summaryrefslogtreecommitdiff
path: root/gcc/c-family/c-common.cc
blob: d034837bb5bb7ad82967c4f4751b3df73541323e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
/* Subroutines shared by all languages that are variants of C.
   Copyright (C) 1992-2022 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#define GCC_C_COMMON_C

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "function.h"
#include "tree.h"
#include "memmodel.h"
#include "c-common.h"
#include "gimple-expr.h"
#include "tm_p.h"
#include "stringpool.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "intl.h"
#include "stor-layout.h"
#include "calls.h"
#include "attribs.h"
#include "varasm.h"
#include "trans-mem.h"
#include "c-objc.h"
#include "common/common-target.h"
#include "langhooks.h"
#include "tree-inline.h"
#include "toplev.h"
#include "tree-iterator.h"
#include "opts.h"
#include "gimplify.h"
#include "substring-locations.h"
#include "spellcheck.h"
#include "c-spellcheck.h"
#include "selftest.h"
#include "debug.h"
#include "tree-vector-builder.h"
#include "vec-perm-indices.h"

cpp_reader *parse_in;		/* Declared in c-pragma.h.  */

/* Mode used to build pointers (VOIDmode means ptr_mode).  */

machine_mode c_default_pointer_mode = VOIDmode;

/* The following symbols are subsumed in the c_global_trees array, and
   listed here individually for documentation purposes.

   INTEGER_TYPE and REAL_TYPE nodes for the standard data types.

	tree short_integer_type_node;
	tree long_integer_type_node;
	tree long_long_integer_type_node;

	tree short_unsigned_type_node;
	tree long_unsigned_type_node;
	tree long_long_unsigned_type_node;

	tree truthvalue_type_node;
	tree truthvalue_false_node;
	tree truthvalue_true_node;

	tree ptrdiff_type_node;

	tree unsigned_char_type_node;
	tree signed_char_type_node;
	tree wchar_type_node;

	tree char8_type_node;
	tree char16_type_node;
	tree char32_type_node;

	tree float_type_node;
	tree double_type_node;
	tree long_double_type_node;

	tree complex_integer_type_node;
	tree complex_float_type_node;
	tree complex_double_type_node;
	tree complex_long_double_type_node;

	tree dfloat32_type_node;
	tree dfloat64_type_node;
	tree_dfloat128_type_node;

	tree intQI_type_node;
	tree intHI_type_node;
	tree intSI_type_node;
	tree intDI_type_node;
	tree intTI_type_node;

	tree unsigned_intQI_type_node;
	tree unsigned_intHI_type_node;
	tree unsigned_intSI_type_node;
	tree unsigned_intDI_type_node;
	tree unsigned_intTI_type_node;

	tree widest_integer_literal_type_node;
	tree widest_unsigned_literal_type_node;

   Nodes for types `void *' and `const void *'.

	tree ptr_type_node, const_ptr_type_node;

   Nodes for types `char *' and `const char *'.

	tree string_type_node, const_string_type_node;

   Type `char[SOMENUMBER]'.
   Used when an array of char is needed and the size is irrelevant.

	tree char_array_type_node;

   Type `wchar_t[SOMENUMBER]' or something like it.
   Used when a wide string literal is created.

	tree wchar_array_type_node;

   Type `char8_t[SOMENUMBER]' or something like it.
   Used when a UTF-8 string literal is created.

	tree char8_array_type_node;

   Type `char16_t[SOMENUMBER]' or something like it.
   Used when a UTF-16 string literal is created.

	tree char16_array_type_node;

   Type `char32_t[SOMENUMBER]' or something like it.
   Used when a UTF-32 string literal is created.

	tree char32_array_type_node;

   Type `int ()' -- used for implicit declaration of functions.

	tree default_function_type;

   A VOID_TYPE node, packaged in a TREE_LIST.

	tree void_list_node;

  The lazily created VAR_DECLs for __FUNCTION__, __PRETTY_FUNCTION__,
  and __func__. (C doesn't generate __FUNCTION__ and__PRETTY_FUNCTION__
  VAR_DECLS, but C++ does.)

	tree function_name_decl_node;
	tree pretty_function_name_decl_node;
	tree c99_function_name_decl_node;

  Stack of nested function name VAR_DECLs.

	tree saved_function_name_decls;

*/

tree c_global_trees[CTI_MAX];

/* Switches common to the C front ends.  */

/* Nonzero means don't output line number information.  */

char flag_no_line_commands;

/* Nonzero causes -E output not to be done, but directives such as
   #define that have side effects are still obeyed.  */

char flag_no_output;

/* Nonzero means dump macros in some fashion.  */

char flag_dump_macros;

/* Nonzero means pass #include lines through to the output.  */

char flag_dump_includes;

/* Nonzero means process PCH files while preprocessing.  */

bool flag_pch_preprocess;

/* The file name to which we should write a precompiled header, or
   NULL if no header will be written in this compile.  */

const char *pch_file;

/* Nonzero if an ISO standard was selected.  It rejects macros in the
   user's namespace.  */
int flag_iso;

/* C/ObjC language option variables.  */


/* Nonzero means allow type mismatches in conditional expressions;
   just make their values `void'.  */

int flag_cond_mismatch;

/* Nonzero means enable C89 Amendment 1 features.  */

int flag_isoc94;

/* Nonzero means use the ISO C99 (or C11) dialect of C.  */

int flag_isoc99;

/* Nonzero means use the ISO C11 dialect of C.  */

int flag_isoc11;

/* Nonzero means use the ISO C2X dialect of C.  */

int flag_isoc2x;

/* Nonzero means that we have builtin functions, and main is an int.  */

int flag_hosted = 1;


/* ObjC language option variables.  */


/* Tells the compiler that this is a special run.  Do not perform any
   compiling, instead we are to test some platform dependent features
   and output a C header file with appropriate definitions.  */

int print_struct_values;

/* Tells the compiler what is the constant string class for ObjC.  */

const char *constant_string_class_name;


/* C++ language option variables.  */

/* The reference version of the ABI for -Wabi.  */

int warn_abi_version = -1;

/* The C++ dialect being used.  Default set in c_common_post_options.  */

enum cxx_dialect cxx_dialect = cxx_unset;

/* Maximum template instantiation depth.  This limit exists to limit the
   time it takes to notice excessively recursive template instantiations.

   The default is lower than the 1024 recommended by the C++0x standard
   because G++ runs out of stack before 1024 with highly recursive template
   argument deduction substitution (g++.dg/cpp0x/enum11.C).  */

int max_tinst_depth = 900;

/* The elements of `ridpointers' are identifier nodes for the reserved
   type names and storage classes.  It is indexed by a RID_... value.  */
tree *ridpointers;

tree (*make_fname_decl) (location_t, tree, int);

/* Nonzero means don't warn about problems that occur when the code is
   executed.  */
int c_inhibit_evaluation_warnings;

/* Whether we are building a boolean conversion inside
   convert_for_assignment, or some other late binary operation.  If
   build_binary_op is called for C (from code shared by C and C++) in
   this case, then the operands have already been folded and the
   result will not be folded again, so C_MAYBE_CONST_EXPR should not
   be generated.  */
bool in_late_binary_op;

/* Whether lexing has been completed, so subsequent preprocessor
   errors should use the compiler's input_location.  */
bool done_lexing = false;

/* Information about how a function name is generated.  */
struct fname_var_t
{
  tree *const decl;	/* pointer to the VAR_DECL.  */
  const unsigned rid;	/* RID number for the identifier.  */
  const int pretty;	/* How pretty is it? */
};

/* The three ways of getting then name of the current function.  */

const struct fname_var_t fname_vars[] =
{
  /* C99 compliant __func__, must be first.  */
  {&c99_function_name_decl_node, RID_C99_FUNCTION_NAME, 0},
  /* GCC __FUNCTION__ compliant.  */
  {&function_name_decl_node, RID_FUNCTION_NAME, 0},
  /* GCC __PRETTY_FUNCTION__ compliant.  */
  {&pretty_function_name_decl_node, RID_PRETTY_FUNCTION_NAME, 1},
  {NULL, 0, 0},
};

/* Global visibility options.  */
struct visibility_flags visibility_options;

static tree check_case_value (location_t, tree);


static void check_nonnull_arg (void *, tree, unsigned HOST_WIDE_INT);
static bool nonnull_check_p (tree, unsigned HOST_WIDE_INT);

/* Reserved words.  The third field is a mask: keywords are disabled
   if they match the mask.

   Masks for languages:
   C --std=c89: D_C99 | D_CXXONLY | D_OBJC | D_CXX_OBJC
   C --std=c99: D_CXXONLY | D_OBJC
   ObjC is like C except that D_OBJC and D_CXX_OBJC are not set
   C++ --std=c++98: D_CONLY | D_CXX11 | D_CXX20 | D_OBJC
   C++ --std=c++11: D_CONLY | D_CXX20 | D_OBJC
   C++ --std=c++20: D_CONLY | D_OBJC
   ObjC++ is like C++ except that D_OBJC is not set

   If -fno-asm is used, D_ASM is added to the mask.  If
   -fno-gnu-keywords is used, D_EXT is added.  If -fno-asm and C in
   C89 mode, D_EXT89 is added for both -fno-asm and -fno-gnu-keywords.
   In C with -Wc++-compat, we warn if D_CXXWARN is set.

   Note the complication of the D_CXX_OBJC keywords.  These are
   reserved words such as 'class'.  In C++, 'class' is a reserved
   word.  In Objective-C++ it is too.  In Objective-C, it is a
   reserved word too, but only if it follows an '@' sign.
*/
const struct c_common_resword c_common_reswords[] =
{
  { "_Alignas",		RID_ALIGNAS,   D_CONLY },
  { "_Alignof",		RID_ALIGNOF,   D_CONLY },
  { "_Atomic",		RID_ATOMIC,    D_CONLY },
  { "_Bool",		RID_BOOL,      D_CONLY },
  { "_Complex",		RID_COMPLEX,	0 },
  { "_Imaginary",	RID_IMAGINARY, D_CONLY },
  { "_Float16",         RID_FLOAT16,   D_CONLY },
  { "_Float32",         RID_FLOAT32,   D_CONLY },
  { "_Float64",         RID_FLOAT64,   D_CONLY },
  { "_Float128",        RID_FLOAT128,  D_CONLY },
  { "_Float32x",        RID_FLOAT32X,  D_CONLY },
  { "_Float64x",        RID_FLOAT64X,  D_CONLY },
  { "_Float128x",       RID_FLOAT128X, D_CONLY },
  { "_Decimal32",       RID_DFLOAT32,  D_CONLY },
  { "_Decimal64",       RID_DFLOAT64,  D_CONLY },
  { "_Decimal128",      RID_DFLOAT128, D_CONLY },
  { "_Fract",           RID_FRACT,     D_CONLY | D_EXT },
  { "_Accum",           RID_ACCUM,     D_CONLY | D_EXT },
  { "_Sat",             RID_SAT,       D_CONLY | D_EXT },
  { "_Static_assert",   RID_STATIC_ASSERT, D_CONLY },
  { "_Noreturn",        RID_NORETURN,  D_CONLY },
  { "_Generic",         RID_GENERIC,   D_CONLY },
  { "_Thread_local",    RID_THREAD,    D_CONLY },
  { "__FUNCTION__",	RID_FUNCTION_NAME, 0 },
  { "__PRETTY_FUNCTION__", RID_PRETTY_FUNCTION_NAME, 0 },
  { "__alignof",	RID_ALIGNOF,	0 },
  { "__alignof__",	RID_ALIGNOF,	0 },
  { "__asm",		RID_ASM,	0 },
  { "__asm__",		RID_ASM,	0 },
  { "__attribute",	RID_ATTRIBUTE,	0 },
  { "__attribute__",	RID_ATTRIBUTE,	0 },
  { "__auto_type",	RID_AUTO_TYPE,	D_CONLY },
  { "__bases",          RID_BASES, D_CXXONLY },
  { "__builtin_addressof", RID_ADDRESSOF, D_CXXONLY },
  { "__builtin_bit_cast", RID_BUILTIN_BIT_CAST, D_CXXONLY },
  { "__builtin_call_with_static_chain",
    RID_BUILTIN_CALL_WITH_STATIC_CHAIN, D_CONLY },
  { "__builtin_choose_expr", RID_CHOOSE_EXPR, D_CONLY },
  { "__builtin_complex", RID_BUILTIN_COMPLEX, D_CONLY },
  { "__builtin_convertvector", RID_BUILTIN_CONVERTVECTOR, 0 },
  { "__builtin_has_attribute", RID_BUILTIN_HAS_ATTRIBUTE, 0 },
  { "__builtin_launder", RID_BUILTIN_LAUNDER, D_CXXONLY },
  { "__builtin_assoc_barrier", RID_BUILTIN_ASSOC_BARRIER, 0 },
  { "__builtin_shuffle", RID_BUILTIN_SHUFFLE, 0 },
  { "__builtin_shufflevector", RID_BUILTIN_SHUFFLEVECTOR, 0 },
  { "__builtin_tgmath", RID_BUILTIN_TGMATH, D_CONLY },
  { "__builtin_offsetof", RID_OFFSETOF, 0 },
  { "__builtin_types_compatible_p", RID_TYPES_COMPATIBLE_P, D_CONLY },
  { "__builtin_va_arg",	RID_VA_ARG,	0 },
  { "__complex",	RID_COMPLEX,	0 },
  { "__complex__",	RID_COMPLEX,	0 },
  { "__const",		RID_CONST,	0 },
  { "__const__",	RID_CONST,	0 },
  { "__constinit",	RID_CONSTINIT,	D_CXXONLY },
  { "__decltype",       RID_DECLTYPE,   D_CXXONLY },
  { "__direct_bases",   RID_DIRECT_BASES, D_CXXONLY },
  { "__extension__",	RID_EXTENSION,	0 },
  { "__func__",		RID_C99_FUNCTION_NAME, 0 },
  { "__has_nothrow_assign", RID_HAS_NOTHROW_ASSIGN, D_CXXONLY },
  { "__has_nothrow_constructor", RID_HAS_NOTHROW_CONSTRUCTOR, D_CXXONLY },
  { "__has_nothrow_copy", RID_HAS_NOTHROW_COPY, D_CXXONLY },
  { "__has_trivial_assign", RID_HAS_TRIVIAL_ASSIGN, D_CXXONLY },
  { "__has_trivial_constructor", RID_HAS_TRIVIAL_CONSTRUCTOR, D_CXXONLY },
  { "__has_trivial_copy", RID_HAS_TRIVIAL_COPY, D_CXXONLY },
  { "__has_trivial_destructor", RID_HAS_TRIVIAL_DESTRUCTOR, D_CXXONLY },
  { "__has_unique_object_representations", RID_HAS_UNIQUE_OBJ_REPRESENTATIONS,
					D_CXXONLY },
  { "__has_virtual_destructor", RID_HAS_VIRTUAL_DESTRUCTOR, D_CXXONLY },
  { "__imag",		RID_IMAGPART,	0 },
  { "__imag__",		RID_IMAGPART,	0 },
  { "__inline",		RID_INLINE,	0 },
  { "__inline__",	RID_INLINE,	0 },
  { "__is_abstract",	RID_IS_ABSTRACT, D_CXXONLY },
  { "__is_aggregate",	RID_IS_AGGREGATE, D_CXXONLY },
  { "__is_base_of",	RID_IS_BASE_OF, D_CXXONLY },
  { "__is_class",	RID_IS_CLASS,	D_CXXONLY },
  { "__is_empty",	RID_IS_EMPTY,	D_CXXONLY },
  { "__is_enum",	RID_IS_ENUM,	D_CXXONLY },
  { "__is_final",	RID_IS_FINAL,	D_CXXONLY },
  { "__is_layout_compatible", RID_IS_LAYOUT_COMPATIBLE, D_CXXONLY },
  { "__is_literal_type", RID_IS_LITERAL_TYPE, D_CXXONLY },
  { "__is_pointer_interconvertible_base_of",
			RID_IS_POINTER_INTERCONVERTIBLE_BASE_OF, D_CXXONLY },
  { "__is_pod",		RID_IS_POD,	D_CXXONLY },
  { "__is_polymorphic",	RID_IS_POLYMORPHIC, D_CXXONLY },
  { "__is_same",     RID_IS_SAME_AS, D_CXXONLY },
  { "__is_same_as",     RID_IS_SAME_AS, D_CXXONLY },
  { "__is_standard_layout", RID_IS_STD_LAYOUT, D_CXXONLY },
  { "__is_trivial",     RID_IS_TRIVIAL, D_CXXONLY },
  { "__is_trivially_assignable", RID_IS_TRIVIALLY_ASSIGNABLE, D_CXXONLY },
  { "__is_trivially_constructible", RID_IS_TRIVIALLY_CONSTRUCTIBLE, D_CXXONLY },
  { "__is_trivially_copyable", RID_IS_TRIVIALLY_COPYABLE, D_CXXONLY },
  { "__is_union",	RID_IS_UNION,	D_CXXONLY },
  { "__label__",	RID_LABEL,	0 },
  { "__null",		RID_NULL,	0 },
  { "__real",		RID_REALPART,	0 },
  { "__real__",		RID_REALPART,	0 },
  { "__restrict",	RID_RESTRICT,	0 },
  { "__restrict__",	RID_RESTRICT,	0 },
  { "__signed",		RID_SIGNED,	0 },
  { "__signed__",	RID_SIGNED,	0 },
  { "__thread",		RID_THREAD,	0 },
  { "__transaction_atomic", RID_TRANSACTION_ATOMIC, 0 },
  { "__transaction_relaxed", RID_TRANSACTION_RELAXED, 0 },
  { "__transaction_cancel", RID_TRANSACTION_CANCEL, 0 },
  { "__typeof",		RID_TYPEOF,	0 },
  { "__typeof__",	RID_TYPEOF,	0 },
  { "__underlying_type", RID_UNDERLYING_TYPE, D_CXXONLY },
  { "__volatile",	RID_VOLATILE,	0 },
  { "__volatile__",	RID_VOLATILE,	0 },
  { "__GIMPLE",		RID_GIMPLE,	D_CONLY },
  { "__PHI",		RID_PHI,	D_CONLY },
  { "__RTL",		RID_RTL,	D_CONLY },
  { "alignas",		RID_ALIGNAS,	D_CXXONLY | D_CXX11 | D_CXXWARN },
  { "alignof",		RID_ALIGNOF,	D_CXXONLY | D_CXX11 | D_CXXWARN },
  { "asm",		RID_ASM,	D_ASM },
  { "auto",		RID_AUTO,	0 },
  { "bool",		RID_BOOL,	D_CXXONLY | D_CXXWARN },
  { "break",		RID_BREAK,	0 },
  { "case",		RID_CASE,	0 },
  { "catch",		RID_CATCH,	D_CXX_OBJC | D_CXXWARN },
  { "char",		RID_CHAR,	0 },
  { "char8_t",		RID_CHAR8,	D_CXX_CHAR8_T_FLAGS | D_CXXWARN },
  { "char16_t",		RID_CHAR16,	D_CXXONLY | D_CXX11 | D_CXXWARN },
  { "char32_t",		RID_CHAR32,	D_CXXONLY | D_CXX11 | D_CXXWARN },
  { "class",		RID_CLASS,	D_CXX_OBJC | D_CXXWARN },
  { "const",		RID_CONST,	0 },
  { "consteval",	RID_CONSTEVAL,	D_CXXONLY | D_CXX20 | D_CXXWARN },
  { "constexpr",	RID_CONSTEXPR,	D_CXXONLY | D_CXX11 | D_CXXWARN },
  { "constinit",	RID_CONSTINIT,	D_CXXONLY | D_CXX20 | D_CXXWARN },
  { "const_cast",	RID_CONSTCAST,	D_CXXONLY | D_CXXWARN },
  { "continue",		RID_CONTINUE,	0 },
  { "decltype",         RID_DECLTYPE,   D_CXXONLY | D_CXX11 | D_CXXWARN },
  { "default",		RID_DEFAULT,	0 },
  { "delete",		RID_DELETE,	D_CXXONLY | D_CXXWARN },
  { "do",		RID_DO,		0 },
  { "double",		RID_DOUBLE,	0 },
  { "dynamic_cast",	RID_DYNCAST,	D_CXXONLY | D_CXXWARN },
  { "else",		RID_ELSE,	0 },
  { "enum",		RID_ENUM,	0 },
  { "explicit",		RID_EXPLICIT,	D_CXXONLY | D_CXXWARN },
  { "export",		RID_EXPORT,	D_CXXONLY | D_CXXWARN },
  { "extern",		RID_EXTERN,	0 },
  { "false",		RID_FALSE,	D_CXXONLY | D_CXXWARN },
  { "float",		RID_FLOAT,	0 },
  { "for",		RID_FOR,	0 },
  { "friend",		RID_FRIEND,	D_CXXONLY | D_CXXWARN },
  { "goto",		RID_GOTO,	0 },
  { "if",		RID_IF,		0 },
  { "inline",		RID_INLINE,	D_EXT89 },
  { "int",		RID_INT,	0 },
  { "long",		RID_LONG,	0 },
  { "mutable",		RID_MUTABLE,	D_CXXONLY | D_CXXWARN },
  { "namespace",	RID_NAMESPACE,	D_CXXONLY | D_CXXWARN },
  { "new",		RID_NEW,	D_CXXONLY | D_CXXWARN },
  { "noexcept",		RID_NOEXCEPT,	D_CXXONLY | D_CXX11 | D_CXXWARN },
  { "nullptr",		RID_NULLPTR,	D_CXXONLY | D_CXX11 | D_CXXWARN },
  { "operator",		RID_OPERATOR,	D_CXXONLY | D_CXXWARN },
  { "private",		RID_PRIVATE,	D_CXX_OBJC | D_CXXWARN },
  { "protected",	RID_PROTECTED,	D_CXX_OBJC | D_CXXWARN },
  { "public",		RID_PUBLIC,	D_CXX_OBJC | D_CXXWARN },
  { "register",		RID_REGISTER,	0 },
  { "reinterpret_cast",	RID_REINTCAST,	D_CXXONLY | D_CXXWARN },
  { "restrict",		RID_RESTRICT,	D_CONLY | D_C99 },
  { "return",		RID_RETURN,	0 },
  { "short",		RID_SHORT,	0 },
  { "signed",		RID_SIGNED,	0 },
  { "sizeof",		RID_SIZEOF,	0 },
  { "static",		RID_STATIC,	0 },
  { "static_assert",    RID_STATIC_ASSERT, D_CXXONLY | D_CXX11 | D_CXXWARN },
  { "static_cast",	RID_STATCAST,	D_CXXONLY | D_CXXWARN },
  { "struct",		RID_STRUCT,	0 },
  { "switch",		RID_SWITCH,	0 },
  { "template",		RID_TEMPLATE,	D_CXXONLY | D_CXXWARN },
  { "this",		RID_THIS,	D_CXXONLY | D_CXXWARN },
  { "thread_local",	RID_THREAD,	D_CXXONLY | D_CXX11 | D_CXXWARN },
  { "throw",		RID_THROW,	D_CXX_OBJC | D_CXXWARN },
  { "true",		RID_TRUE,	D_CXXONLY | D_CXXWARN },
  { "try",		RID_TRY,	D_CXX_OBJC | D_CXXWARN },
  { "typedef",		RID_TYPEDEF,	0 },
  { "typename",		RID_TYPENAME,	D_CXXONLY | D_CXXWARN },
  { "typeid",		RID_TYPEID,	D_CXXONLY | D_CXXWARN },
  { "typeof",		RID_TYPEOF,	D_ASM | D_EXT },
  { "union",		RID_UNION,	0 },
  { "unsigned",		RID_UNSIGNED,	0 },
  { "using",		RID_USING,	D_CXXONLY | D_CXXWARN },
  { "virtual",		RID_VIRTUAL,	D_CXXONLY | D_CXXWARN },
  { "void",		RID_VOID,	0 },
  { "volatile",		RID_VOLATILE,	0 },
  { "wchar_t",		RID_WCHAR,	D_CXXONLY },
  { "while",		RID_WHILE,	0 },
  { "__is_assignable", RID_IS_ASSIGNABLE, D_CXXONLY },
  { "__is_constructible", RID_IS_CONSTRUCTIBLE, D_CXXONLY },
  { "__is_nothrow_assignable", RID_IS_NOTHROW_ASSIGNABLE, D_CXXONLY },
  { "__is_nothrow_constructible", RID_IS_NOTHROW_CONSTRUCTIBLE, D_CXXONLY },

