMPOLINE_INIT.  */

static void
loongarch_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
  rtx addr, end_addr, mem;
  rtx trampoline[8];
  unsigned int i, j;
  HOST_WIDE_INT end_addr_offset, static_chain_offset, target_function_offset;

  /* Work out the offsets of the pointers from the start of the
     trampoline code.  */
  end_addr_offset = TRAMPOLINE_CODE_SIZE;
  static_chain_offset = end_addr_offset;
  target_function_offset = static_chain_offset + GET_MODE_SIZE (ptr_mode);

  /* Get pointers to the beginning and end of the code block.  */
  addr = force_reg (Pmode, XEXP (m_tramp, 0));
  end_addr
    = loongarch_force_binary (Pmode, PLUS, addr, GEN_INT (end_addr_offset));

#define OP(X) gen_int_mode (X, SImode)

  /* Build up the code in TRAMPOLINE.  */
  i = 0;
  /*pcaddi $static_chain,0
    ld.[dw] $tmp,$static_chain,target_function_offset
    ld.[dw] $static_chain,$static_chain,static_chain_offset
    jirl $r0,$tmp,0  */
  trampoline[i++] = OP (0x18000000 | (STATIC_CHAIN_REGNUM - GP_REG_FIRST));
  trampoline[i++] = OP ((ptr_mode == DImode ? 0x28c00000 : 0x28800000)
			| 19 /* $t7  */
			| ((STATIC_CHAIN_REGNUM - GP_REG_FIRST) << 5)
			| ((target_function_offset & 0xfff) << 10));
  trampoline[i++] = OP ((ptr_mode == DImode ? 0x28c00000 : 0x28800000)
			| (STATIC_CHAIN_REGNUM - GP_REG_FIRST)
			| ((STATIC_CHAIN_REGNUM - GP_REG_FIRST) << 5)
			| ((static_chain_offset & 0xfff) << 10));
  trampoline[i++] = OP (0x4c000000 | (19 << 5));
#undef OP

  for (j = 0; j < i; j++)
   {
     mem = adjust_address (m_tramp, SImode, j * GET_MODE_SIZE (SImode));
     loongarch_emit_move (mem, trampoline[j]);
   }

  /* Set up the static chain pointer field.  */
  mem = adjust_address (m_tramp, ptr_mode, static_chain_offset);
  loongarch_emit_move (mem, chain_value);

  /* Set up the target function field.  */
  mem = adjust_address (m_tramp, ptr_mode, target_function_offset);
  loongarch_emit_move (mem, XEXP (DECL_RTL (fndecl), 0));

  /* Flush the code part of the trampoline.  */
  emit_insn (gen_add3_insn (end_addr, addr, GEN_INT (TRAMPOLINE_SIZE)));
  emit_insn (gen_clear_cache (addr, end_addr));
}

/* Implement HARD_REGNO_CALLER_SAVE_MODE.  */

machine_mode
loongarch_hard_regno_caller_save_mode (unsigned int regno, unsigned int nregs,
				       machine_mode mode)
{
  /* For performance, avoid saving/restoring upper parts of a register
     by returning MODE as save mode when the mode is known.  */
  if (mode == VOIDmode)
    return choose_hard_reg_mode (regno, nregs, NULL);
  else
    return mode;
}

/* Implement TARGET_SPILL_CLASS.  */

static reg_class_t
loongarch_spill_class (reg_class_t rclass ATTRIBUTE_UNUSED,
		       machine_mode mode ATTRIBUTE_UNUSED)
{
  return NO_REGS;
}

/* Implement TARGET_PROMOTE_FUNCTION_MODE.  */

/* This function is equivalent to default_promote_function_mode_always_promote
   except that it returns a promoted mode even if type is NULL_TREE.  This is
   needed by libcalls which have no type (only a mode) such as fixed conversion
   routines that take a signed or unsigned char/short argument and convert it
   to a fixed type.  */

static machine_mode
loongarch_promote_function_mode (const_tree type ATTRIBUTE_UNUSED,
				 machine_mode mode,
				 int *punsignedp ATTRIBUTE_UNUSED,
				 const_tree fntype ATTRIBUTE_UNUSED,
				 int for_return ATTRIBUTE_UNUSED)
{
  int unsignedp;

  if (type != NULL_TREE)
    return promote_mode (type, mode, punsignedp);

  unsignedp = *punsignedp;
  PROMOTE_MODE (mode, unsignedp, type);
  *punsignedp = unsignedp;
  return mode;
}

/* Implement TARGET_STARTING_FRAME_OFFSET.  See loongarch_compute_frame_info
   for details about the frame layout.  */

static HOST_WIDE_INT
loongarch_starting_frame_offset (void)
{
  if (FRAME_GROWS_DOWNWARD)
    return 0;
  return crtl->outgoing_args_size;
}