  /* C++ transactional memory.  */
  { "synchronized",	RID_SYNCHRONIZED, D_CXX_OBJC | D_TRANSMEM },
  { "atomic_noexcept",	RID_ATOMIC_NOEXCEPT, D_CXXONLY | D_TRANSMEM },
  { "atomic_cancel",	RID_ATOMIC_CANCEL, D_CXXONLY | D_TRANSMEM },
  { "atomic_commit",	RID_TRANSACTION_ATOMIC, D_CXXONLY | D_TRANSMEM },

  /* Concepts-related keywords */
  { "concept",		RID_CONCEPT,	D_CXX_CONCEPTS_FLAGS | D_CXXWARN },
  { "requires", 	RID_REQUIRES,	D_CXX_CONCEPTS_FLAGS | D_CXXWARN },

  /* Modules-related keywords, these are internal unspellable tokens,
     created by the preprocessor.  */
  { "module ",		RID__MODULE,	D_CXX_MODULES_FLAGS | D_CXXWARN },
  { "import ",		RID__IMPORT,	D_CXX_MODULES_FLAGS | D_CXXWARN },
  { "export ",		RID__EXPORT,	D_CXX_MODULES_FLAGS | D_CXXWARN },

  /* Coroutines-related keywords */
  { "co_await",		RID_CO_AWAIT,	D_CXX_COROUTINES_FLAGS | D_CXXWARN },
  { "co_yield",		RID_CO_YIELD,	D_CXX_COROUTINES_FLAGS | D_CXXWARN },
  { "co_return", 	RID_CO_RETURN,	D_CXX_COROUTINES_FLAGS | D_CXXWARN },

  /* These Objective-C keywords are recognized only immediately after
     an '@'.  */
  { "compatibility_alias", RID_AT_ALIAS,	D_OBJC },
  { "defs",		RID_AT_DEFS,		D_OBJC },
  { "encode",		RID_AT_ENCODE,		D_OBJC },
  { "end",		RID_AT_END,		D_OBJC },
  { "implementation",	RID_AT_IMPLEMENTATION,	D_OBJC },
  { "interface",	RID_AT_INTERFACE,	D_OBJC },
  { "protocol",		RID_AT_PROTOCOL,	D_OBJC },
  { "selector",		RID_AT_SELECTOR,	D_OBJC },
  { "finally",		RID_AT_FINALLY,		D_OBJC },
  { "optional",		RID_AT_OPTIONAL,	D_OBJC },
  { "required",		RID_AT_REQUIRED,	D_OBJC },
  { "property",		RID_AT_PROPERTY,	D_OBJC },
  { "package",		RID_AT_PACKAGE,		D_OBJC },
  { "synthesize",	RID_AT_SYNTHESIZE,	D_OBJC },
  { "dynamic",		RID_AT_DYNAMIC,		D_OBJC },
  /* These are recognized only in protocol-qualifier context
     (see above) */
  { "bycopy",		RID_BYCOPY,		D_OBJC },
  { "byref",		RID_BYREF,		D_OBJC },
  { "in",		RID_IN,			D_OBJC },
  { "inout",		RID_INOUT,		D_OBJC },
  { "oneway",		RID_ONEWAY,		D_OBJC },
  { "out",		RID_OUT,		D_OBJC },
  /* These are recognized inside a property attribute list */
  { "assign",		RID_ASSIGN,		D_OBJC },
  { "atomic",		RID_PROPATOMIC,		D_OBJC },
  { "copy",		RID_COPY,		D_OBJC },
  { "getter",		RID_GETTER,		D_OBJC },
  { "nonatomic",	RID_NONATOMIC,		D_OBJC },
  { "readonly",		RID_READONLY,		D_OBJC },
  { "readwrite",	RID_READWRITE,		D_OBJC },
  { "retain",		RID_RETAIN,		D_OBJC },
  { "setter",		RID_SETTER,		D_OBJC },
  /* These are Objective C implementation of nullability, accepted only in
     specific contexts.  */
  { "null_unspecified", RID_NULL_UNSPECIFIED,	D_OBJC },
  { "nullable",		RID_NULLABLE,		D_OBJC },
  { "nonnull",		RID_NONNULL,		D_OBJC },
  { "null_resettable",	RID_NULL_RESETTABLE,	D_OBJC },
};

const unsigned int num_c_common_reswords =
  sizeof c_common_reswords / sizeof (struct c_common_resword);

/* Return identifier for address space AS.  */

const char *
c_addr_space_name (addr_space_t as)
{
  int rid = RID_FIRST_ADDR_SPACE + as;
  gcc_assert (ridpointers [rid]);
  return IDENTIFIER_POINTER (ridpointers [rid]);
}

/* Push current bindings for the function name VAR_DECLS.  */

void
start_fname_decls (void)
{
  unsigned ix;
  tree saved = NULL_TREE;

  for (ix = 0; fname_vars[ix].decl; ix++)
    {
      tree decl = *fname_vars[ix].decl;

      if (decl)
	{
	  saved = tree_cons (decl, build_int_cst (integer_type_node, ix),
			     saved);
	  *fname_vars[ix].decl = NULL_TREE;
	}
    }
  if (saved || saved_function_name_decls)
    /* Normally they'll have been NULL, so only push if we've got a
       stack, or they are non-NULL.  */
    saved_function_name_decls = tree_cons (saved, NULL_TREE,
					   saved_function_name_decls);
}

/* Finish up the current bindings, adding them into the current function's
   statement tree.  This must be done _before_ finish_stmt_tree is called.
   If there is no current function, we must be at file scope and no statements
   are involved. Pop the previous bindings.  */

void
finish_fname_decls (void)
{
  unsigned ix;
  tree stmts = NULL_TREE;
  tree stack = saved_function_name_decls;

  for (; stack && TREE_VALUE (stack); stack = TREE_CHAIN (stack))
    append_to_statement_list (TREE_VALUE (stack), &stmts);

  if (stmts)
    {
      tree *bodyp = &DECL_SAVED_TREE (current_function_decl);

      if (TREE_CODE (*bodyp) == BIND_EXPR)
	bodyp = &BIND_EXPR_BODY (*bodyp);

      append_to_statement_list_force (*bodyp, &stmts);
      *bodyp = stmts;
    }

  for (ix = 0; fname_vars[ix].decl; ix++)
    *fname_vars[ix].decl = NULL_TREE;

  if (stack)
    {
      /* We had saved values, restore them.  */
      tree saved;

      for (saved = TREE_PURPOSE (stack); saved; saved = TREE_CHAIN (saved))
	{
	  tree decl = TREE_PURPOSE (saved);
	  unsigned ix = TREE_INT_CST_LOW (TREE_VALUE (saved));

	  *fname_vars[ix].decl = decl;
	}
      stack = TREE_CHAIN (stack);
    }
  saved_function_name_decls = stack;
}

/* Return the text name of the current function, suitably prettified
   by PRETTY_P.  Return string must be freed by caller.  */

const char *
fname_as_string (int pretty_p)
{
  const char *name = "top level";
  char *namep;
  int vrb = 2, len;
  cpp_string cstr = { 0, 0 }, strname;

  if (!pretty_p)
    {
      name = "";
      vrb = 0;
    }

  if (current_function_decl)
    name = lang_hooks.decl_printable_name (current_function_decl, vrb);

  len = strlen (name) + 3; /* Two for '"'s.  One for NULL.  */

  namep = XNEWVEC (char, len);
  snprintf (namep, len, "\"%s\"", name);
  strname.text = (unsigned char *) namep;
  strname.len = len - 1;

  if (cpp_interpret_string (parse_in, &strname, 1, &cstr, CPP_STRING))
    {
      XDELETEVEC (namep);
      return (const char *) cstr.text;
    }

  return namep;
}

/* Return the VAR_DECL for a const char array naming the current
   function. If the VAR_DECL has not yet been created, create it
   now. RID indicates how it should be formatted and IDENTIFIER_NODE
   ID is its name (unfortunately C and C++ hold the RID values of
   keywords in different places, so we can't derive RID from ID in
   this language independent code. LOC is the location of the
   function.  */

tree
fname_decl (location_t loc, unsigned int rid, tree id)
{
  unsigned ix;
  tree decl = NULL_TREE;

  for (ix = 0; fname_vars[ix].decl; ix++)
    if (fname_vars[ix].rid == rid)
      break;

  decl = *fname_vars[ix].decl;
  if (!decl)
    {
      /* If a tree is built here, it would normally have the lineno of
	 the current statement.  Later this tree will be moved to the
	 beginning of the function and this line number will be wrong.
	 To avoid this problem set the lineno to 0 here; that prevents
	 it from appearing in the RTL.  */
      tree stmts;
      location_t saved_location = input_location;
      input_location = UNKNOWN_LOCATION;

      stmts = push_stmt_list ();
      decl = (*make_fname_decl) (loc, id, fname_vars[ix].pretty);
      stmts = pop_stmt_list (stmts);
      if (!IS_EMPTY_STMT (stmts))
	saved_function_name_decls
	  = tree_cons (decl, stmts, saved_function_name_decls);
      *fname_vars[ix].decl = decl;
      input_location = saved_location;
    }
  if (!ix && !current_function_decl)
    pedwarn (loc, 0, "%qD is not defined outside of function scope", decl);

  return decl;
}

/* Given a STRING_CST, give it a suitable array-of-chars data type.  */

tree
fix_string_type (tree value)
{
  int length = TREE_STRING_LENGTH (value);
  int nchars, charsz;
  tree e_type, i_type, a_type;

  /* Compute the number of elements, for the array type.  */
  if (TREE_TYPE (value) == char_array_type_node || !TREE_TYPE (value))
    {
      charsz = 1;
      e_type = char_type_node;
    }
  else if (flag_char8_t && TREE_TYPE (value) == char8_array_type_node)
    {
      charsz = TYPE_PRECISION (char8_type_node) / BITS_PER_UNIT;
      e_type = char8_type_node;
    }
  else if (TREE_TYPE (value) == char16_array_type_node)
    {
      charsz = TYPE_PRECISION (char16_type_node) / BITS_PER_UNIT;
      e_type = char16_type_node;
    }
  else if (TREE_TYPE (value) == char32_array_type_node)
    {
      charsz = TYPE_PRECISION (char32_type_node) / BITS_PER_UNIT;
      e_type = char32_type_node;
    }
  else
    {
      charsz = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
      e_type = wchar_type_node;
    }

  /* This matters only for targets where ssizetype has smaller precision
     than 32 bits.  */
  if (wi::lts_p (wi::to_wide (TYPE_MAX_VALUE (ssizetype)), length))
    {
      error ("size of string literal is too large");
      length = tree_to_shwi (TYPE_MAX_VALUE (ssizetype)) / charsz * charsz;
      char *str = CONST_CAST (char *, TREE_STRING_POINTER (value));
      memset (str + length, '\0',
	      MIN (TREE_STRING_LENGTH (value) - length, charsz));
      TREE_STRING_LENGTH (value) = length;
    }
  nchars = length / charsz;

  /* C89 2.2.4.1, C99 5.2.4.1 (Translation limits).  The analogous
     limit in C++98 Annex B is very large (65536) and is not normative,
     so we do not diagnose it (warn_overlength_strings is forced off
     in c_common_post_options).  */
  if (warn_overlength_strings)
    {
      const int nchars_max = flag_isoc99 ? 4095 : 509;
      const int relevant_std = flag_isoc99 ? 99 : 90;
      if (nchars - 1 > nchars_max)
	/* Translators: The %d after 'ISO C' will be 90 or 99.  Do not
	   separate the %d from the 'C'.  'ISO' should not be
	   translated, but it may be moved after 'C%d' in languages
	   where modifiers follow nouns.  */
	pedwarn (input_location, OPT_Woverlength_strings,
		 "string length %qd is greater than the length %qd "
		 "ISO C%d compilers are required to support",
		 nchars - 1, nchars_max, relevant_std);
    }

  /* Create the array type for the string constant.  The ISO C++
     standard says that a string literal has type `const char[N]' or
     `const wchar_t[N]'.  We use the same logic when invoked as a C
     front-end with -Wwrite-strings.
     ??? We should change the type of an expression depending on the
     state of a warning flag.  We should just be warning -- see how
     this is handled in the C++ front-end for the deprecated implicit
     conversion from string literals to `char*' or `wchar_t*'.

     The C++ front end relies on TYPE_MAIN_VARIANT of a cv-qualified
     array type being the unqualified version of that type.
     Therefore, if we are constructing an array of const char, we must
     construct the matching unqualified array type first.  The C front
     end does not require this, but it does no harm, so we do it
     unconditionally.  */
  i_type = build_index_type (size_int (nchars - 1));
  a_type = build_array_type (e_type, i_type);
  if (c_dialect_cxx() || warn_write_strings)
    a_type = c_build_qualified_type (a_type, TYPE_QUAL_CONST);

  TREE_TYPE (value) = a_type;
  TREE_CONSTANT (value) = 1;
  TREE_READONLY (value) = 1;
  TREE_STATIC (value) = 1;
  return value;
}

/* Given a string of type STRING_TYPE, determine what kind of string
   token would give an equivalent execution encoding: CPP_STRING,
   CPP_STRING16, or CPP_STRING32.  Return CPP_OTHER in case of error.
   This may not be exactly the string token type that initially created
   the string, since CPP_WSTRING is indistinguishable from the 16/32 bit
   string type, and CPP_UTF8STRING is indistinguishable from CPP_STRING
   at this point.

   This effectively reverses part of the logic in lex_string and
   fix_string_type.  */

static enum cpp_ttype
get_cpp_ttype_from_string_type (tree string_type)
{
  gcc_assert (string_type);
  if (TREE_CODE (string_type) == POINTER_TYPE)
    string_type = TREE_TYPE (string_type);

  if (TREE_CODE (string_type) != ARRAY_TYPE)
    return CPP_OTHER;

  tree element_type = TREE_TYPE (string_type);
  if (TREE_CODE (element_type) != INTEGER_TYPE)
    return CPP_OTHER;

  int bits_per_character = TYPE_PRECISION (element_type);
  switch (bits_per_character)
    {
    case 8:
      return CPP_STRING;  /* It could have also been CPP_UTF8STRING.  */
    case 16:
      return CPP_STRING16;
    case 32:
      return CPP_STRING32;
    }

  return CPP_OTHER;
}

/* The global record of string concatentations, for use in
   extracting locations within string literals.  */

GTY(()) string_concat_db *g_string_concat_db;

/* Implementation of LANG_HOOKS_GET_SUBSTRING_LOCATION.  */

const char *
c_get_substring_location (const substring_loc &substr_loc,
			  location_t *out_loc)
{
  enum cpp_ttype tok_type
    = get_cpp_ttype_from_string_type (substr_loc.get_string_type ());
  if (tok_type == CPP_OTHER)
    return "unrecognized string type";

  return get_location_within_string (parse_in, g_string_concat_db,
				     substr_loc.get_fmt_string_loc (),
				     tok_type,
				     substr_loc.get_caret_idx (),
				     substr_loc.get_start_idx (),
				     substr_loc.get_end_idx (),
				     out_loc);
}


/* Return true iff T is a boolean promoted to int.  */

bool
bool_promoted_to_int_p (tree t)
{
  return (CONVERT_EXPR_P (t)
	  && TREE_TYPE (t) == integer_type_node
	  && TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == BOOLEAN_TYPE);
}

/* vector_targets_convertible_p is used for vector pointer types.  The
   callers perform various checks that the qualifiers are satisfactory,
   while OTOH vector_targets_convertible_p ignores the number of elements
   in the vectors.  That's fine with vector pointers as we can consider,
   say, a vector of 8 elements as two consecutive vectors of 4 elements,
   and that does not require and conversion of the pointer values.
   In contrast, vector_types_convertible_p and
   vector_types_compatible_elements_p are used for vector value types.  */
/* True if pointers to distinct types T1 and T2 can be converted to
   each other without an explicit cast.  Only returns true for opaque
   vector types.  */
bool
vector_targets_convertible_p (const_tree t1, const_tree t2)
{
  if (VECTOR_TYPE_P (t1) && VECTOR_TYPE_P (t2)
      && (TYPE_VECTOR_OPAQUE (t1) || TYPE_VECTOR_OPAQUE (t2))
      && tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2)))
    return true;

  return false;
}

/* vector_types_convertible_p is used for vector value types.
   It could in principle call vector_targets_convertible_p as a subroutine,
   but then the check for vector type would be duplicated with its callers,
   and also the purpose of vector_targets_convertible_p would become
   muddled.
   Where vector_types_convertible_p returns true, a conversion might still be
   needed to make the types match.
   In contrast, vector_targets_convertible_p is used for vector pointer
   values, and vector_types_compatible_elements_p is used specifically
   in the context for binary operators, as a check if use is possible without
   conversion.  */
/* True if vector types T1 and T2 can be converted to each other
   without an explicit cast.  If EMIT_LAX_NOTE is true, and T1 and T2
   can only be converted with -flax-vector-conversions yet that is not
   in effect, emit a note telling the user about that option if such
   a note has not previously been emitted.  */
bool
vector_types_convertible_p (const_tree t1, const_tree t2, bool emit_lax_note)
{
  static bool emitted_lax_note = false;
  bool convertible_lax;

  if ((TYPE_VECTOR_OPAQUE (t1) || TYPE_VECTOR_OPAQUE (t2))
      && tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2)))
    return true;

  convertible_lax =
    (tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2))
     && (TREE_CODE (TREE_TYPE (t1)) != REAL_TYPE
	 || known_eq (TYPE_VECTOR_SUBPARTS (t1),
		      TYPE_VECTOR_SUBPARTS (t2)))
     && (INTEGRAL_TYPE_P (TREE_TYPE (t1))
	 == INTEGRAL_TYPE_P (TREE_TYPE (t2))));

  if (!convertible_lax || flag_lax_vector_conversions)
    return convertible_lax;

  if (known_eq (TYPE_VECTOR_SUBPARTS (t1), TYPE_VECTOR_SUBPARTS (t2))
      && lang_hooks.types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))
    return true;

  if (emit_lax_note && !emitted_lax_note)
    {
      emitted_lax_note = true;
      inform (input_location, "use %<-flax-vector-conversions%> to permit "
              "conversions between vectors with differing "
              "element types or numbers of subparts");
    }

  return false;
}

/* Build a VEC_PERM_EXPR if V0, V1 and MASK are not error_mark_nodes
   and have vector types, V0 has the same type as V1, and the number of
   elements of V0, V1, MASK is the same.

   In case V1 is a NULL_TREE it is assumed that __builtin_shuffle was
   called with two arguments.  In this case implementation passes the
   first argument twice in order to share the same tree code.  This fact
   could enable the mask-values being twice the vector length.  This is
   an implementation accident and this semantics is not guaranteed to
   the user.  */
tree
c_build_vec_perm_expr (location_t loc, tree v0, tree v1, tree mask,
		       bool complain)
{
  tree ret;
  bool wrap = true;
  bool maybe_const = false;
  bool two_arguments = false;

  if (v1 == NULL_TREE)
    {
      two_arguments = true;
      v1 = v0;
    }

  if (v0 == error_mark_node || v1 == error_mark_node
      || mask == error_mark_node)
    return error_mark_node;

  if (!gnu_vector_type_p (TREE_TYPE (mask))
      || !VECTOR_INTEGER_TYPE_P (TREE_TYPE (mask)))
    {
      if (complain)
	error_at (loc, "%<__builtin_shuffle%> last argument must "
		       "be an integer vector");
      return error_mark_node;
    }

  if (!gnu_vector_type_p (TREE_TYPE (v0))
      || !gnu_vector_type_p (TREE_TYPE (v1)))
    {
      if (complain)
	error_at (loc, "%<__builtin_shuffle%> arguments must be vectors");
      return error_mark_node;
    }

  if (TYPE_MAIN_VARIANT (TREE_TYPE (v0)) != TYPE_MAIN_VARIANT (TREE_TYPE (v1)))
    {
      if (complain)
	error_at (loc, "%<__builtin_shuffle%> argument vectors must be of "
		       "the same type");
      return error_mark_node;
    }

  if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (v0)),
		TYPE_VECTOR_SUBPARTS (TREE_TYPE (mask)))
      && maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (v1)),
		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (mask))))
    {
      if (complain)
	error_at (loc, "%<__builtin_shuffle%> number of elements of the "
		       "argument vector(s) and the mask vector should "
		       "be the same");
      return error_mark_node;
    }

  if (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (TREE_TYPE (v0))))
      != GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (TREE_TYPE (mask)))))
    {
      if (complain)
	error_at (loc, "%<__builtin_shuffle%> argument vector(s) inner type "
		       "must have the same size as inner type of the mask");
      return error_mark_node;
    }

  if (!c_dialect_cxx ())
    {
      /* Avoid C_MAYBE_CONST_EXPRs inside VEC_PERM_EXPR.  */
      v0 = c_fully_fold (v0, false, &maybe_const);
      wrap &= maybe_const;

      if (two_arguments)
        v1 = v0 = save_expr (v0);
      else
        {
          v1 = c_fully_fold (v1, false, &maybe_const);
          wrap &= maybe_const;
        }

      mask = c_fully_fold (mask, false, &maybe_const);
      wrap &= maybe_const;
    }
  else if (two_arguments)
    v1 = v0 = save_expr (v0);

  ret = build3_loc (loc, VEC_PERM_EXPR, TREE_TYPE (v0), v0, v1, mask);

  if (!c_dialect_cxx () && !wrap)
    ret = c_wrap_maybe_const (ret, true);

  return ret;
}

/* Build a VEC_PERM_EXPR if V0, V1 are not error_mark_nodes
   and have vector types, V0 has the same element type as V1, and the
   number of elements the result is that of MASK.  */
tree
c_build_shufflevector (location_t loc, tree v0, tree v1,
		       const vec<tree> &mask, bool complain)
{
  tree ret;
  bool wrap = true;
  bool maybe_const = false;

  if (v0 == error_mark_node || v1 == error_mark_node)
    return error_mark_node;

  if (!gnu_vector_type_p (TREE_TYPE (v0))
      || !gnu_vector_type_p (TREE_TYPE (v1)))
    {
      if (complain)
	error_at (loc, "%<__builtin_shufflevector%> arguments must be vectors");
      return error_mark_node;
    }

  /* ???  In principle one could select a constant part of a variable size
     vector but things get a bit awkward with trying to support this here.  */
  unsigned HOST_WIDE_INT v0n, v1n;
  if (!TYPE_VECTOR_SUBPARTS (TREE_TYPE (v0)).is_constant (&v0n)
      || !TYPE_VECTOR_SUBPARTS (TREE_TYPE (v1)).is_constant (&v1n))
    {
      if (complain)
	error_at (loc, "%<__builtin_shufflevector%> arguments must be constant"
		  " size vectors");
      return error_mark_node;
    }

  if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (v0)))
      != TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (v1))))
    {
      if (complain)
	error_at (loc, "%<__builtin_shufflevector%> argument vectors must "
		  "have the same element type");
      return error_mark_node;
    }

  if (!pow2p_hwi (mask.length ()))
    {
      if (complain)
	error_at (loc, "%<__builtin_shufflevector%> must specify a result "
		  "with a power of two number of elements");
      return error_mark_node;
    }

  if (!c_dialect_cxx ())
    {
      /* Avoid C_MAYBE_CONST_EXPRs inside VEC_PERM_EXPR.  */
      v0 = c_fully_fold (v0, false, &maybe_const);
      wrap &= maybe_const;

      v1 = c_fully_fold (v1, false, &maybe_const);
      wrap &= maybe_const;
    }

  unsigned HOST_WIDE_INT maskl = MAX (mask.length (), MAX (v0n, v1n));
  unsigned HOST_WIDE_INT pad = (v0n < maskl ? maskl - v0n : 0);
  vec_perm_builder sel (maskl, maskl, 1);
  unsigned i;
  for (i = 0; i < mask.length (); ++i)
    {
      tree idx = mask[i];
      if (!tree_fits_shwi_p (idx))
	{
	  if (complain)
	    error_at (loc, "invalid element index %qE to "
		      "%<__builtin_shufflevector%>", idx);
	  return error_mark_node;
	}
      HOST_WIDE_INT iidx = tree_to_shwi (idx);
      if (iidx < -1
	  || (iidx != -1
	      && (unsigned HOST_WIDE_INT) iidx >= v0n + v1n))
	{
	  if (complain)
	    error_at (loc, "invalid element index %qE to "
		      "%<__builtin_shufflevector%>", idx);
	  return error_mark_node;
	}
      /* ???  Our VEC_PERM_EXPR does not allow for -1 yet.  */
      if (iidx == -1)
	iidx = i;
      /* ???  Our VEC_PERM_EXPR does not allow different sized inputs,
	 so pad out a smaller v0.  */
      else if ((unsigned HOST_WIDE_INT) iidx >= v0n)
	iidx += pad;
      sel.quick_push (iidx);
    }
  /* ???  VEC_PERM_EXPR does not support a result that is smaller than
     the inputs, so we have to pad id out.  */
  for (; i < maskl; ++i)
    sel.quick_push (i);

  vec_perm_indices indices (sel, 2, maskl);

  tree ret_type = build_vector_type (TREE_TYPE (TREE_TYPE (v0)), maskl);
  tree mask_type = build_vector_type (build_nonstandard_integer_type
		(TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (ret_type))), 1),
		maskl);
  /* Pad out arguments to the common vector size.  */
  if (v0n < maskl)
    {
      constructor_elt elt = { NULL_TREE, build_zero_cst (TREE_TYPE (v0)) };
      v0 = build_constructor_single (ret_type, NULL_TREE, v0);
      for (i = 1; i < maskl / v0n; ++i)
	vec_safe_push (CONSTRUCTOR_ELTS (v0), elt);
    }
  if (v1n < maskl)
    {
      constructor_elt elt = { NULL_TREE, build_zero_cst (TREE_TYPE (v1)) };
      v1 = build_constructor_single (ret_type, NULL_TREE, v1);
      for (i = 1; i < maskl / v1n; ++i)
	vec_safe_push (CONSTRUCTOR_ELTS (v1), elt);
    }
  ret = build3_loc (loc, VEC_PERM_EXPR, ret_type, v0, v1,
		    vec_perm_indices_to_tree (mask_type, indices));
  /* Get the lowpart we are interested in.  */
  if (mask.length () < maskl)
    {
      tree lpartt = build_vector_type (TREE_TYPE (ret_type), mask.length ());
      ret = build3_loc (loc, BIT_FIELD_REF,
			lpartt, ret, TYPE_SIZE (lpartt), bitsize_zero_node);
      /* Wrap the lowpart operation in a TARGET_EXPR so it gets a separate
	 temporary during gimplification.  See PR101530 for cases where
	 we'd otherwise end up with non-toplevel BIT_FIELD_REFs.  */
      tree tem = create_tmp_var_raw (lpartt);
      DECL_CONTEXT (tem) = current_function_decl;
      ret = build4 (TARGET_EXPR, lpartt, tem, ret, NULL_TREE, NULL_TREE);
      TREE_SIDE_EFFECTS (ret) = 1;
    }

  if (!c_dialect_cxx () && !wrap)
    ret = c_wrap_maybe_const (ret, true);

  return ret;
}

/* Build a VEC_CONVERT ifn for __builtin_convertvector builtin.  */

tree
c_build_vec_convert (location_t loc1, tree expr, location_t loc2, tree type,
		     bool complain)
{
  if (error_operand_p (type))
    return error_mark_node;
  if (error_operand_p (expr))
    return error_mark_node;

  if (!gnu_vector_type_p (TREE_TYPE (expr))
      || (!VECTOR_INTEGER_TYPE_P (TREE_TYPE (expr))
	  && !VECTOR_FLOAT_TYPE_P (TREE_TYPE (expr))))
    {
      if (complain)
	error_at (loc1, "%<__builtin_convertvector%> first argument must "
			"be an integer or floating vector");
      return error_mark_node;
    }

  if (!gnu_vector_type_p (type)
      || (!VECTOR_INTEGER_TYPE_P (type) && !VECTOR_FLOAT_TYPE_P (type)))
    {
      if (complain)
	error_at (loc2, "%<__builtin_convertvector%> second argument must "
			"be an integer or floating vector type");
      return error_mark_node;
    }

  if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr)),
		TYPE_VECTOR_SUBPARTS (type)))
    {
      if (complain)
	error_at (loc1, "%<__builtin_convertvector%> number of elements "
			"of the first argument vector and the second argument "
			"vector type should be the same");
      return error_mark_node;
    }

  if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (expr)))
       == TYPE_MAIN_VARIANT (TREE_TYPE (type)))
      || (VECTOR_INTEGER_TYPE_P (TREE_TYPE (expr))
	  && VECTOR_INTEGER_TYPE_P (type)
	  && (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (expr)))
	      == TYPE_PRECISION (TREE_TYPE (type)))))
    return build1_loc (loc1, VIEW_CONVERT_EXPR, type, expr);

  bool wrap = true;
  bool maybe_const = false;
  tree ret;
  if (!c_dialect_cxx ())
    {
      /* Avoid C_MAYBE_CONST_EXPRs inside of VEC_CONVERT argument.  */
      expr = c_fully_fold (expr, false, &maybe_const);
      wrap &= maybe_const;
    }

  ret = build_call_expr_internal_loc (loc1, IFN_VEC_CONVERT, type, 1, expr);

  if (!wrap)
    ret = c_wrap_maybe_const (ret, true);

  return ret;
}

/* Like tree.cc:get_narrower, but retain conversion from C++0x scoped enum
   to integral type.  */

tree
c_common_get_narrower (tree op, int *unsignedp_ptr)
{
  op = get_narrower (op, unsignedp_ptr);

  if (TREE_CODE (TREE_TYPE (op)) == ENUMERAL_TYPE
      && ENUM_IS_SCOPED (TREE_TYPE (op)))
    {
      /* C++0x scoped enumerations don't implicitly convert to integral
	 type; if we stripped an explicit conversion to a larger type we
	 need to replace it so common_type will still work.  */
      tree type = c_common_type_for_size (TYPE_PRECISION (TREE_TYPE (op)),
					  TYPE_UNSIGNED (TREE_TYPE (op)));
      op = fold_convert (type, op);
    }
  return op;
}

/* This is a helper function of build_binary_op.

   For certain operations if both args were extended from the same
   smaller type, do the arithmetic in that type and then extend.

   BITWISE indicates a bitwise operation.
   For them, this optimization is safe only if
   both args are zero-extended or both are sign-extended.
   Otherwise, we might change the result.
   Eg, (short)-1 | (unsigned short)-1 is (int)-1
   but calculated in (unsigned short) it would be (unsigned short)-1.
*/
tree
shorten_binary_op (tree result_type, tree op0, tree op1, bool bitwise)
{
  int unsigned0, unsigned1;
  tree arg0, arg1;
  int uns;
  tree type;

  /* Cast OP0 and OP1 to RESULT_TYPE.  Doing so prevents
     excessive narrowing when we call get_narrower below.  For
     example, suppose that OP0 is of unsigned int extended
     from signed char and that RESULT_TYPE is long long int.
     If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
     like

     (long long int) (unsigned int) signed_char

     which get_narrower would narrow down to

     (unsigned int) signed char

     If we do not cast OP0 first, get_narrower would return
     signed_char, which is inconsistent with the case of the
     explicit cast.  */
  op0 = convert (result_type, op0);
  op1 = convert (result_type, op1);

  arg0 = c_common_get_narrower (op0, &unsigned0);
  arg1 = c_common_get_narrower (op1, &unsigned1);

  /* UNS is 1 if the operation to be done is an unsigned one.  */
  uns = TYPE_UNSIGNED (result_type);

  /* Handle the case that OP0 (or OP1) does not *contain* a conversion
     but it *requires* conversion to FINAL_TYPE.  */

  if ((TYPE_PRECISION (TREE_TYPE (op0))
       == TYPE_PRECISION (TREE_TYPE (arg0)))
      && TREE_TYPE (op0) != result_type)
    unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
  if ((TYPE_PRECISION (TREE_TYPE (op1))
       == TYPE_PRECISION (TREE_TYPE (arg1)))
      && TREE_TYPE (op1) != result_type)
    unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));

  /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE.  */

  /* For bitwise operations, signedness of nominal type
     does not matter.  Consider only how operands were extended.  */
  if (bitwise)
    uns = unsigned0;

  /* Note that in all three cases below we refrain from optimizing
     an unsigned operation on sign-extended args.
     That would not be valid.  */

  /* Both args variable: if both extended in same way
     from same width, do it in that width.
     Do it unsigned if args were zero-extended.  */
  if ((TYPE_PRECISION (TREE_TYPE (arg0))
       < TYPE_PRECISION (result_type))
      && (TYPE_PRECISION (TREE_TYPE (arg1))
	  == TYPE_PRECISION (TREE_TYPE (arg0)))
      && unsigned0 == unsigned1
      && (unsigned0 || !uns))
    return c_common_signed_or_unsigned_type
      (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));

  else if (TREE_CODE (arg0) == INTEGER_CST
	   && (unsigned1 || !uns)
	   && (TYPE_PRECISION (TREE_TYPE (arg1))
	       < TYPE_PRECISION (result_type))
	   && (type
	       = c_common_signed_or_unsigned_type (unsigned1,
						   TREE_TYPE (arg1)))
	   && !POINTER_TYPE_P (type)
	   && int_fits_type_p (arg0, type))
    return type;

  else if (TREE_CODE (arg1) == INTEGER_CST
	   && (unsigned0 || !uns)
	   && (TYPE_PRECISION (TREE_TYPE (arg0))
	       < TYPE_PRECISION (result_type))
	   && (type
	       = c_common_signed_or_unsigned_type (unsigned0,
						   TREE_TYPE (arg0)))
	   && !POINTER_TYPE_P (type)
	   && int_fits_type_p (arg1, type))
    return type;

  return result_type;
}

/* Returns true iff any integer value of type FROM_TYPE can be represented as
   real of type TO_TYPE.  This is a helper function for unsafe_conversion_p.  */

static bool
int_safely_convertible_to_real_p (const_tree from_type, const_tree to_type)
{
  tree type_low_bound = TYPE_MIN_VALUE (from_type);
  tree type_high_bound = TYPE_MAX_VALUE (from_type);
  REAL_VALUE_TYPE real_low_bound =
	  real_value_from_int_cst (0, type_low_bound);
  REAL_VALUE_TYPE real_high_bound =
	  real_value_from_int_cst (0, type_high_bound);

  return exact_real_truncate (TYPE_MODE (to_type), &real_low_bound)
	 && exact_real_truncate (TYPE_MODE (to_type), &real_high_bound);
}

/* Checks if expression EXPR of complex/real/integer type cannot be converted
   to the complex/real/integer type TYPE.  Function returns non-zero when:
	* EXPR is a constant which cannot be exactly converted to TYPE.
	* EXPR is not a constant and size of EXPR's type > than size of TYPE,
	  for EXPR type and TYPE being both integers or both real, or both
	  complex.
	* EXPR is not a constant of complex type and TYPE is a real or
	  an integer.
	* EXPR is not a constant of real type and TYPE is an integer.
	* EXPR is not a constant of integer type which cannot be
	  exactly converted to real type.

   Function allows conversions between types of different signedness if
   CHECK_SIGN is false and can return SAFE_CONVERSION (zero) in that
   case.  Function can return UNSAFE_SIGN if CHECK_SIGN is true.

   RESULT, when non-null is the result of the conversion.  When constant
   it is included in the text of diagnostics.