/* Initialize the GCC target structure.  */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"

#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE loongarch_option_override

#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS loongarch_legitimize_address

#undef TARGET_ASM_SELECT_RTX_SECTION
#define TARGET_ASM_SELECT_RTX_SECTION loongarch_select_rtx_section
#undef TARGET_ASM_FUNCTION_RODATA_SECTION
#define TARGET_ASM_FUNCTION_RODATA_SECTION loongarch_function_rodata_section

#undef TARGET_SCHED_INIT
#define TARGET_SCHED_INIT loongarch_sched_init
#undef TARGET_SCHED_REORDER
#define TARGET_SCHED_REORDER loongarch_sched_reorder
#undef TARGET_SCHED_REORDER2
#define TARGET_SCHED_REORDER2 loongarch_sched_reorder2
#undef TARGET_SCHED_VARIABLE_ISSUE
#define TARGET_SCHED_VARIABLE_ISSUE loongarch_variable_issue
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST loongarch_adjust_cost
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE loongarch_issue_rate
#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
  loongarch_multipass_dfa_lookahead

#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL loongarch_function_ok_for_sibcall

#undef TARGET_VALID_POINTER_MODE
#define TARGET_VALID_POINTER_MODE loongarch_valid_pointer_mode
#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST loongarch_register_move_cost
#undef TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST loongarch_memory_move_cost
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS loongarch_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST loongarch_address_cost

#undef TARGET_IN_SMALL_DATA_P
#define TARGET_IN_SMALL_DATA_P loongarch_in_small_data_p

#undef TARGET_PREFERRED_RELOAD_CLASS
#define TARGET_PREFERRED_RELOAD_CLASS loongarch_preferred_reload_class

#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true

#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START loongarch_va_start

#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE loongarch_promote_function_mode
#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY loongarch_return_in_memory

#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE loongarch_function_value
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE loongarch_libcall_value

#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK loongarch_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK \
  hook_bool_const_tree_hwi_hwi_const_tree_true

#undef TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND loongarch_print_operand
#undef TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS loongarch_print_operand_address
#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P \
  loongarch_print_operand_punct_valid_p

#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS loongarch_setup_incoming_varargs
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE loongarch_pass_by_reference
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES loongarch_arg_partial_bytes
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG loongarch_function_arg
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE loongarch_function_arg_advance
#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY loongarch_function_arg_boundary

#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P loongarch_scalar_mode_supported_p

#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS loongarch_init_builtins
#undef TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL loongarch_builtin_decl
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN loongarch_expand_builtin

/* The generic ELF target does not always have TLS support.  */
#ifdef HAVE_AS_TLS
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS HAVE_AS_TLS
#endif

#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM loongarch_cannot_force_const_mem

#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P loongarch_legitimate_constant_p

#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
#define TARGET_USE_BLOCKS_FOR_CONSTANT_P hook_bool_mode_const_rtx_true

#ifdef HAVE_AS_DTPRELWORD
#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
#define TARGET_ASM_OUTPUT_DWARF_DTPREL loongarch_output_dwarf_dtprel
#endif

#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P loongarch_legitimate_address_p

#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED loongarch_frame_pointer_required

#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE loongarch_can_eliminate

#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE loongarch_conditional_register_usage

#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT loongarch_trampoline_init

#undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
#define TARGET_ATOMIC_ASSIGN_EXPAND_FENV loongarch_atomic_assign_expand_fenv

#undef TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS
#define TARGET_CALL_FUSAGE_CONTAINS_NON_CALLEE_CLOBBERS true

#undef TARGET_SPILL_CLASS
#define TARGET_SPILL_CLASS loongarch_spill_class

#undef TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS loongarch_hard_regno_nregs
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK loongarch_hard_regno_mode_ok

#undef TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P loongarch_modes_tieable_p

#undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS
#define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 2

#undef TARGET_CAN_CHANGE_MODE_CLASS
#define TARGET_CAN_CHANGE_MODE_CLASS loongarch_can_change_mode_class

#undef TARGET_CONSTANT_ALIGNMENT
#define TARGET_CONSTANT_ALIGNMENT loongarch_constant_alignment

#undef TARGET_STARTING_FRAME_OFFSET
#define TARGET_STARTING_FRAME_OFFSET loongarch_starting_frame_offset

#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD loongarch_secondary_reload

#undef  TARGET_HAVE_SPECULATION_SAFE_VALUE
#define TARGET_HAVE_SPECULATION_SAFE_VALUE speculation_safe_value_not_needed

struct gcc_target targetm = TARGET_INITIALIZER;

#include "gt-loongarch.h"