   Function allows conversions from complex constants to non-complex types,
   provided that imaginary part is zero and real part can be safely converted
   to TYPE.  */

enum conversion_safety
unsafe_conversion_p (tree type, tree expr, tree result, bool check_sign)
{
  enum conversion_safety give_warning = SAFE_CONVERSION; /* is 0 or false */
  tree expr_type = TREE_TYPE (expr);

  expr = fold_for_warn (expr);

  if (TREE_CODE (expr) == REAL_CST || TREE_CODE (expr) == INTEGER_CST)
    {
      /* If type is complex, we are interested in compatibility with
	 underlying type.  */
      if (TREE_CODE (type) == COMPLEX_TYPE)
	  type = TREE_TYPE (type);

      /* Warn for real constant that is not an exact integer converted
	 to integer type.  */
      if (TREE_CODE (expr_type) == REAL_TYPE
	  && TREE_CODE (type) == INTEGER_TYPE)
	{
	  if (!real_isinteger (TREE_REAL_CST_PTR (expr), TYPE_MODE (expr_type)))
	    give_warning = UNSAFE_REAL;
	}
      /* Warn for an integer constant that does not fit into integer type.  */
      else if (TREE_CODE (expr_type) == INTEGER_TYPE
	       && TREE_CODE (type) == INTEGER_TYPE
	       && !int_fits_type_p (expr, type))
	{
	  if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (expr_type)
	      && tree_int_cst_sgn (expr) < 0)
	    {
	      if (check_sign)
		give_warning = UNSAFE_SIGN;
	    }
	  else if (!TYPE_UNSIGNED (type) && TYPE_UNSIGNED (expr_type))
	    {
	      if (check_sign)
		give_warning = UNSAFE_SIGN;
	    }
	  else
	    give_warning = UNSAFE_OTHER;
	}
      else if (TREE_CODE (type) == REAL_TYPE)
	{
	  /* Warn for an integer constant that does not fit into real type.  */
	  if (TREE_CODE (expr_type) == INTEGER_TYPE)
	    {
	      REAL_VALUE_TYPE a = real_value_from_int_cst (0, expr);
	      if (!exact_real_truncate (TYPE_MODE (type), &a))
		give_warning = UNSAFE_REAL;
	    }
	  /* Warn for a real constant that does not fit into a smaller
	     real type.  */
	  else if (TREE_CODE (expr_type) == REAL_TYPE
		   && TYPE_PRECISION (type) < TYPE_PRECISION (expr_type))
	    {
	      REAL_VALUE_TYPE a = TREE_REAL_CST (expr);
	      if (!exact_real_truncate (TYPE_MODE (type), &a))
		give_warning = UNSAFE_REAL;
	    }
	}
    }

  else if (TREE_CODE (expr) == COMPLEX_CST)
    {
      tree imag_part = TREE_IMAGPART (expr);
      /* Conversion from complex constant with zero imaginary part,
	 perform check for conversion of real part.  */
      if ((TREE_CODE (imag_part) == REAL_CST
	   && real_zerop (imag_part))
	  || (TREE_CODE (imag_part) == INTEGER_CST
	      && integer_zerop (imag_part)))
	/* Note: in this branch we use recursive call to unsafe_conversion_p
	   with different type of EXPR, but it is still safe, because when EXPR
	   is a constant, it's type is not used in text of generated warnings
	   (otherwise they could sound misleading).  */
	return unsafe_conversion_p (type, TREE_REALPART (expr), result,
				    check_sign);
      /* Conversion from complex constant with non-zero imaginary part.  */
      else
	{
	  /* Conversion to complex type.
	     Perform checks for both real and imaginary parts.  */
	  if (TREE_CODE (type) == COMPLEX_TYPE)
	    {
	      enum conversion_safety re_safety =
		unsafe_conversion_p (type, TREE_REALPART (expr),
				     result, check_sign);
	      enum conversion_safety im_safety =
		unsafe_conversion_p (type, imag_part, result, check_sign);

	      /* Merge the results into appropriate single warning.  */

	      /* Note: this case includes SAFE_CONVERSION, i.e. success.  */
	      if (re_safety == im_safety)
		give_warning = re_safety;
	      else if (!re_safety && im_safety)
		give_warning = im_safety;
	      else if (re_safety && !im_safety)
		give_warning = re_safety;
	      else
		give_warning = UNSAFE_OTHER;
	    }
	  /* Warn about conversion from complex to real or integer type.  */
	  else
	    give_warning = UNSAFE_IMAGINARY;
	}
    }

  /* Checks for remaining case: EXPR is not constant.  */
  else
    {
      /* Warn for real types converted to integer types.  */
      if (TREE_CODE (expr_type) == REAL_TYPE
	  && TREE_CODE (type) == INTEGER_TYPE)
	give_warning = UNSAFE_REAL;

      else if (TREE_CODE (expr_type) == INTEGER_TYPE
	       && TREE_CODE (type) == INTEGER_TYPE)
	{
	  /* Don't warn about unsigned char y = 0xff, x = (int) y;  */
	  expr = get_unwidened (expr, 0);
	  expr_type = TREE_TYPE (expr);

	  /* Don't warn for short y; short x = ((int)y & 0xff);  */
	  if (TREE_CODE (expr) == BIT_AND_EXPR
	      || TREE_CODE (expr) == BIT_IOR_EXPR
	      || TREE_CODE (expr) == BIT_XOR_EXPR)
	    {
	      /* If both args were extended from a shortest type,
		 use that type if that is safe.  */
	      expr_type = shorten_binary_op (expr_type,
					     TREE_OPERAND (expr, 0),
					     TREE_OPERAND (expr, 1),
					     /* bitwise */1);

	      if (TREE_CODE (expr) == BIT_AND_EXPR)
		{
		  tree op0 = TREE_OPERAND (expr, 0);
		  tree op1 = TREE_OPERAND (expr, 1);
		  bool unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
		  bool unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));

		  /* If one of the operands is a non-negative constant
		     that fits in the target type, then the type of the
		     other operand does not matter. */
		  if ((TREE_CODE (op0) == INTEGER_CST
		       && int_fits_type_p (op0, c_common_signed_type (type))
		       && int_fits_type_p (op0, c_common_unsigned_type (type)))
		      || (TREE_CODE (op1) == INTEGER_CST
			  && int_fits_type_p (op1, c_common_signed_type (type))
			  && int_fits_type_p (op1,
					      c_common_unsigned_type (type))))
		    return SAFE_CONVERSION;
		  /* If constant is unsigned and fits in the target
		     type, then the result will also fit.  */
		  else if ((TREE_CODE (op0) == INTEGER_CST
			    && unsigned0
			    && int_fits_type_p (op0, type))
			   || (TREE_CODE (op1) == INTEGER_CST
			       && unsigned1
			       && int_fits_type_p (op1, type)))
		    return SAFE_CONVERSION;
		}
	    }
	  /* Warn for integer types converted to smaller integer types.  */
	  if (TYPE_PRECISION (type) < TYPE_PRECISION (expr_type))
	    give_warning = UNSAFE_OTHER;

	  /* When they are the same width but different signedness,
	     then the value may change.  */
	  else if (((TYPE_PRECISION (type) == TYPE_PRECISION (expr_type)
		     && TYPE_UNSIGNED (expr_type) != TYPE_UNSIGNED (type))
		    /* Even when converted to a bigger type, if the type is
		       unsigned but expr is signed, then negative values
		       will be changed.  */
		    || (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (expr_type)))
		   && check_sign)
	    give_warning = UNSAFE_SIGN;
	}

      /* Warn for integer types converted to real types if and only if
	 all the range of values of the integer type cannot be
	 represented by the real type.  */
      else if (TREE_CODE (expr_type) == INTEGER_TYPE
	       && TREE_CODE (type) == REAL_TYPE)
	{
	  /* Don't warn about char y = 0xff; float x = (int) y;  */
	  expr = get_unwidened (expr, 0);
	  expr_type = TREE_TYPE (expr);

	  if (!int_safely_convertible_to_real_p (expr_type, type))
	    give_warning = UNSAFE_OTHER;
	}

      /* Warn for real types converted to smaller real types.  */
      else if (TREE_CODE (expr_type) == REAL_TYPE
	       && TREE_CODE (type) == REAL_TYPE
	       && TYPE_PRECISION (type) < TYPE_PRECISION (expr_type))
	give_warning = UNSAFE_REAL;

      /* Check conversion between two complex types.  */
      else if (TREE_CODE (expr_type) == COMPLEX_TYPE
	       && TREE_CODE (type) == COMPLEX_TYPE)
	{
	  /* Extract underlying types (i.e., type of real and imaginary
	     parts) of expr_type and type.  */
	  tree from_type = TREE_TYPE (expr_type);
	  tree to_type = TREE_TYPE (type);

	  /* Warn for real types converted to integer types.  */
	  if (TREE_CODE (from_type) == REAL_TYPE
	      && TREE_CODE (to_type) == INTEGER_TYPE)
	    give_warning = UNSAFE_REAL;

	  /* Warn for real types converted to smaller real types.  */
	  else if (TREE_CODE (from_type) == REAL_TYPE
		   && TREE_CODE (to_type) == REAL_TYPE
		   && TYPE_PRECISION (to_type) < TYPE_PRECISION (from_type))
	    give_warning = UNSAFE_REAL;

	  /* Check conversion for complex integer types.  Here implementation
	     is simpler than for real-domain integers because it does not
	     involve sophisticated cases, such as bitmasks, casts, etc.  */
	  else if (TREE_CODE (from_type) == INTEGER_TYPE
		   && TREE_CODE (to_type) == INTEGER_TYPE)
	    {
	      /* Warn for integer types converted to smaller integer types.  */
	      if (TYPE_PRECISION (to_type) < TYPE_PRECISION (from_type))
		give_warning = UNSAFE_OTHER;

	      /* Check for different signedness, see case for real-domain
		 integers (above) for a more detailed comment.  */
	      else if (((TYPE_PRECISION (to_type) == TYPE_PRECISION (from_type)
			 && TYPE_UNSIGNED (to_type) != TYPE_UNSIGNED (from_type))
			|| (TYPE_UNSIGNED (to_type) && !TYPE_UNSIGNED (from_type)))
		       && check_sign)
		give_warning = UNSAFE_SIGN;
	    }
	  else if (TREE_CODE (from_type) == INTEGER_TYPE
		   && TREE_CODE (to_type) == REAL_TYPE
		   && !int_safely_convertible_to_real_p (from_type, to_type))
	    give_warning = UNSAFE_OTHER;
	}

      /* Warn for complex types converted to real or integer types.  */
      else if (TREE_CODE (expr_type) == COMPLEX_TYPE
	       && TREE_CODE (type) != COMPLEX_TYPE)
	give_warning = UNSAFE_IMAGINARY;
    }

  return give_warning;
}


/* Convert EXPR to TYPE, warning about conversion problems with constants.
   Invoke this function on every expression that is converted implicitly,
   i.e. because of language rules and not because of an explicit cast.
   INIT_CONST is true if the conversion is for arithmetic types for a static
   initializer and folding must apply accordingly (discarding floating-point
   exceptions and assuming the default rounding mode is in effect).  */

tree
convert_and_check (location_t loc, tree type, tree expr, bool init_const)
{
  tree result;
  tree expr_for_warning;

  /* Convert from a value with possible excess precision rather than
     via the semantic type, but do not warn about values not fitting
     exactly in the semantic type.  */
  if (TREE_CODE (expr) == EXCESS_PRECISION_EXPR)
    {
      tree orig_type = TREE_TYPE (expr);
      expr = TREE_OPERAND (expr, 0);
      expr_for_warning = (init_const
			  ? convert_init (orig_type, expr)
			  : convert (orig_type, expr));
      if (orig_type == type)
	return expr_for_warning;
    }
  else
    expr_for_warning = expr;

  if (TREE_TYPE (expr) == type)
    return expr;

  result = init_const ? convert_init (type, expr) : convert (type, expr);

  if (c_inhibit_evaluation_warnings == 0
      && !TREE_OVERFLOW_P (expr)
      && result != error_mark_node)
    warnings_for_convert_and_check (loc, type, expr_for_warning, result);

  return result;
}

/* A node in a list that describes references to variables (EXPR), which are
   either read accesses if WRITER is zero, or write accesses, in which case
   WRITER is the parent of EXPR.  */
struct tlist
{
  struct tlist *next;
  tree expr, writer;
};

/* Used to implement a cache the results of a call to verify_tree.  We only
   use this for SAVE_EXPRs.  */
struct tlist_cache
{
  struct tlist_cache *next;
  struct tlist *cache_before_sp;
  struct tlist *cache_after_sp;
  tree expr;
};

/* Obstack to use when allocating tlist structures, and corresponding
   firstobj.  */
static struct obstack tlist_obstack;
static char *tlist_firstobj = 0;

/* Keep track of the identifiers we've warned about, so we can avoid duplicate
   warnings.  */
static struct tlist *warned_ids;
/* SAVE_EXPRs need special treatment.  We process them only once and then
   cache the results.  */
static struct tlist_cache *save_expr_cache;

static void add_tlist (struct tlist **, struct tlist *, tree, int);
static void merge_tlist (struct tlist **, struct tlist *, int);
static void verify_tree (tree, struct tlist **, struct tlist **, tree);
static bool warning_candidate_p (tree);
static bool candidate_equal_p (const_tree, const_tree);
static void warn_for_collisions (struct tlist *);
static void warn_for_collisions_1 (tree, tree, struct tlist *, int);
static struct tlist *new_tlist (struct tlist *, tree, tree);

/* Create a new struct tlist and fill in its fields.  */
static struct tlist *
new_tlist (struct tlist *next, tree t, tree writer)
{
  struct tlist *l;
  l = XOBNEW (&tlist_obstack, struct tlist);
  l->next = next;
  l->expr = t;
  l->writer = writer;
  return l;
}

/* Add duplicates of the nodes found in ADD to the list *TO.  If EXCLUDE_WRITER
   is nonnull, we ignore any node we find which has a writer equal to it.  */

static void
add_tlist (struct tlist **to, struct tlist *add, tree exclude_writer, int copy)
{
  while (add)
    {
      struct tlist *next = add->next;
      if (!copy)
	add->next = *to;
      if (!exclude_writer || !candidate_equal_p (add->writer, exclude_writer))
	*to = copy ? new_tlist (*to, add->expr, add->writer) : add;
      add = next;
    }
}

/* Merge the nodes of ADD into TO.  This merging process is done so that for
   each variable that already exists in TO, no new node is added; however if
   there is a write access recorded in ADD, and an occurrence on TO is only
   a read access, then the occurrence in TO will be modified to record the
   write.  */

static void
merge_tlist (struct tlist **to, struct tlist *add, int copy)
{
  struct tlist **end = to;

  while (*end)
    end = &(*end)->next;

  while (add)
    {
      int found = 0;
      struct tlist *tmp2;
      struct tlist *next = add->next;

      for (tmp2 = *to; tmp2; tmp2 = tmp2->next)
	if (candidate_equal_p (tmp2->expr, add->expr))
	  {
	    found = 1;
	    if (!tmp2->writer)
	      tmp2->writer = add->writer;
	  }
      if (!found)
	{
	  *end = copy ? new_tlist (NULL, add->expr, add->writer) : add;
	  end = &(*end)->next;
	  *end = 0;
	}
      add = next;
    }
}

/* WRITTEN is a variable, WRITER is its parent.  Warn if any of the variable
   references in list LIST conflict with it, excluding reads if ONLY writers
   is nonzero.  */

static void
warn_for_collisions_1 (tree written, tree writer, struct tlist *list,
		       int only_writes)
{
  struct tlist *tmp;

  /* Avoid duplicate warnings.  */
  for (tmp = warned_ids; tmp; tmp = tmp->next)
    if (candidate_equal_p (tmp->expr, written))
      return;

  while (list)
    {
      if (candidate_equal_p (list->expr, written)
	  && !candidate_equal_p (list->writer, writer)
	  && (!only_writes || list->writer))
	{
	  warned_ids = new_tlist (warned_ids, written, NULL_TREE);
	  warning_at (EXPR_LOC_OR_LOC (writer, input_location),
		      OPT_Wsequence_point, "operation on %qE may be undefined",
		      list->expr);
	}
      list = list->next;
    }
}

/* Given a list LIST of references to variables, find whether any of these
   can cause conflicts due to missing sequence points.  */

static void
warn_for_collisions (struct tlist *list)
{
  struct tlist *tmp;

  for (tmp = list; tmp; tmp = tmp->next)
    {
      if (tmp->writer)
	warn_for_collisions_1 (tmp->expr, tmp->writer, list, 0);
    }
}

/* Return nonzero if X is a tree that can be verified by the sequence point
   warnings.  */

static bool
warning_candidate_p (tree x)
{
  if (DECL_P (x) && DECL_ARTIFICIAL (x))
    return false;

  if (TREE_CODE (x) == BLOCK)
    return false;

  /* VOID_TYPE_P (TREE_TYPE (x)) is workaround for cp/tree.cc
     (lvalue_p) crash on TRY/CATCH. */
  if (TREE_TYPE (x) == NULL_TREE || VOID_TYPE_P (TREE_TYPE (x)))
    return false;

  if (!lvalue_p (x))
    return false;

  /* No point to track non-const calls, they will never satisfy
     operand_equal_p.  */
  if (TREE_CODE (x) == CALL_EXPR && (call_expr_flags (x) & ECF_CONST) == 0)
    return false;

  if (TREE_CODE (x) == STRING_CST)
    return false;

  return true;
}

/* Return nonzero if X and Y appear to be the same candidate (or NULL) */
static bool
candidate_equal_p (const_tree x, const_tree y)
{
  return (x == y) || (x && y && operand_equal_p (x, y, 0));
}

/* Walk the tree X, and record accesses to variables.  If X is written by the
   parent tree, WRITER is the parent.
   We store accesses in one of the two lists: PBEFORE_SP, and PNO_SP.  If this
   expression or its only operand forces a sequence point, then everything up
   to the sequence point is stored in PBEFORE_SP.  Everything else gets stored
   in PNO_SP.
   Once we return, we will have emitted warnings if any subexpression before
   such a sequence point could be undefined.  On a higher level, however, the
   sequence point may not be relevant, and we'll merge the two lists.

   Example: (b++, a) + b;
   The call that processes the COMPOUND_EXPR will store the increment of B
   in PBEFORE_SP, and the use of A in PNO_SP.  The higher-level call that
   processes the PLUS_EXPR will need to merge the two lists so that
   eventually, all accesses end up on the same list (and we'll warn about the
   unordered subexpressions b++ and b.

   A note on merging.  If we modify the former example so that our expression
   becomes
     (b++, b) + a
   care must be taken not simply to add all three expressions into the final
   PNO_SP list.  The function merge_tlist takes care of that by merging the
   before-SP list of the COMPOUND_EXPR into its after-SP list in a special
   way, so that no more than one access to B is recorded.  */

static void
verify_tree (tree x, struct tlist **pbefore_sp, struct tlist **pno_sp,
	     tree writer)
{
  struct tlist *tmp_before, *tmp_nosp, *tmp_list2, *tmp_list3;
  enum tree_code code;
  enum tree_code_class cl;

  /* X may be NULL if it is the operand of an empty statement expression
     ({ }).  */
  if (x == NULL)
    return;

 restart:
  code = TREE_CODE (x);
  cl = TREE_CODE_CLASS (code);

  if (warning_candidate_p (x))
    *pno_sp = new_tlist (*pno_sp, x, writer);

  switch (code)
    {
    case CONSTRUCTOR:
    case SIZEOF_EXPR:
    case PAREN_SIZEOF_EXPR:
      return;

    case COMPOUND_EXPR:
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ORIF_EXPR:
    sequenced_binary:
      tmp_before = tmp_nosp = tmp_list2 = tmp_list3 = 0;
      verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
      warn_for_collisions (tmp_nosp);
      merge_tlist (pbefore_sp, tmp_before, 0);
      merge_tlist (pbefore_sp, tmp_nosp, 0);
      verify_tree (TREE_OPERAND (x, 1), &tmp_list3, &tmp_list2, NULL_TREE);
      warn_for_collisions (tmp_list2);
      merge_tlist (pbefore_sp, tmp_list3, 0);
      merge_tlist (pno_sp, tmp_list2, 0);
      return;

    case COND_EXPR:
      tmp_before = tmp_list2 = 0;
      verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_list2, NULL_TREE);
      warn_for_collisions (tmp_list2);
      merge_tlist (pbefore_sp, tmp_before, 0);
      merge_tlist (pbefore_sp, tmp_list2, 0);

      tmp_list3 = tmp_nosp = 0;
      verify_tree (TREE_OPERAND (x, 1), &tmp_list3, &tmp_nosp, NULL_TREE);
      warn_for_collisions (tmp_nosp);
      merge_tlist (pbefore_sp, tmp_list3, 0);

      tmp_list3 = tmp_list2 = 0;
      verify_tree (TREE_OPERAND (x, 2), &tmp_list3, &tmp_list2, NULL_TREE);
      warn_for_collisions (tmp_list2);
      merge_tlist (pbefore_sp, tmp_list3, 0);
      /* Rather than add both tmp_nosp and tmp_list2, we have to merge the
	 two first, to avoid warning for (a ? b++ : b++).  */
      merge_tlist (&tmp_nosp, tmp_list2, 0);
      add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
      return;

    case PREDECREMENT_EXPR:
    case PREINCREMENT_EXPR:
    case POSTDECREMENT_EXPR:
    case POSTINCREMENT_EXPR:
      verify_tree (TREE_OPERAND (x, 0), pno_sp, pno_sp, x);
      return;

    case MODIFY_EXPR:
      tmp_before = tmp_nosp = tmp_list3 = 0;
      verify_tree (TREE_OPERAND (x, 1), &tmp_before, &tmp_nosp, NULL_TREE);
      verify_tree (TREE_OPERAND (x, 0), &tmp_list3, &tmp_list3, x);
      /* Expressions inside the LHS are not ordered wrt. the sequence points
	 in the RHS.  Example:
	   *a = (a++, 2)
	 Despite the fact that the modification of "a" is in the before_sp
	 list (tmp_before), it conflicts with the use of "a" in the LHS.
	 We can handle this by adding the contents of tmp_list3
	 to those of tmp_before, and redoing the collision warnings for that
	 list.  */
      add_tlist (&tmp_before, tmp_list3, x, 1);
      warn_for_collisions (tmp_before);
      /* Exclude the LHS itself here; we first have to merge it into the
	 tmp_nosp list.  This is done to avoid warning for "a = a"; if we
	 didn't exclude the LHS, we'd get it twice, once as a read and once
	 as a write.  */
      add_tlist (pno_sp, tmp_list3, x, 0);
      warn_for_collisions_1 (TREE_OPERAND (x, 0), x, tmp_nosp, 1);

      merge_tlist (pbefore_sp, tmp_before, 0);
      if (warning_candidate_p (TREE_OPERAND (x, 0)))
	merge_tlist (&tmp_nosp, new_tlist (NULL, TREE_OPERAND (x, 0), x), 0);
      add_tlist (pno_sp, tmp_nosp, NULL_TREE, 1);
      return;

    case CALL_EXPR:
      /* We need to warn about conflicts among arguments and conflicts between
	 args and the function address.  Side effects of the function address,
	 however, are not ordered by the sequence point of the call.  */
      {
	call_expr_arg_iterator iter;
	tree arg;
	tmp_before = tmp_nosp = 0;
	verify_tree (CALL_EXPR_FN (x), &tmp_before, &tmp_nosp, NULL_TREE);
	FOR_EACH_CALL_EXPR_ARG (arg, iter, x)
	  {
	    tmp_list2 = tmp_list3 = 0;
	    verify_tree (arg, &tmp_list2, &tmp_list3, NULL_TREE);
	    merge_tlist (&tmp_list3, tmp_list2, 0);
	    add_tlist (&tmp_before, tmp_list3, NULL_TREE, 0);
	  }
	add_tlist (&tmp_before, tmp_nosp, NULL_TREE, 0);
	warn_for_collisions (tmp_before);
	add_tlist (pbefore_sp, tmp_before, NULL_TREE, 0);
	return;
      }

    case TREE_LIST:
      /* Scan all the list, e.g. indices of multi dimensional array.  */
      while (x)
	{
	  tmp_before = tmp_nosp = 0;
	  verify_tree (TREE_VALUE (x), &tmp_before, &tmp_nosp, NULL_TREE);
	  merge_tlist (&tmp_nosp, tmp_before, 0);
	  add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
	  x = TREE_CHAIN (x);
	}
      return;

    case SAVE_EXPR:
      {
	struct tlist_cache *t;
	for (t = save_expr_cache; t; t = t->next)
	  if (candidate_equal_p (t->expr, x))
	    break;

	if (!t)
	  {
	    t = XOBNEW (&tlist_obstack, struct tlist_cache);
	    t->next = save_expr_cache;
	    t->expr = x;
	    save_expr_cache = t;

	    tmp_before = tmp_nosp = 0;
	    verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
	    warn_for_collisions (tmp_nosp);

	    tmp_list3 = 0;
	    merge_tlist (&tmp_list3, tmp_nosp, 0);
	    t->cache_before_sp = tmp_before;
	    t->cache_after_sp = tmp_list3;
	  }
	merge_tlist (pbefore_sp, t->cache_before_sp, 1);
	add_tlist (pno_sp, t->cache_after_sp, NULL_TREE, 1);
	return;
      }

    case ADDR_EXPR:
      x = TREE_OPERAND (x, 0);
      if (DECL_P (x))
	return;
      writer = 0;
      goto restart;

    case VIEW_CONVERT_EXPR:
      if (location_wrapper_p (x))
	{
	  x = TREE_OPERAND (x, 0);
	  goto restart;
	}
      goto do_default;

    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case COMPONENT_REF:
    case ARRAY_REF:
      if (cxx_dialect >= cxx17)
	goto sequenced_binary;
      goto do_default;

    default:
    do_default:
      /* For other expressions, simply recurse on their operands.
	 Manual tail recursion for unary expressions.
	 Other non-expressions need not be processed.  */
      if (cl == tcc_unary)
	{
	  x = TREE_OPERAND (x, 0);
	  writer = 0;
	  goto restart;
	}
      else if (IS_EXPR_CODE_CLASS (cl))
	{
	  int lp;
	  int max = TREE_OPERAND_LENGTH (x);
	  for (lp = 0; lp < max; lp++)
	    {
	      tmp_before = tmp_nosp = 0;
	      verify_tree (TREE_OPERAND (x, lp), &tmp_before, &tmp_nosp, 0);
	      merge_tlist (&tmp_nosp, tmp_before, 0);
	      add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
	    }
	}
      return;
    }
}

static constexpr size_t verify_sequence_points_limit = 1024;

/* Called from verify_sequence_points via walk_tree.  */

static tree
verify_tree_lim_r (tree *tp, int *walk_subtrees, void *data)
{
  if (++*((size_t *) data) > verify_sequence_points_limit)
    return integer_zero_node;

  if (TYPE_P (*tp))
    *walk_subtrees = 0;

  return NULL_TREE;
}

/* Try to warn for undefined behavior in EXPR due to missing sequence
   points.  */

void
verify_sequence_points (tree expr)
{
  tlist *before_sp = nullptr, *after_sp = nullptr;

  /* verify_tree is highly recursive, and merge_tlist is O(n^2),
     so we return early if the expression is too big.  */
  size_t n = 0;
  if (walk_tree (&expr, verify_tree_lim_r, &n, nullptr))
    return;

  warned_ids = nullptr;
  save_expr_cache = nullptr;
  if (!tlist_firstobj)
    {
      gcc_obstack_init (&tlist_obstack);
      tlist_firstobj = (char *) obstack_alloc (&tlist_obstack, 0);
    }

  verify_tree (expr, &before_sp, &after_sp, NULL_TREE);
  warn_for_collisions (after_sp);
  obstack_free (&tlist_obstack, tlist_firstobj);
}

/* Validate the expression after `case' and apply default promotions.  */

static tree
check_case_value (location_t loc, tree value)
{
  if (value == NULL_TREE)
    return value;

  if (TREE_CODE (value) == INTEGER_CST)
    /* Promote char or short to int.  */
    value = perform_integral_promotions (value);
  else if (value != error_mark_node)
    {
      error_at (loc, "case label does not reduce to an integer constant");
      value = error_mark_node;
    }

  constant_expression_warning (value);

  return value;
}

/* Return an integer type with BITS bits of precision,
   that is unsigned if UNSIGNEDP is nonzero, otherwise signed.  */

tree
c_common_type_for_size (unsigned int bits, int unsignedp)
{
  int i;

  if (bits == TYPE_PRECISION (integer_type_node))
    return unsignedp ? unsigned_type_node : integer_type_node;

  if (bits == TYPE_PRECISION (signed_char_type_node))
    return unsignedp ? unsigned_char_type_node : signed_char_type_node;

  if (bits == TYPE_PRECISION (short_integer_type_node))
    return unsignedp ? short_unsigned_type_node : short_integer_type_node;

  if (bits == TYPE_PRECISION (long_integer_type_node))
    return unsignedp ? long_unsigned_type_node : long_integer_type_node;

  if (bits == TYPE_PRECISION (long_long_integer_type_node))
    return (unsignedp ? long_long_unsigned_type_node
	    : long_long_integer_type_node);

  for (i = 0; i < NUM_INT_N_ENTS; i ++)
    if (int_n_enabled_p[i]
	&& bits == int_n_data[i].bitsize)
      return (unsignedp ? int_n_trees[i].unsigned_type
	      : int_n_trees[i].signed_type);

  if (bits == TYPE_PRECISION (widest_integer_literal_type_node))
    return (unsignedp ? widest_unsigned_literal_type_node
	    : widest_integer_literal_type_node);

  if (bits <= TYPE_PRECISION (intQI_type_node))
    return unsignedp ? unsigned_intQI_type_node : intQI_type_node;

  if (bits <= TYPE_PRECISION (intHI_type_node))
    return unsignedp ? unsigned_intHI_type_node : intHI_type_node;

  if (bits <= TYPE_PRECISION (intSI_type_node))
    return unsignedp ? unsigned_intSI_type_node : intSI_type_node;

  if (bits <= TYPE_PRECISION (intDI_type_node))
    return unsignedp ? unsigned_intDI_type_node : intDI_type_node;

  return NULL_TREE;
}

/* Return a fixed-point type that has at least IBIT ibits and FBIT fbits
   that is unsigned if UNSIGNEDP is nonzero, otherwise signed;
   and saturating if SATP is nonzero, otherwise not saturating.  */

tree
c_common_fixed_point_type_for_size (unsigned int ibit, unsigned int fbit,
				    int unsignedp, int satp)
{
  enum mode_class mclass;
  if (ibit == 0)
    mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
  else
    mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;

  opt_scalar_mode opt_mode;
  scalar_mode mode;
  FOR_EACH_MODE_IN_CLASS (opt_mode, mclass)
    {
      mode = opt_mode.require ();
      if (GET_MODE_IBIT (mode) >= ibit && GET_MODE_FBIT (mode) >= fbit)
	break;
    }

  if (!opt_mode.exists (&mode) || !targetm.scalar_mode_supported_p (mode))
    {
      sorry ("GCC cannot support operators with integer types and "
	     "fixed-point types that have too many integral and "
	     "fractional bits together");
      return NULL_TREE;
    }

  return c_common_type_for_mode (mode, satp);
}

/* Used for communication between c_common_type_for_mode and
   c_register_builtin_type.  */
tree registered_builtin_types;

/* Return a data type that has machine mode MODE.
   If the mode is an integer,
   then UNSIGNEDP selects between signed and unsigned types.
   If the mode is a fixed-point mode,
   then UNSIGNEDP selects between saturating and nonsaturating types.  */

tree
c_common_type_for_mode (machine_mode mode, int unsignedp)
{
  tree t;
  int i;

  if (mode == TYPE_MODE (integer_type_node))
    return unsignedp ? unsigned_type_node : integer_type_node;

  if (mode == TYPE_MODE (signed_char_type_node))
    return unsignedp ? unsigned_char_type_node : signed_char_type_node;

  if (mode == TYPE_MODE (short_integer_type_node))
    return unsignedp ? short_unsigned_type_node : short_integer_type_node;

  if (mode == TYPE_MODE (long_integer_type_node))
    return unsignedp ? long_unsigned_type_node : long_integer_type_node;

  if (mode == TYPE_MODE (long_long_integer_type_node))
    return unsignedp ? long_long_unsigned_type_node : long_long_integer_type_node;

  for (i = 0; i < NUM_INT_N_ENTS; i ++)
    if (int_n_enabled_p[i]
	&& mode == int_n_data[i].m)
      return (unsignedp ? int_n_trees[i].unsigned_type
	      : int_n_trees[i].signed_type);

  if (mode == QImode)
    return unsignedp ? unsigned_intQI_type_node : intQI_type_node;

  if (mode == HImode)
    return unsignedp ? unsigned_intHI_type_node : intHI_type_node;

  if (mode == SImode)
    return unsignedp ? unsigned_intSI_type_node : intSI_type_node;

  if (mode == DImode)
    return unsignedp ? unsigned_intDI_type_node : intDI_type_node;

#if HOST_BITS_PER_WIDE_INT >= 64
  if (mode == TYPE_MODE (intTI_type_node))
    return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
#endif

  if (mode == TYPE_MODE (float_type_node))
    return float_type_node;

  if (mode == TYPE_MODE (double_type_node))
    return double_type_node;

  if (mode == TYPE_MODE (long_double_type_node))
    return long_double_type_node;

  for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
    if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE
	&& mode == TYPE_MODE (FLOATN_NX_TYPE_NODE (i)))
      return FLOATN_NX_TYPE_NODE (i);

  if (mode == TYPE_MODE (void_type_node))
    return void_type_node;

  if (mode == TYPE_MODE (build_pointer_type (char_type_node))
      || mode == TYPE_MODE (build_pointer_type (integer_type_node)))
    {
      unsigned int precision
	= GET_MODE_PRECISION (as_a <scalar_int_mode> (mode));
      return (unsignedp
	      ? make_unsigned_type (precision)
	      : make_signed_type (precision));
    }

  if (COMPLEX_MODE_P (mode))
    {
      machine_mode inner_mode;
      tree inner_type;

      if (mode == TYPE_MODE (complex_float_type_node))
	return complex_float_type_node;
      if (mode == TYPE_MODE (complex_double_type_node))
	return complex_double_type_node;
      if (mode == TYPE_MODE (complex_long_double_type_node))
	return complex_long_double_type_node;

      for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
	if (COMPLEX_FLOATN_NX_TYPE_NODE (i) != NULL_TREE
	    && mode == TYPE_MODE (COMPLEX_FLOATN_NX_TYPE_NODE (i)))
	  return COMPLEX_FLOATN_NX_TYPE_NODE (i);

      if (mode == TYPE_MODE (complex_integer_type_node) && !unsignedp)
	return complex_integer_type_node;

      inner_mode = GET_MODE_INNER (mode);
      inner_type = c_common_type_for_mode (inner_mode, unsignedp);
      if (inner_type != NULL_TREE)
	return build_complex_type (inner_type);
    }
  else if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL
	   && valid_vector_subparts_p (GET_MODE_NUNITS (mode)))
    {
      unsigned int elem_bits = vector_element_size (GET_MODE_BITSIZE (mode),
						    GET_MODE_NUNITS (mode));
      tree bool_type = build_nonstandard_boolean_type (elem_bits);
      return build_vector_type_for_mode (bool_type, mode);
    }
  else if (VECTOR_MODE_P (mode)
	   && valid_vector_subparts_p (GET_MODE_NUNITS (mode)))
    {
      machine_mode inner_mode = GET_MODE_INNER (mode);
      tree inner_type = c_common_type_for_mode (inner_mode, unsignedp);
      if (inner_type != NULL_TREE)
	return build_vector_type_for_mode (inner_type, mode);
    }

  if (dfloat32_type_node != NULL_TREE
      && mode == TYPE_MODE (dfloat32_type_node))
    return dfloat32_type_node;
  if (dfloat64_type_node != NULL_TREE
      && mode == TYPE_MODE (dfloat64_type_node))
    return dfloat64_type_node;
  if (dfloat128_type_node != NULL_TREE
      && mode == TYPE_MODE (dfloat128_type_node))
    return dfloat128_type_node;

  if (ALL_SCALAR_FIXED_POINT_MODE_P (mode))
    {
      if (mode == TYPE_MODE (short_fract_type_node))
	return unsignedp ? sat_short_fract_type_node : short_fract_type_node;
      if (mode == TYPE_MODE (fract_type_node))
	return unsignedp ? sat_fract_type_node : fract_type_node;
      if (mode == TYPE_MODE (long_fract_type_node))
	return unsignedp ? sat_long_fract_type_node : long_fract_type_node;
      if (mode == TYPE_MODE (long_long_fract_type_node))
	return unsignedp ? sat_long_long_fract_type_node
			 : long_long_fract_type_node;

      if (mode == TYPE_MODE (unsigned_short_fract_type_node))
	return unsignedp ? sat_unsigned_short_fract_type_node
			 : unsigned_short_fract_type_node;
      if (mode == TYPE_MODE (unsigned_fract_type_node))
	return unsignedp ? sat_unsigned_fract_type_node
			 : unsigned_fract_type_node;
      if (mode == TYPE_MODE (unsigned_long_fract_type_node))
	return unsignedp ? sat_unsigned_long_fract_type_node
			 : unsigned_long_fract_type_node;
      if (mode == TYPE_MODE (unsigned_long_long_fract_type_node))
	return unsignedp ? sat_unsigned_long_long_fract_type_node
			 : unsigned_long_long_fract_type_node;

      if (mode == TYPE_MODE (short_accum_type_node))
	return unsignedp ? sat_short_accum_type_node : short_accum_type_node;
      if (mode == TYPE_MODE (accum_type_node))
	return unsignedp ? sat_accum_type_node : accum_type_node;
      if (mode == TYPE_MODE (long_accum_type_node))
	return unsignedp ? sat_long_accum_type_node : long_accum_type_node;
      if (mode == TYPE_MODE (long_long_accum_type_node))
	return unsignedp ? sat_long_long_accum_type_node
			 : long_long_accum_type_node;

      if (mode == TYPE_MODE (unsigned_short_accum_type_node))
	return unsignedp ? sat_unsigned_short_accum_type_node
			 : unsigned_short_accum_type_node;
      if (mode == TYPE_MODE (unsigned_accum_type_node))
	return unsignedp ? sat_unsigned_accum_type_node
			 : unsigned_accum_type_node;
      if (mode == TYPE_MODE (unsigned_long_accum_type_node))
	return unsignedp ? sat_unsigned_long_accum_type_node
			 : unsigned_long_accum_type_node;
      if (mode == TYPE_MODE (unsigned_long_long_accum_type_node))
	return unsignedp ? sat_unsigned_long_long_accum_type_node
			 : unsigned_long_long_accum_type_node;

      if (mode == QQmode)
	return unsignedp ? sat_qq_type_node : qq_type_node;
      if (mode == HQmode)
	return unsignedp ? sat_hq_type_node : hq_type_node;
      if (mode == SQmode)
	return unsignedp ? sat_sq_type_node : sq_type_node;
      if (mode == DQmode)
	return unsignedp ? sat_dq_type_node : dq_type_node;
      if (mode == TQmode)
	return unsignedp ? sat_tq_type_node : tq_type_node;

      if (mode == UQQmode)
	return unsignedp ? sat_uqq_type_node : uqq_type_node;
      if (mode == UHQmode)
	return unsignedp ? sat_uhq_type_node : uhq_type_node;
      if (mode == USQmode)
	return unsignedp ? sat_usq_type_node : usq_type_node;
      if (mode == UDQmode)
	return unsignedp ? sat_udq_type_node : udq_type_node;
      if (mode == UTQmode)
	return unsignedp ? sat_utq_type_node : utq_type_node;

      if (mode == HAmode)
	return unsignedp ? sat_ha_type_node : ha_type_node;
      if (mode == SAmode)
	return unsignedp ? sat_sa_type_node : sa_type_node;
      if (mode == DAmode)
	return unsignedp ? sat_da_type_node : da_type_node;
      if (mode == TAmode)
	return unsignedp ? sat_ta_type_node : ta_type_node;

      if (mode == UHAmode)
	return unsignedp ? sat_uha_type_node : uha_type_node;
      if (mode == USAmode)
	return unsignedp ? sat_usa_type_node : usa_type_node;
      if (mode == UDAmode)
	return unsignedp ? sat_uda_type_node : uda_type_node;
      if (mode == UTAmode)
	return unsignedp ? sat_uta_type_node : uta_type_node;
    }

  for (t = registered_builtin_types; t; t = TREE_CHAIN (t))
    {
      tree type = TREE_VALUE (t);
      if (TYPE_MODE (type) == mode
	  && VECTOR_TYPE_P (type) == VECTOR_MODE_P (mode)
	  && !!unsignedp == !!TYPE_UNSIGNED (type))
	return type;
    }
  return NULL_TREE;
}

tree
c_common_unsigned_type (tree type)
{
  return c_common_signed_or_unsigned_type (1, type);
}

/* Return a signed type the same as TYPE in other respects.  */

tree
c_common_signed_type (tree type)
{
  return c_common_signed_or_unsigned_type (0, type);
}

/* Return a type the same as TYPE except unsigned or
   signed according to UNSIGNEDP.  */

tree
c_common_signed_or_unsigned_type (int unsignedp, tree type)
{
  tree type1;
  int i;

  /* This block of code emulates the behavior of the old
     c_common_unsigned_type. In particular, it returns
     long_unsigned_type_node if passed a long, even when a int would
     have the same size. This is necessary for warnings to work
     correctly in archs where sizeof(int) == sizeof(long) */

  type1 = TYPE_MAIN_VARIANT (type);
  if (type1 == signed_char_type_node || type1 == char_type_node || type1 == unsigned_char_type_node)
    return unsignedp ? unsigned_char_type_node : signed_char_type_node;
  if (type1 == integer_type_node || type1 == unsigned_type_node)
    return unsignedp ? unsigned_type_node : integer_type_node;
  if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
    return unsignedp ? short_unsigned_type_node : short_integer_type_node;
  if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
    return unsignedp ? long_unsigned_type_node : long_integer_type_node;
  if (type1 == long_long_integer_type_node || type1 == long_long_unsigned_type_node)
    return unsignedp ? long_long_unsigned_type_node : long_long_integer_type_node;

  for (i = 0; i < NUM_INT_N_ENTS; i ++)
    if (int_n_enabled_p[i]
	&& (type1 == int_n_trees[i].unsigned_type
	    || type1 == int_n_trees[i].signed_type))
      return (unsignedp ? int_n_trees[i].unsigned_type
	      : int_n_trees[i].signed_type);

#if HOST_BITS_PER_WIDE_INT >= 64
  if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
    return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
#endif
  if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
    return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
  if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
    return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
  if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
    return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
  if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
    return unsignedp ? unsigned_intQI_type_node : intQI_type_node;

#define C_COMMON_FIXED_TYPES(NAME)	    \
  if (type1 == short_ ## NAME ## _type_node \
      || type1 == unsigned_short_ ## NAME ## _type_node) \
    return unsignedp ? unsigned_short_ ## NAME ## _type_node \
		     : short_ ## NAME ## _type_node; \
  if (type1 == NAME ## _type_node \
      || type1 == unsigned_ ## NAME ## _type_node) \
    return unsignedp ? unsigned_ ## NAME ## _type_node \
		     : NAME ## _type_node; \
  if (type1 == long_ ## NAME ## _type_node \
      || type1 == unsigned_long_ ## NAME ## _type_node) \
    return unsignedp ? unsigned_long_ ## NAME ## _type_node \
		     : long_ ## NAME ## _type_node; \
  if (type1 == long_long_ ## NAME ## _type_node \
      || type1 == unsigned_long_long_ ## NAME ## _type_node) \
    return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
		     : long_long_ ## NAME ## _type_node;

#define C_COMMON_FIXED_MODE_TYPES(NAME) \
  if (type1 == NAME ## _type_node \
      || type1 == u ## NAME ## _type_node) \
    return unsignedp ? u ## NAME ## _type_node \
		     : NAME ## _type_node;

#define C_COMMON_FIXED_TYPES_SAT(NAME) \
  if (type1 == sat_ ## short_ ## NAME ## _type_node \
      || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
    return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
		     : sat_ ## short_ ## NAME ## _type_node; \
  if (type1 == sat_ ## NAME ## _type_node \
      || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
    return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
		     : sat_ ## NAME ## _type_node; \
  if (type1 == sat_ ## long_ ## NAME ## _type_node \
      || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
    return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
		     : sat_ ## long_ ## NAME ## _type_node; \
  if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
      || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
    return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
		     : sat_ ## long_long_ ## NAME ## _type_node;

#define C_COMMON_FIXED_MODE_TYPES_SAT(NAME)	\
  if (type1 == sat_ ## NAME ## _type_node \
      || type1 == sat_ ## u ## NAME ## _type_node) \
    return unsignedp ? sat_ ## u ## NAME ## _type_node \
		     : sat_ ## NAME ## _type_node;

  C_COMMON_FIXED_TYPES (fract);
  C_COMMON_FIXED_TYPES_SAT (fract);
  C_COMMON_FIXED_TYPES (accum);
  C_COMMON_FIXED_TYPES_SAT (accum);

  C_COMMON_FIXED_MODE_TYPES (qq);
  C_COMMON_FIXED_MODE_TYPES (hq);
  C_COMMON_FIXED_MODE_TYPES (sq);
  C_COMMON_FIXED_MODE_TYPES (dq);
  C_COMMON_FIXED_MODE_TYPES (tq);
  C_COMMON_FIXED_MODE_TYPES_SAT (qq);
  C_COMMON_FIXED_MODE_TYPES_SAT (hq);
  C_COMMON_FIXED_MODE_TYPES_SAT (sq);
  C_COMMON_FIXED_MODE_TYPES_SAT (dq);
  C_COMMON_FIXED_MODE_TYPES_SAT (tq);
  C_COMMON_FIXED_MODE_TYPES (ha);
  C_COMMON_FIXED_MODE_TYPES (sa);
  C_COMMON_FIXED_MODE_TYPES (da);
  C_COMMON_FIXED_MODE_TYPES (ta);
  C_COMMON_FIXED_MODE_TYPES_SAT (ha);
  C_COMMON_FIXED_MODE_TYPES_SAT (sa);
  C_COMMON_FIXED_MODE_TYPES_SAT (da);
  C_COMMON_FIXED_MODE_TYPES_SAT (ta);

  /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
     the precision; they have precision set to match their range, but
     may use a wider mode to match an ABI.  If we change modes, we may
     wind up with bad conversions.  For INTEGER_TYPEs in C, must check
     the precision as well, so as to yield correct results for
     bit-field types.  C++ does not have these separate bit-field
     types, and producing a signed or unsigned variant of an
     ENUMERAL_TYPE may cause other problems as well.  */

  if (!INTEGRAL_TYPE_P (type)
      || TYPE_UNSIGNED (type) == unsignedp)
    return type;

#define TYPE_OK(node)							    \
  (TYPE_MODE (type) == TYPE_MODE (node)					    \
   && TYPE_PRECISION (type) == TYPE_PRECISION (node))
  if (TYPE_OK (signed_char_type_node))
    return unsignedp ? unsigned_char_type_node : signed_char_type_node;
  if (TYPE_OK (integer_type_node))
    return unsignedp ? unsigned_type_node : integer_type_node;
  if (TYPE_OK (short_integer_type_node))
    return unsignedp ? short_unsigned_type_node : short_integer_type_node;
  if (TYPE_OK (long_integer_type_node))
    return unsignedp ? long_unsigned_type_node : long_integer_type_node;
  if (TYPE_OK (long_long_integer_type_node))
    return (unsignedp ? long_long_unsigned_type_node
	    : long_long_integer_type_node);

  for (i = 0; i < NUM_INT_N_ENTS; i ++)
    if (int_n_enabled_p[i]
	&& TYPE_MODE (type) == int_n_data[i].m
	&& TYPE_PRECISION (type) == int_n_data[i].bitsize)
      return (unsignedp ? int_n_trees[i].unsigned_type
	      : int_n_trees[i].signed_type);

#if HOST_BITS_PER_WIDE_INT >= 64
  if (TYPE_OK (intTI_type_node))
    return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
#endif
  if (TYPE_OK (intDI_type_node))
    return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
  if (TYPE_OK (intSI_type_node))
    return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
  if (TYPE_OK (intHI_type_node))
    return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
  if (TYPE_OK (intQI_type_node))
    return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
#undef TYPE_OK

  return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
}

/* Build a bit-field integer type for the given WIDTH and UNSIGNEDP.  */

tree
c_build_bitfield_integer_type (unsigned HOST_WIDE_INT width, int unsignedp)
{
  int i;

  /* Extended integer types of the same width as a standard type have
     lesser rank, so those of the same width as int promote to int or
     unsigned int and are valid for printf formats expecting int or
     unsigned int.  To avoid such special cases, avoid creating
     extended integer types for bit-fields if a standard integer type
     is available.  */
  if (width == TYPE_PRECISION (integer_type_node))
    return unsignedp ? unsigned_type_node : integer_type_node;
  if (width == TYPE_PRECISION (signed_char_type_node))
    return unsignedp ? unsigned_char_type_node : signed_char_type_node;
  if (width == TYPE_PRECISION (short_integer_type_node))
    return unsignedp ? short_unsigned_type_node : short_integer_type_node;
  if (width == TYPE_PRECISION (long_integer_type_node))
    return unsignedp ? long_unsigned_type_node : long_integer_type_node;
  if (width == TYPE_PRECISION (long_long_integer_type_node))
    return (unsignedp ? long_long_unsigned_type_node
	    : long_long_integer_type_node);
  for (i = 0; i < NUM_INT_N_ENTS; i ++)
    if (int_n_enabled_p[i]
	&& width == int_n_data[i].bitsize)
      return (unsignedp ? int_n_trees[i].unsigned_type
	      : int_n_trees[i].signed_type);
  return build_nonstandard_integer_type (width, unsignedp);
}

/* The C version of the register_builtin_type langhook.  */

void
c_register_builtin_type (tree type, const char* name)
{
  tree decl;

  decl = build_decl (UNKNOWN_LOCATION,
		     TYPE_DECL, get_identifier (name), type);
  DECL_ARTIFICIAL (decl) = 1;
  if (!TYPE_NAME (type))
    TYPE_NAME (type) = decl;
  lang_hooks.decls.pushdecl (decl);

  registered_builtin_types = tree_cons (0, type, registered_builtin_types);
}

/* Print an error message for invalid operands to arith operation
   CODE with TYPE0 for operand 0, and TYPE1 for operand 1.
   RICHLOC is a rich location for the message, containing either
   three separate locations for each of the operator and operands

      lhs op rhs
      ~~~ ^~ ~~~

   (C FE), or one location ranging over all over them

      lhs op rhs
      ~~~~^~~~~~

   (C++ FE).  */

void
binary_op_error (rich_location *richloc, enum tree_code code,
		 tree type0, tree type1)
{
  const char *opname;

  switch (code)
    {
    case PLUS_EXPR:
      opname = "+"; break;
    case MINUS_EXPR:
      opname = "-"; break;
    case MULT_EXPR:
      opname = "*"; break;
    case MAX_EXPR:
      opname = "max"; break;
    case MIN_EXPR:
      opname = "min"; break;
    case EQ_EXPR:
      opname = "=="; break;
    case NE_EXPR:
      opname = "!="; break;
    case LE_EXPR:
      opname = "<="; break;
    case GE_EXPR:
      opname = ">="; break;
    case LT_EXPR:
      opname = "<"; break;
    case GT_EXPR:
      opname = ">"; break;
    case LSHIFT_EXPR:
      opname = "<<"; break;
    case RSHIFT_EXPR:
      opname = ">>"; break;
    case TRUNC_MOD_EXPR:
    case FLOOR_MOD_EXPR:
      opname = "%"; break;
    case TRUNC_DIV_EXPR:
    case FLOOR_DIV_EXPR:
      opname = "/"; break;
    case BIT_AND_EXPR:
      opname = "&"; break;
    case BIT_IOR_EXPR:
      opname = "|"; break;
    case TRUTH_ANDIF_EXPR:
      opname = "&&"; break;
    case TRUTH_ORIF_EXPR:
      opname = "||"; break;
    case BIT_XOR_EXPR:
      opname = "^"; break;
    default:
      gcc_unreachable ();
    }
  error_at (richloc,
	    "invalid operands to binary %s (have %qT and %qT)",
	    opname, type0, type1);
}

/* Given an expression as a tree, return its original type.  Do this
   by stripping any conversion that preserves the sign and precision.  */
static tree
expr_original_type (tree expr)
{
  STRIP_SIGN_NOPS (expr);
  return TREE_TYPE (expr);
}

/* Subroutine of build_binary_op, used for comparison operations.
   See if the operands have both been converted from subword integer types
   and, if so, perhaps change them both back to their original type.
   This function is also responsible for converting the two operands
   to the proper common type for comparison.

   The arguments of this function are all pointers to local variables
   of build_binary_op: OP0_PTR is &OP0, OP1_PTR is &OP1,
   RESTYPE_PTR is &RESULT_TYPE and RESCODE_PTR is &RESULTCODE.

   LOC is the location of the comparison.

   If this function returns non-NULL_TREE, it means that the comparison has
   a constant value.  What this function returns is an expression for
   that value.  */

tree
shorten_compare (location_t loc, tree *op0_ptr, tree *op1_ptr,
		 tree *restype_ptr, enum tree_code *rescode_ptr)
{
  tree type;
  tree op0 = *op0_ptr;
  tree op1 = *op1_ptr;
  int unsignedp0, unsignedp1;
  int real1, real2;
  tree primop0, primop1;
  enum tree_code code = *rescode_ptr;

  /* Throw away any conversions to wider types
     already present in the operands.  */

  primop0 = c_common_get_narrower (op0, &unsignedp0);
  primop1 = c_common_get_narrower (op1, &unsignedp1);

  /* If primopN is first sign-extended from primopN's precision to opN's
     precision, then zero-extended from opN's precision to
     *restype_ptr precision, shortenings might be invalid.  */
  if (TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (TREE_TYPE (op0))
      && TYPE_PRECISION (TREE_TYPE (op0)) < TYPE_PRECISION (*restype_ptr)
      && !unsignedp0
      && TYPE_UNSIGNED (TREE_TYPE (op0)))
    primop0 = op0;
  if (TYPE_PRECISION (TREE_TYPE (primop1)) < TYPE_PRECISION (TREE_TYPE (op1))
      && TYPE_PRECISION (TREE_TYPE (op1)) < TYPE_PRECISION (*restype_ptr)
      && !unsignedp1
      && TYPE_UNSIGNED (TREE_TYPE (op1)))
    primop1 = op1;

  /* Handle the case that OP0 does not *contain* a conversion
     but it *requires* conversion to FINAL_TYPE.  */

  if (op0 == primop0 && TREE_TYPE (op0) != *restype_ptr)
    unsignedp0 = TYPE_UNSIGNED (TREE_TYPE (op0));
  if (op1 == primop1 && TREE_TYPE (op1) != *restype_ptr)
    unsignedp1 = TYPE_UNSIGNED (TREE_TYPE (op1));

  /* If one of the operands must be floated, we cannot optimize.  */
  real1 = TREE_CODE (TREE_TYPE (primop0)) == REAL_TYPE;
  real2 = TREE_CODE (TREE_TYPE (primop1)) == REAL_TYPE;

  /* If first arg is constant, swap the args (changing operation
     so value is preserved), for canonicalization.  Don't do this if
     the second arg is 0.  */

  if (TREE_CONSTANT (primop0)
      && !integer_zerop (primop1) && !real_zerop (primop1)
      && !fixed_zerop (primop1))
    {
      std::swap (primop0, primop1);
      std::swap (op0, op1);
      *op0_ptr = op0;
      *op1_ptr = op1;
      std::swap (unsignedp0, unsignedp1);
      std::swap (real1, real2);

      switch (code)
	{
	case LT_EXPR:
	  code = GT_EXPR;
	  break;
	case GT_EXPR:
	  code = LT_EXPR;
	  break;
	case LE_EXPR:
	  code = GE_EXPR;
	  break;
	case GE_EXPR:
	  code = LE_EXPR;
	  break;
	default:
	  break;
	}
      *rescode_ptr = code;
    }

  /* If comparing an integer against a constant more bits wide,
     maybe we can deduce a value of 1 or 0 independent of the data.
     Or else truncate the constant now
     rather than extend the variable at run time.

     This is only interesting if the constant is the wider arg.
     Also, it is not safe if the constant is unsigned and the
     variable arg is signed, since in this case the variable
     would be sign-extended and then regarded as unsigned.
     Our technique fails in this case because the lowest/highest
     possible unsigned results don't follow naturally from the
     lowest/highest possible values of the variable operand.
     For just EQ_EXPR and NE_EXPR there is another technique that
     could be used: see if the constant can be faithfully represented
     in the other operand's type, by truncating it and reextending it
     and see if that preserves the constant's value.  */

  if (!real1 && !real2
      && TREE_CODE (TREE_TYPE (primop0)) != FIXED_POINT_TYPE
      && TREE_CODE (primop1) == INTEGER_CST
      && TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr))
    {
      int min_gt, max_gt, min_lt, max_lt;
      tree maxval, minval;
      /* 1 if comparison is nominally unsigned.  */
      int unsignedp = TYPE_UNSIGNED (*restype_ptr);
      tree val;

      type = c_common_signed_or_unsigned_type (unsignedp0,
					       TREE_TYPE (primop0));

      maxval = TYPE_MAX_VALUE (type);
      minval = TYPE_MIN_VALUE (type);

      if (unsignedp && !unsignedp0)
	*restype_ptr = c_common_signed_type (*restype_ptr);

      if (TREE_TYPE (primop1) != *restype_ptr)
	{
	  /* Convert primop1 to target type, but do not introduce
	     additional overflow.  We know primop1 is an int_cst.  */
	  primop1 = force_fit_type (*restype_ptr,
				    wi::to_wide
				     (primop1,
				      TYPE_PRECISION (*restype_ptr)),
				    0, TREE_OVERFLOW (primop1));
	}
      if (type != *restype_ptr)
	{
	  minval = convert (*restype_ptr, minval);
	  maxval = convert (*restype_ptr, maxval);
	}

      min_gt = tree_int_cst_lt (primop1, minval);
      max_gt = tree_int_cst_lt (primop1, maxval);
      min_lt = tree_int_cst_lt (minval, primop1);
      max_lt = tree_int_cst_lt (maxval, primop1);

      val = 0;
      /* This used to be a switch, but Genix compiler can't handle that.  */
      if (code == NE_EXPR)
	{
	  if (max_lt || min_gt)
	    val = truthvalue_true_node;
	}
      else if (code == EQ_EXPR)
	{
	  if (max_lt || min_gt)
	    val = truthvalue_false_node;
	}
      else if (code == LT_EXPR)
	{
	  if (max_lt)
	    val = truthvalue_true_node;
	  if (!min_lt)
	    val = truthvalue_false_node;
	}
      else if (code == GT_EXPR)
	{
	  if (min_gt)
	    val = truthvalue_true_node;
	  if (!max_gt)
	    val = truthvalue_false_node;
	}
      else if (code == LE_EXPR)
	{
	  if (!max_gt)
	    val = truthvalue_true_node;
	  if (min_gt)
	    val = truthvalue_false_node;
	}
      else if (code == GE_EXPR)
	{
	  if (!min_lt)
	    val = truthvalue_true_node;
	  if (max_lt)
	    val = truthvalue_false_node;
	}

      /* If primop0 was sign-extended and unsigned comparison specd,
	 we did a signed comparison above using the signed type bounds.
	 But the comparison we output must be unsigned.

	 Also, for inequalities, VAL is no good; but if the signed
	 comparison had *any* fixed result, it follows that the
	 unsigned comparison just tests the sign in reverse
	 (positive values are LE, negative ones GE).
	 So we can generate an unsigned comparison
	 against an extreme value of the signed type.  */

      if (unsignedp && !unsignedp0)
	{
	  if (val != 0)
	    switch (code)
	      {
	      case LT_EXPR:
	      case GE_EXPR:
		primop1 = TYPE_MIN_VALUE (type);
		val = 0;
		break;

	      case LE_EXPR:
	      case GT_EXPR:
		primop1 = TYPE_MAX_VALUE (type);
		val = 0;
		break;

	      default:
		break;
	      }
	  type = c_common_unsigned_type (type);
	}

      if (TREE_CODE (primop0) != INTEGER_CST
	  /* Don't warn if it's from a (non-system) macro.  */
	  && !(from_macro_expansion_at
	       (expansion_point_location_if_in_system_header
		(EXPR_LOCATION (primop0)))))
	{
	  if (val == truthvalue_false_node)
	    warning_at (loc, OPT_Wtype_limits,
			"comparison is always false due to limited range of data type");
	  if (val == truthvalue_true_node)
	    warning_at (loc, OPT_Wtype_limits,
			"comparison is always true due to limited range of data type");
	}

      if (val != 0)
	{
	  /* Don't forget to evaluate PRIMOP0 if it has side effects.  */
	  if (TREE_SIDE_EFFECTS (primop0))
	    return build2 (COMPOUND_EXPR, TREE_TYPE (val), primop0, val);
	  return val;
	}

      /* Value is not predetermined, but do the comparison
	 in the type of the operand that is not constant.
	 TYPE is already properly set.  */
    }

  /* If either arg is decimal float and the other is float, find the
     proper common type to use for comparison.  */
  else if (real1 && real2
	   && DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop0)))
	   && DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop1))))
    type = common_type (TREE_TYPE (primop0), TREE_TYPE (primop1));

  /* If either arg is decimal float and the other is float, fail.  */
  else if (real1 && real2
	   && (DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop0)))
	       || DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop1)))))
    {
      type = *restype_ptr;
      primop0 = op0;
      primop1 = op1;
    }

  else if (real1 && real2
	   && (TYPE_PRECISION (TREE_TYPE (primop0))
	       == TYPE_PRECISION (TREE_TYPE (primop1))))
    type = TREE_TYPE (primop0);

  /* If args' natural types are both narrower than nominal type
     and both extend in the same manner, compare them
     in the type of the wider arg.
     Otherwise must actually extend both to the nominal
     common type lest different ways of extending
     alter the result.
     (eg, (short)-1 == (unsigned short)-1  should be 0.)  */

  else if (unsignedp0 == unsignedp1 && real1 == real2
	   && TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr)
	   && TYPE_PRECISION (TREE_TYPE (primop1)) < TYPE_PRECISION (*restype_ptr))
    {
      type = common_type (TREE_TYPE (primop0), TREE_TYPE (primop1));
      type = c_common_signed_or_unsigned_type (unsignedp0
					       || TYPE_UNSIGNED (*restype_ptr),
					       type);
      /* Make sure shorter operand is extended the right way
	 to match the longer operand.  */
      primop0
	= convert (c_common_signed_or_unsigned_type (unsignedp0,
						     TREE_TYPE (primop0)),
		   primop0);
      primop1
	= convert (c_common_signed_or_unsigned_type (unsignedp1,
						     TREE_TYPE (primop1)),
		   primop1);
    }
  else
    {
      /* Here we must do the comparison on the nominal type
	 using the args exactly as we received them.  */
      type = *restype_ptr;
      primop0 = op0;
      primop1 = op1;

      /* We want to fold unsigned comparisons of >= and < against zero.
	 For these, we may also issue a warning if we have a non-constant
	 compared against zero, where the zero was spelled as "0" (rather
	 than merely folding to it).
	 If we have at least one constant, then op1 is constant
	 and we may have a non-constant expression as op0.  */
      if (!real1 && !real2 && integer_zerop (primop1)
	  && TYPE_UNSIGNED (*restype_ptr))
	{
	  tree value = NULL_TREE;
	  /* All unsigned values are >= 0, so we warn.  However,
	     if OP0 is a constant that is >= 0, the signedness of
	     the comparison isn't an issue, so suppress the
	     warning.  */
	  tree folded_op0 = fold_for_warn (op0);
	  bool warn = 
	    warn_type_limits && !in_system_header_at (loc)
	    && !(TREE_CODE (folded_op0) == INTEGER_CST
		 && !TREE_OVERFLOW (convert (c_common_signed_type (type),
					     folded_op0)))
	    /* Do not warn for enumeration types.  */
	    && (TREE_CODE (expr_original_type (folded_op0)) != ENUMERAL_TYPE);
	  
	  switch (code)
	    {
	    case GE_EXPR:
	      if (warn)
		warning_at (loc, OPT_Wtype_limits,
			    "comparison of unsigned expression in %<>= 0%> "
			    "is always true");
	      value = truthvalue_true_node;
	      break;

	    case LT_EXPR:
	      if (warn)
		warning_at (loc, OPT_Wtype_limits,
			    "comparison of unsigned expression in %<< 0%> "
			    "is always false");
	      value = truthvalue_false_node;
	      break;

	    default:
	      break;
	    }

	  if (value != NULL_TREE)
	    {
	      /* Don't forget to evaluate PRIMOP0 if it has side effects.  */
	      if (TREE_SIDE_EFFECTS (primop0))
		return build2 (COMPOUND_EXPR, TREE_TYPE (value),
			       primop0, value);
	      return value;
	    }
	}
    }

  *op0_ptr = convert (type, primop0);
  *op1_ptr = convert (type, primop1);

  *restype_ptr = truthvalue_type_node;

  return NULL_TREE;
}

/* Return a tree for the sum or difference (RESULTCODE says which)
   of pointer PTROP and integer INTOP.  */

tree
pointer_int_sum (location_t loc, enum tree_code resultcode,
		 tree ptrop, tree intop, bool complain)
{
  tree size_exp, ret;

  /* The result is a pointer of the same type that is being added.  */
  tree result_type = TREE_TYPE (ptrop);

  if (TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
    {
      if (complain && warn_pointer_arith)
	pedwarn (loc, OPT_Wpointer_arith,
		 "pointer of type %<void *%> used in arithmetic");
      else if (!complain)
	return error_mark_node;
      size_exp = integer_one_node;
    }
  else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE)
    {
      if (complain && warn_pointer_arith)
	pedwarn (loc, OPT_Wpointer_arith,
		 "pointer to a function used in arithmetic");
      else if (!complain)
	return error_mark_node;
      size_exp = integer_one_node;
    }
  else if (!verify_type_context (loc, TCTX_POINTER_ARITH,
				 TREE_TYPE (result_type)))
    size_exp = integer_one_node;
  else
    {
      if (!complain && !COMPLETE_TYPE_P (TREE_TYPE (result_type)))
	return error_mark_node;
      size_exp = size_in_bytes_loc (loc, TREE_TYPE (result_type));
      /* Wrap the pointer expression in a SAVE_EXPR to make sure it
	 is evaluated first when the size expression may depend
	 on it for VM types.  */
      if (TREE_SIDE_EFFECTS (size_exp)
	  && TREE_SIDE_EFFECTS (ptrop)
	  && variably_modified_type_p (TREE_TYPE (ptrop), NULL))
	{
	  ptrop = save_expr (ptrop);
	  size_exp = build2 (COMPOUND_EXPR, TREE_TYPE (intop), ptrop, size_exp);
	}
    }

  /* We are manipulating pointer values, so we don't need to warn
     about relying on undefined signed overflow.  We disable the
     warning here because we use integer types so fold won't know that
     they are really pointers.  */
  fold_defer_overflow_warnings ();

  /* If what we are about to multiply by the size of the elements
     contains a constant term, apply distributive law
     and multiply that constant term separately.
     This helps produce common subexpressions.  */
  if ((TREE_CODE (intop) == PLUS_EXPR || TREE_CODE (intop) == MINUS_EXPR)
      && !TREE_CONSTANT (intop)
      && TREE_CONSTANT (TREE_OPERAND (intop, 1))
      && TREE_CONSTANT (size_exp)
      /* If the constant comes from pointer subtraction,
	 skip this optimization--it would cause an error.  */
      && TREE_CODE (TREE_TYPE (TREE_OPERAND (intop, 0))) == INTEGER_TYPE
      /* If the constant is unsigned, and smaller than the pointer size,
	 then we must skip this optimization.  This is because it could cause
	 an overflow error if the constant is negative but INTOP is not.  */
      && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (intop))
	  || (TYPE_PRECISION (TREE_TYPE (intop))
	      == TYPE_PRECISION (TREE_TYPE (ptrop)))))
    {
      enum tree_code subcode = resultcode;
      tree int_type = TREE_TYPE (intop);
      if (TREE_CODE (intop) == MINUS_EXPR)
	subcode = (subcode == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR);
      /* Convert both subexpression types to the type of intop,
	 because weird cases involving pointer arithmetic
	 can result in a sum or difference with different type args.  */
      ptrop = build_binary_op (EXPR_LOCATION (TREE_OPERAND (intop, 1)),
			       subcode, ptrop,
			       convert (int_type, TREE_OPERAND (intop, 1)),
			       true);
      intop = convert (int_type, TREE_OPERAND (intop, 0));
    }

  /* Convert the integer argument to a type the same size as sizetype
     so the multiply won't overflow spuriously.  */
  if (TYPE_PRECISION (TREE_TYPE (intop)) != TYPE_PRECISION (sizetype)
      || TYPE_UNSIGNED (TREE_TYPE (intop)) != TYPE_UNSIGNED (sizetype))
    intop = convert (c_common_type_for_size (TYPE_PRECISION (sizetype),
					     TYPE_UNSIGNED (sizetype)), intop);

  /* Replace the integer argument with a suitable product by the object size.
     Do this multiplication as signed, then convert to the appropriate type
     for the pointer operation and disregard an overflow that occurred only
     because of the sign-extension change in the latter conversion.  */
  {
    tree t = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (intop), intop,
			      convert (TREE_TYPE (intop), size_exp));
    intop = convert (sizetype, t);
    if (TREE_OVERFLOW_P (intop) && !TREE_OVERFLOW (t))
      intop = wide_int_to_tree (TREE_TYPE (intop), wi::to_wide (intop));
  }

  /* Create the sum or difference.  */
  if (resultcode == MINUS_EXPR)
    intop = fold_build1_loc (loc, NEGATE_EXPR, sizetype, intop);

  ret = fold_build_pointer_plus_loc (loc, ptrop, intop);

  fold_undefer_and_ignore_overflow_warnings ();

  return ret;
}

/* Wrap a C_MAYBE_CONST_EXPR around an expression that is fully folded
   and if NON_CONST is known not to be permitted in an evaluated part
   of a constant expression.  */

tree
c_wrap_maybe_const (tree expr, bool non_const)
{
  location_t loc = EXPR_LOCATION (expr);

  /* This should never be called for C++.  */
  if (c_dialect_cxx ())
    gcc_unreachable ();

  /* The result of folding may have a NOP_EXPR to set TREE_NO_WARNING.  */
  STRIP_TYPE_NOPS (expr);
  expr = build2 (C_MAYBE_CONST_EXPR, TREE_TYPE (expr), NULL, expr);
  C_MAYBE_CONST_EXPR_NON_CONST (expr) = non_const;
  protected_set_expr_location (expr, loc);

  return expr;
}

/* Return whether EXPR is a declaration whose address can never be NULL.
   The address of the first struct member could be NULL only if it were
   accessed through a NULL pointer, and such an access would be invalid.
   The address of a weak symbol may be null unless it has a definition.  */

bool
decl_with_nonnull_addr_p (const_tree expr)
{
  if (!DECL_P (expr))
    return false;

  if (TREE_CODE (expr) == FIELD_DECL
      || TREE_CODE (expr) == PARM_DECL
      || TREE_CODE (expr) == LABEL_DECL)
    return true;

  if (!VAR_OR_FUNCTION_DECL_P (expr))
    return false;

  if (!DECL_WEAK (expr))
    /* Ordinary (non-weak) symbols have nonnull addresses.  */
    return true;

  if (DECL_INITIAL (expr) && DECL_INITIAL (expr) != error_mark_node)
    /* Initialized weak symbols have nonnull addresses.  */
    return true;

  if (DECL_EXTERNAL (expr) || !TREE_STATIC (expr))
    /* Uninitialized extern weak symbols and weak symbols with no
       allocated storage might have a null address.  */
    return false;

  tree attribs = DECL_ATTRIBUTES (expr);
  if (lookup_attribute ("weakref", attribs))
    /* Weakref symbols might have a null address unless their referent
       is known not to.  Don't bother following weakref targets here.  */
    return false;

  return true;
}

/* Prepare expr to be an argument of a TRUTH_NOT_EXPR,
   or for an `if' or `while' statement or ?..: exp.  It should already
   have been validated to be of suitable type; otherwise, a bad
   diagnostic may result.

   The EXPR is located at LOCATION.

   This preparation consists of taking the ordinary
   representation of an expression expr and producing a valid tree
   boolean expression describing whether expr is nonzero.  We could
   simply always do build_binary_op (NE_EXPR, expr, truthvalue_false_node, 1),
   but we optimize comparisons, &&, ||, and !.

   The resulting type should always be `truthvalue_type_node'.  */

tree
c_common_truthvalue_conversion (location_t location, tree expr)
{
  STRIP_ANY_LOCATION_WRAPPER (expr);
  switch (TREE_CODE (expr))
    {
    case EQ_EXPR:   case NE_EXPR:   case UNEQ_EXPR: case LTGT_EXPR:
    case LE_EXPR:   case GE_EXPR:   case LT_EXPR:   case GT_EXPR:
    case UNLE_EXPR: case UNGE_EXPR: case UNLT_EXPR: case UNGT_EXPR:
    case ORDERED_EXPR: case UNORDERED_EXPR:
      if (TREE_TYPE (expr) == truthvalue_type_node)
	return expr;
      expr = build2 (TREE_CODE (expr), truthvalue_type_node,
		     TREE_OPERAND (expr, 0), TREE_OPERAND (expr, 1));
      goto ret;

    case TRUTH_ANDIF_EXPR:
    case TRUTH_ORIF_EXPR:
    case TRUTH_AND_EXPR:
    case TRUTH_OR_EXPR:
    case TRUTH_XOR_EXPR:
      if (TREE_TYPE (expr) == truthvalue_type_node)
	return expr;
      expr = build2 (TREE_CODE (expr), truthvalue_type_node,
		     c_common_truthvalue_conversion (location,
						     TREE_OPERAND (expr, 0)),
		     c_common_truthvalue_conversion (location,
						     TREE_OPERAND (expr, 1)));
      goto ret;

    case TRUTH_NOT_EXPR:
      if (TREE_TYPE (expr) == truthvalue_type_node)
	return expr;
      expr = build1 (TREE_CODE (expr), truthvalue_type_node,
		     c_common_truthvalue_conversion (location,
						     TREE_OPERAND (expr, 0)));
      goto ret;

    case ERROR_MARK:
      return expr;

    case INTEGER_CST:
      if (TREE_CODE (TREE_TYPE (expr)) == ENUMERAL_TYPE
	  && !integer_zerop (expr)
	  && !integer_onep (expr))
	warning_at (location, OPT_Wint_in_bool_context,
		    "enum constant in boolean context");
      return integer_zerop (expr) ? truthvalue_false_node
				  : truthvalue_true_node;

    case REAL_CST:
      return real_compare (NE_EXPR, &TREE_REAL_CST (expr), &dconst0)
	     ? truthvalue_true_node
	     : truthvalue_false_node;

    case FIXED_CST:
      return fixed_compare (NE_EXPR, &TREE_FIXED_CST (expr),
			    &FCONST0 (TYPE_MODE (TREE_TYPE (expr))))
	     ? truthvalue_true_node
	     : truthvalue_false_node;

    case FUNCTION_DECL:
      expr = build_unary_op (location, ADDR_EXPR, expr, false);
      /* Fall through.  */

    case ADDR_EXPR:
      {
 	tree inner = TREE_OPERAND (expr, 0);
	if (decl_with_nonnull_addr_p (inner)
	    /* Check both EXPR and INNER for suppression.  */
	    && !warning_suppressed_p (expr, OPT_Waddress)
	    && !warning_suppressed_p (inner, OPT_Waddress))
	  {
	    /* Common Ada programmer's mistake.	 */
	    warning_at (location,
			OPT_Waddress,
			"the address of %qD will always evaluate as %<true%>",
			inner);
	    suppress_warning (inner, OPT_Waddress);
	    return truthvalue_true_node;
	  }
	break;
      }

    case COMPLEX_EXPR:
      expr = build_binary_op (EXPR_LOCATION (expr),
			      (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1))
			       ? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
		c_common_truthvalue_conversion (location,
						TREE_OPERAND (expr, 0)),
		c_common_truthvalue_conversion (location,
						TREE_OPERAND (expr, 1)),
			      false);
      goto ret;

    case NEGATE_EXPR:
    case ABS_EXPR:
    case ABSU_EXPR:
    case FLOAT_EXPR:
    case EXCESS_PRECISION_EXPR:
      /* These don't change whether an object is nonzero or zero.  */
      return c_common_truthvalue_conversion (location, TREE_OPERAND (expr, 0));

    case LROTATE_EXPR:
    case RROTATE_EXPR:
      /* These don't change whether an object is zero or nonzero, but
	 we can't ignore them if their second arg has side-effects.  */
      if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1)))
	{
	  expr = build2 (COMPOUND_EXPR, truthvalue_type_node,
			 TREE_OPERAND (expr, 1),
			 c_common_truthvalue_conversion
			 (location, TREE_OPERAND (expr, 0)));
	  goto ret;
	}
      else
	return c_common_truthvalue_conversion (location,
					       TREE_OPERAND (expr, 0));

    case MULT_EXPR:
      warning_at (EXPR_LOCATION (expr), OPT_Wint_in_bool_context,
		  "%<*%> in boolean context, suggest %<&&%> instead");
      break;

    case LSHIFT_EXPR:
      /* We will only warn on signed shifts here, because the majority of
	 false positive warnings happen in code where unsigned arithmetic
	 was used in anticipation of a possible overflow.
	 Furthermore, if we see an unsigned type here we know that the
	 result of the shift is not subject to integer promotion rules.  */
      if (TREE_CODE (TREE_TYPE (expr)) == INTEGER_TYPE
	  && !TYPE_UNSIGNED (TREE_TYPE (expr)))
	warning_at (EXPR_LOCATION (expr), OPT_Wint_in_bool_context,
		    "%<<<%> in boolean context, did you mean %<<%>?");
      break;

    case COND_EXPR:
      if (warn_int_in_bool_context
	  && !from_macro_definition_at (EXPR_LOCATION (expr)))
	{
	  tree val1 = fold_for_warn (TREE_OPERAND (expr, 1));
	  tree val2 = fold_for_warn (TREE_OPERAND (expr, 2));
	  if (TREE_CODE (val1) == INTEGER_CST
	      && TREE_CODE (val2) == INTEGER_CST
	      && !integer_zerop (val1)
	      && !integer_zerop (val2)
	      && (!integer_onep (val1)
		  || !integer_onep (val2)))
	    warning_at (EXPR_LOCATION (expr), OPT_Wint_in_bool_context,
			"%<?:%> using integer constants in boolean context, "
			"the expression will always evaluate to %<true%>");
	  else if ((TREE_CODE (val1) == INTEGER_CST
		    && !integer_zerop (val1)
		    && !integer_onep (val1))
		   || (TREE_CODE (val2) == INTEGER_CST
		       && !integer_zerop (val2)
		       && !integer_onep (val2)))
	    warning_at (EXPR_LOCATION (expr), OPT_Wint_in_bool_context,
			"%<?:%> using integer constants in boolean context");
	}
      /* Distribute the conversion into the arms of a COND_EXPR.  */
      if (c_dialect_cxx ())
	/* Avoid premature folding.  */
	break;
      else
	{
	  int w = warn_int_in_bool_context;
	  warn_int_in_bool_context = 0;
	  /* Folding will happen later for C.  */
	  expr = build3 (COND_EXPR, truthvalue_type_node,
			 TREE_OPERAND (expr, 0),
			 c_common_truthvalue_conversion (location,
							 TREE_OPERAND (expr, 1)),
			 c_common_truthvalue_conversion (location,
							 TREE_OPERAND (expr, 2)));
	  warn_int_in_bool_context = w;
	  goto ret;
	}

    CASE_CONVERT:
      {
	tree totype = TREE_TYPE (expr);
	tree fromtype = TREE_TYPE (TREE_OPERAND (expr, 0));

	if (POINTER_TYPE_P (totype)
	    && !c_inhibit_evaluation_warnings
	    && TREE_CODE (fromtype) == REFERENCE_TYPE)
	  {
	    tree inner = expr;
	    STRIP_NOPS (inner);

	    if (DECL_P (inner))
	      warning_at (location,
			  OPT_Waddress,
			  "the compiler can assume that the address of "
			  "%qD will always evaluate to %<true%>",
			  inner);
	  }

	/* Don't cancel the effect of a CONVERT_EXPR from a REFERENCE_TYPE,
	   since that affects how `default_conversion' will behave.  */
	if (TREE_CODE (totype) == REFERENCE_TYPE
	    || TREE_CODE (fromtype) == REFERENCE_TYPE)
	  break;
	/* Don't strip a conversion from C++0x scoped enum, since they
	   don't implicitly convert to other types.  */
	if (TREE_CODE (fromtype) == ENUMERAL_TYPE
	    && ENUM_IS_SCOPED (fromtype))
	  break;
	/* If this isn't narrowing the argument, we can ignore it.  */
	if (TYPE_PRECISION (totype) >= TYPE_PRECISION (fromtype))
	  {
	    tree op0 = TREE_OPERAND (expr, 0);
	    if ((TREE_CODE (fromtype) == POINTER_TYPE
		 && TREE_CODE (totype) == INTEGER_TYPE)
		|| warning_suppressed_p (expr, OPT_Waddress))
	      /* Suppress -Waddress for casts to intptr_t, propagating
		 any suppression from the enclosing expression to its
		 operand.  */
	      suppress_warning (op0, OPT_Waddress);
	    return c_common_truthvalue_conversion (location, op0);
	  }
      }
      break;

    case MODIFY_EXPR:
      if (!warning_suppressed_p (expr, OPT_Wparentheses)
	  && warn_parentheses
	  && warning_at (location, OPT_Wparentheses,
			 "suggest parentheses around assignment used as "
			 "truth value"))
	suppress_warning (expr, OPT_Wparentheses);
      break;

    case CONST_DECL:
      {
	tree folded_expr = fold_for_warn (expr);
	if (folded_expr != expr)
	  return c_common_truthvalue_conversion (location, folded_expr);
      }
      break;

    default:
      break;
    }

  if (TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
    {
      tree t = save_expr (expr);
      expr = (build_binary_op
	      (EXPR_LOCATION (expr),
	       (TREE_SIDE_EFFECTS (expr)
		? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
	c_common_truthvalue_conversion
	       (location,
		build_unary_op (location, REALPART_EXPR, t, false)),
	c_common_truthvalue_conversion
	       (location,
		build_unary_op (location, IMAGPART_EXPR, t, false)),
	       false));
      goto ret;
    }

  if (TREE_CODE (TREE_TYPE (expr)) == FIXED_POINT_TYPE)
    {
      tree fixed_zero_node = build_fixed (TREE_TYPE (expr),
					  FCONST0 (TYPE_MODE
						   (TREE_TYPE (expr))));
      return build_binary_op (location, NE_EXPR, expr, fixed_zero_node, true);
    }
  else
    return build_binary_op (location, NE_EXPR, expr, integer_zero_node, true);

 ret:
  protected_set_expr_location (expr, location);
  return expr;
}

static void def_builtin_1  (enum built_in_function fncode,
			    const char *name,
			    enum built_in_class fnclass,
			    tree fntype, tree libtype,
			    bool both_p, bool fallback_p, bool nonansi_p,
			    tree fnattrs, bool implicit_p);


/* Apply the TYPE_QUALS to the new DECL.  */

void
c_apply_type_quals_to_decl (int type_quals, tree decl)
{
  tree type = TREE_TYPE (decl);

  if (type == error_mark_node)
    return;

  if ((type_quals & TYPE_QUAL_CONST)
      || (type && TREE_CODE (type) == REFERENCE_TYPE))
    /* We used to check TYPE_NEEDS_CONSTRUCTING here, but now a constexpr
       constructor can produce constant init, so rely on cp_finish_decl to
       clear TREE_READONLY if the variable has non-constant init.  */
    TREE_READONLY (decl) = 1;
  if (type_quals & TYPE_QUAL_VOLATILE)
    {
      TREE_SIDE_EFFECTS (decl) = 1;
      TREE_THIS_VOLATILE (decl) = 1;
    }
  if (type_quals & TYPE_QUAL_RESTRICT)
    {
      while (type && TREE_CODE (type) == ARRAY_TYPE)
	/* Allow 'restrict' on arrays of pointers.
	   FIXME currently we just ignore it.  */
	type = TREE_TYPE (type);
      if (!type
	  || !POINTER_TYPE_P (type)
	  || !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type)))
	error ("invalid use of %<restrict%>");
    }
}

/* Return the typed-based alias set for T, which may be an expression
   or a type.  Return -1 if we don't do anything special.  */

alias_set_type
c_common_get_alias_set (tree t)
{
  /* For VLAs, use the alias set of the element type rather than the
     default of alias set 0 for types compared structurally.  */
  if (TYPE_P (t) && TYPE_STRUCTURAL_EQUALITY_P (t))
    {
      if (TREE_CODE (t) == ARRAY_TYPE)
	return get_alias_set (TREE_TYPE (t));
      return -1;
    }

  /* That's all the expressions we handle specially.  */
  if (!TYPE_P (t))
    return -1;

  /* Unlike char, char8_t doesn't alias. */
  if (flag_char8_t && t == char8_type_node)
    return -1;

  /* The C standard guarantees that any object may be accessed via an
     lvalue that has narrow character type (except char8_t).  */
  if (t == char_type_node
      || t == signed_char_type_node
      || t == unsigned_char_type_node)
    return 0;

  /* The C standard specifically allows aliasing between signed and
     unsigned variants of the same type.  We treat the signed
     variant as canonical.  */
  if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
    {
      tree t1 = c_common_signed_type (t);

      /* t1 == t can happen for boolean nodes which are always unsigned.  */
      if (t1 != t)
	return get_alias_set (t1);
    }

  return -1;
}

/* Compute the value of 'sizeof (TYPE)' or '__alignof__ (TYPE)', where
   the IS_SIZEOF parameter indicates which operator is being applied.
   The COMPLAIN flag controls whether we should diagnose possibly
   ill-formed constructs or not.  LOC is the location of the SIZEOF or
   TYPEOF operator.  If MIN_ALIGNOF, the least alignment required for
   a type in any context should be returned, rather than the normal
   alignment for that type.  */

tree
c_sizeof_or_alignof_type (location_t loc,
			  tree type, bool is_sizeof, bool min_alignof,
			  int complain)
{
  const char *op_name;
  tree value = NULL;
  enum tree_code type_code = TREE_CODE (type);

  op_name = is_sizeof ? "sizeof" : "__alignof__";

  if (type_code == FUNCTION_TYPE)
    {
      if (is_sizeof)
	{
	  if (complain && warn_pointer_arith)
	    pedwarn (loc, OPT_Wpointer_arith,
		     "invalid application of %<sizeof%> to a function type");
          else if (!complain)
            return error_mark_node;
	  value = size_one_node;
	}
      else
	{
	  if (complain)
	    {
	      if (c_dialect_cxx ())
		pedwarn (loc, OPT_Wpedantic, "ISO C++ does not permit "
			 "%<alignof%> applied to a function type");
	      else
		pedwarn (loc, OPT_Wpedantic, "ISO C does not permit "
			 "%<_Alignof%> applied to a function type");
	    }
	  value = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
	}
    }
  else if (type_code == VOID_TYPE || type_code == ERROR_MARK)
    {
      if (type_code == VOID_TYPE
	  && complain && warn_pointer_arith)
	pedwarn (loc, OPT_Wpointer_arith,
		 "invalid application of %qs to a void type", op_name);
      else if (!complain)
        return error_mark_node;
      value = size_one_node;
    }
  else if (!COMPLETE_TYPE_P (type)
	   && (!c_dialect_cxx () || is_sizeof || type_code != ARRAY_TYPE))
    {
      if (complain)
	error_at (loc, "invalid application of %qs to incomplete type %qT",
		  op_name, type);
      return error_mark_node;
    }
  else if (c_dialect_cxx () && type_code == ARRAY_TYPE
	   && !COMPLETE_TYPE_P (TREE_TYPE (type)))
    {
      if (complain)
	error_at (loc, "invalid application of %qs to array type %qT of "
		  "incomplete element type", op_name, type);
      return error_mark_node;
    }
  else if (!verify_type_context (loc, is_sizeof ? TCTX_SIZEOF : TCTX_ALIGNOF,
				 type, !complain))
    {
      if (!complain)
	return error_mark_node;
      value = size_one_node;
    }
  else
    {
      if (is_sizeof)
	/* Convert in case a char is more than one unit.  */
	value = size_binop_loc (loc, CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
				size_int (TYPE_PRECISION (char_type_node)
					  / BITS_PER_UNIT));
      else if (min_alignof)
	value = size_int (min_align_of_type (type));
      else
	value = size_int (TYPE_ALIGN_UNIT (type));
    }

  /* VALUE will have the middle-end integer type sizetype.
     However, we should really return a value of type `size_t',
     which is just a typedef for an ordinary integer type.  */
  value = fold_convert_loc (loc, size_type_node, value);

  return value;
}

/* Implement the __alignof keyword: Return the minimum required
   alignment of EXPR, measured in bytes.  For VAR_DECLs,
   FUNCTION_DECLs and FIELD_DECLs return DECL_ALIGN (which can be set
   from an "aligned" __attribute__ specification).  LOC is the
   location of the ALIGNOF operator.  */

tree
c_alignof_expr (location_t loc, tree expr)
{
  tree t;

  if (!verify_type_context (loc, TCTX_ALIGNOF, TREE_TYPE (expr)))
    t = size_one_node;

  else if (VAR_OR_FUNCTION_DECL_P (expr))
    t = size_int (DECL_ALIGN_UNIT (expr));

  else if (TREE_CODE (expr) == COMPONENT_REF
	   && DECL_C_BIT_FIELD (TREE_OPERAND (expr, 1)))
    {
      error_at (loc, "%<__alignof%> applied to a bit-field");
      t = size_one_node;
    }
  else if (TREE_CODE (expr) == COMPONENT_REF
	   && TREE_CODE (TREE_OPERAND (expr, 1)) == FIELD_DECL)
    t = size_int (DECL_ALIGN_UNIT (TREE_OPERAND (expr, 1)));

  else if (INDIRECT_REF_P (expr))
    {
      tree t = TREE_OPERAND (expr, 0);
      tree best = t;
      int bestalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));

      while (CONVERT_EXPR_P (t)
	     && TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == POINTER_TYPE)
	{
	  int thisalign;

	  t = TREE_OPERAND (t, 0);
	  thisalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
	  if (thisalign > bestalign)
	    best = t, bestalign = thisalign;
	}
      return c_alignof (loc, TREE_TYPE (TREE_TYPE (best)));
    }
  else
    return c_alignof (loc, TREE_TYPE (expr));

  return fold_convert_loc (loc, size_type_node, t);
}

/* Handle C and C++ default attributes.  */

enum built_in_attribute
{
#define DEF_ATTR_NULL_TREE(ENUM) ENUM,
#define DEF_ATTR_INT(ENUM, VALUE) ENUM,
#define DEF_ATTR_STRING(ENUM, VALUE) ENUM,
#define DEF_ATTR_IDENT(ENUM, STRING) ENUM,
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) ENUM,
#include "builtin-attrs.def"
#undef DEF_ATTR_NULL_TREE
#undef DEF_ATTR_INT
#undef DEF_ATTR_STRING
#undef DEF_ATTR_IDENT
#undef DEF_ATTR_TREE_LIST
  ATTR_LAST
};

static GTY(()) tree built_in_attributes[(int) ATTR_LAST];

static void c_init_attributes (void);

enum c_builtin_type
{
#define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME,
#define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME,
#define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME,
#define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME,
#define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
#define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
#define DEF_FUNCTION_TYPE_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) NAME,
#define DEF_FUNCTION_TYPE_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			    ARG6) NAME,
#define DEF_FUNCTION_TYPE_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			    ARG6, ARG7) NAME,
#define DEF_FUNCTION_TYPE_8(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			    ARG6, ARG7, ARG8) NAME,
#define DEF_FUNCTION_TYPE_9(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			    ARG6, ARG7, ARG8, ARG9) NAME,
#define DEF_FUNCTION_TYPE_10(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			     ARG6, ARG7, ARG8, ARG9, ARG10) NAME,
#define DEF_FUNCTION_TYPE_11(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			     ARG6, ARG7, ARG8, ARG9, ARG10, ARG11) NAME,
#define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME,
#define DEF_FUNCTION_TYPE_VAR_1(NAME, RETURN, ARG1) NAME,
#define DEF_FUNCTION_TYPE_VAR_2(NAME, RETURN, ARG1, ARG2) NAME,
#define DEF_FUNCTION_TYPE_VAR_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
#define DEF_FUNCTION_TYPE_VAR_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
#define DEF_FUNCTION_TYPE_VAR_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
				NAME,
#define DEF_FUNCTION_TYPE_VAR_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
				ARG6) NAME,
#define DEF_FUNCTION_TYPE_VAR_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
				ARG6, ARG7) NAME,
#define DEF_POINTER_TYPE(NAME, TYPE) NAME,
#include "builtin-types.def"
#undef DEF_PRIMITIVE_TYPE
#undef DEF_FUNCTION_TYPE_0
#undef DEF_FUNCTION_TYPE_1
#undef DEF_FUNCTION_TYPE_2
#undef DEF_FUNCTION_TYPE_3
#undef DEF_FUNCTION_TYPE_4
#undef DEF_FUNCTION_TYPE_5
#undef DEF_FUNCTION_TYPE_6
#undef DEF_FUNCTION_TYPE_7
#undef DEF_FUNCTION_TYPE_8
#undef DEF_FUNCTION_TYPE_9
#undef DEF_FUNCTION_TYPE_10
#undef DEF_FUNCTION_TYPE_11
#undef DEF_FUNCTION_TYPE_VAR_0
#undef DEF_FUNCTION_TYPE_VAR_1
#undef DEF_FUNCTION_TYPE_VAR_2
#undef DEF_FUNCTION_TYPE_VAR_3
#undef DEF_FUNCTION_TYPE_VAR_4
#undef DEF_FUNCTION_TYPE_VAR_5
#undef DEF_FUNCTION_TYPE_VAR_6
#undef DEF_FUNCTION_TYPE_VAR_7
#undef DEF_POINTER_TYPE
  BT_LAST
};

typedef enum c_builtin_type builtin_type;

/* A temporary array for c_common_nodes_and_builtins.  Used in
   communication with def_fn_type.  */
static tree builtin_types[(int) BT_LAST + 1];

/* A helper function for c_common_nodes_and_builtins.  Build function type
   for DEF with return type RET and N arguments.  If VAR is true, then the
   function should be variadic after those N arguments.

   Takes special care not to ICE if any of the types involved are
   error_mark_node, which indicates that said type is not in fact available
   (see builtin_type_for_size).  In which case the function type as a whole
   should be error_mark_node.  */

static void
def_fn_type (builtin_type def, builtin_type ret, bool var, int n, ...)
{
  tree t;
  tree *args = XALLOCAVEC (tree, n);
  va_list list;
  int i;

  va_start (list, n);
  for (i = 0; i < n; ++i)
    {
      builtin_type a = (builtin_type) va_arg (list, int);
      t = builtin_types[a];
      if (t == error_mark_node)
	goto egress;
      args[i] = t;
    }

  t = builtin_types[ret];
  if (t == error_mark_node)
    goto egress;
  if (var)
    t = build_varargs_function_type_array (t, n, args);
  else
    t = build_function_type_array (t, n, args);

 egress:
  builtin_types[def] = t;
  va_end (list);
}

/* Build builtin functions common to both C and C++ language
   frontends.  */

static void
c_define_builtins (tree va_list_ref_type_node, tree va_list_arg_type_node)
{
#define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \
  builtin_types[ENUM] = VALUE;
#define DEF_FUNCTION_TYPE_0(ENUM, RETURN) \
  def_fn_type (ENUM, RETURN, 0, 0);
#define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1) \
  def_fn_type (ENUM, RETURN, 0, 1, ARG1);
#define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2) \
  def_fn_type (ENUM, RETURN, 0, 2, ARG1, ARG2);
#define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
  def_fn_type (ENUM, RETURN, 0, 3, ARG1, ARG2, ARG3);
#define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
  def_fn_type (ENUM, RETURN, 0, 4, ARG1, ARG2, ARG3, ARG4);
#define DEF_FUNCTION_TYPE_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5)	\
  def_fn_type (ENUM, RETURN, 0, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
#define DEF_FUNCTION_TYPE_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			    ARG6)					\
  def_fn_type (ENUM, RETURN, 0, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
#define DEF_FUNCTION_TYPE_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			    ARG6, ARG7)					\
  def_fn_type (ENUM, RETURN, 0, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
#define DEF_FUNCTION_TYPE_8(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			    ARG6, ARG7, ARG8)				\
  def_fn_type (ENUM, RETURN, 0, 8, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6,	\
	       ARG7, ARG8);
#define DEF_FUNCTION_TYPE_9(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			    ARG6, ARG7, ARG8, ARG9)			\
  def_fn_type (ENUM, RETURN, 0, 9, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6,	\
	       ARG7, ARG8, ARG9);
#define DEF_FUNCTION_TYPE_10(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			     ARG6, ARG7, ARG8, ARG9, ARG10)		 \
  def_fn_type (ENUM, RETURN, 0, 10, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6,	 \
	       ARG7, ARG8, ARG9, ARG10);
#define DEF_FUNCTION_TYPE_11(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			     ARG6, ARG7, ARG8, ARG9, ARG10, ARG11)	 \
  def_fn_type (ENUM, RETURN, 0, 11, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6,	 \
	       ARG7, ARG8, ARG9, ARG10, ARG11);
#define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN) \
  def_fn_type (ENUM, RETURN, 1, 0);
#define DEF_FUNCTION_TYPE_VAR_1(ENUM, RETURN, ARG1) \
  def_fn_type (ENUM, RETURN, 1, 1, ARG1);
#define DEF_FUNCTION_TYPE_VAR_2(ENUM, RETURN, ARG1, ARG2) \
  def_fn_type (ENUM, RETURN, 1, 2, ARG1, ARG2);
#define DEF_FUNCTION_TYPE_VAR_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
  def_fn_type (ENUM, RETURN, 1, 3, ARG1, ARG2, ARG3);
#define DEF_FUNCTION_TYPE_VAR_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
  def_fn_type (ENUM, RETURN, 1, 4, ARG1, ARG2, ARG3, ARG4);
#define DEF_FUNCTION_TYPE_VAR_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
  def_fn_type (ENUM, RETURN, 1, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
#define DEF_FUNCTION_TYPE_VAR_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
				ARG6) \
  def_fn_type (ENUM, RETURN, 1, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
#define DEF_FUNCTION_TYPE_VAR_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
				ARG6, ARG7)				\
  def_fn_type (ENUM, RETURN, 1, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
#define DEF_POINTER_TYPE(ENUM, TYPE) \
  builtin_types[(int) ENUM] = build_pointer_type (builtin_types[(int) TYPE]);

#include "builtin-types.def"

#undef DEF_PRIMITIVE_TYPE
#undef DEF_FUNCTION_TYPE_0
#undef DEF_FUNCTION_TYPE_1
#undef DEF_FUNCTION_TYPE_2
#undef DEF_FUNCTION_TYPE_3
#undef DEF_FUNCTION_TYPE_4
#undef DEF_FUNCTION_TYPE_5
#undef DEF_FUNCTION_TYPE_6
#undef DEF_FUNCTION_TYPE_7
#undef DEF_FUNCTION_TYPE_8
#undef DEF_FUNCTION_TYPE_9
#undef DEF_FUNCTION_TYPE_10
#undef DEF_FUNCTION_TYPE_11
#undef DEF_FUNCTION_TYPE_VAR_0
#undef DEF_FUNCTION_TYPE_VAR_1
#undef DEF_FUNCTION_TYPE_VAR_2
#undef DEF_FUNCTION_TYPE_VAR_3
#undef DEF_FUNCTION_TYPE_VAR_4
#undef DEF_FUNCTION_TYPE_VAR_5
#undef DEF_FUNCTION_TYPE_VAR_6
#undef DEF_FUNCTION_TYPE_VAR_7
#undef DEF_POINTER_TYPE
  builtin_types[(int) BT_LAST] = NULL_TREE;

  c_init_attributes ();

#define DEF_BUILTIN(ENUM, NAME, CLASS, TYPE, LIBTYPE, BOTH_P, FALLBACK_P, \
		    NONANSI_P, ATTRS, IMPLICIT, COND)			\
  if (NAME && COND)							\
    def_builtin_1 (ENUM, NAME, CLASS,                                   \
		   builtin_types[(int) TYPE],                           \
		   builtin_types[(int) LIBTYPE],                        \
		   BOTH_P, FALLBACK_P, NONANSI_P,                       \
		   built_in_attributes[(int) ATTRS], IMPLICIT);
#include "builtins.def"

  targetm.init_builtins ();

  build_common_builtin_nodes ();
}

/* Like get_identifier, but avoid warnings about null arguments when
   the argument may be NULL for targets where GCC lacks stdint.h type
   information.  */

static inline tree
c_get_ident (const char *id)
{
  return get_identifier (id);
}

/* Build tree nodes and builtin functions common to both C and C++ language
   frontends.  */

void
c_common_nodes_and_builtins (void)
{
  int char8_type_size;
  int char16_type_size;
  int char32_type_size;
  int wchar_type_size;
  tree array_domain_type;
  tree va_list_ref_type_node;
  tree va_list_arg_type_node;
  int i;

  build_common_tree_nodes (flag_signed_char);

  /* Define `int' and `char' first so that dbx will output them first.  */
  record_builtin_type (RID_INT, NULL, integer_type_node);
  record_builtin_type (RID_CHAR, "char", char_type_node);

  /* `signed' is the same as `int'.  FIXME: the declarations of "signed",
     "unsigned long", "long long unsigned" and "unsigned short" were in C++
     but not C.  Are the conditionals here needed?  */
  if (c_dialect_cxx ())
    record_builtin_type (RID_SIGNED, NULL, integer_type_node);
  record_builtin_type (RID_LONG, "long int", long_integer_type_node);
  record_builtin_type (RID_UNSIGNED, "unsigned int", unsigned_type_node);
  record_builtin_type (RID_MAX, "long unsigned int",
		       long_unsigned_type_node);

  for (i = 0; i < NUM_INT_N_ENTS; i ++)
    {
      char name[25];

      sprintf (name, "__int%d", int_n_data[i].bitsize);
      record_builtin_type ((enum rid)(RID_FIRST_INT_N + i), name,
			   int_n_trees[i].signed_type);
      sprintf (name, "__int%d__", int_n_data[i].bitsize);
      record_builtin_type ((enum rid)(RID_FIRST_INT_N + i), name,
			   int_n_trees[i].signed_type);

      sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
      record_builtin_type (RID_MAX, name, int_n_trees[i].unsigned_type);
      sprintf (name, "__int%d__ unsigned", int_n_data[i].bitsize);
      record_builtin_type (RID_MAX, name, int_n_trees[i].unsigned_type);
    }

  if (c_dialect_cxx ())
    record_builtin_type (RID_MAX, "unsigned long", long_unsigned_type_node);
  record_builtin_type (RID_MAX, "long long int",
		       long_long_integer_type_node);
  record_builtin_type (RID_MAX, "long long unsigned int",
		       long_long_unsigned_type_node);
  if (c_dialect_cxx ())
    record_builtin_type (RID_MAX, "long long unsigned",
			 long_long_unsigned_type_node);
  record_builtin_type (RID_SHORT, "short int", short_integer_type_node);
  record_builtin_type (RID_MAX, "short unsigned int",
		       short_unsigned_type_node);
  if (c_dialect_cxx ())
    record_builtin_type (RID_MAX, "unsigned short",
			 short_unsigned_type_node);

  /* Define both `signed char' and `unsigned char'.  */
  record_builtin_type (RID_MAX, "signed char", signed_char_type_node);
  record_builtin_type (RID_MAX, "unsigned char", unsigned_char_type_node);

  /* These are types that c_common_type_for_size and
     c_common_type_for_mode use.  */
  lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
					 TYPE_DECL, NULL_TREE,
					 intQI_type_node));
  lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
					 TYPE_DECL, NULL_TREE,
					 intHI_type_node));
  lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
					 TYPE_DECL, NULL_TREE,
					 intSI_type_node));
  lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
					 TYPE_DECL, NULL_TREE,
					 intDI_type_node));
#if HOST_BITS_PER_WIDE_INT >= 64
  /* Note that this is different than the __int128 type that's part of
     the generic __intN support.  */
  if (targetm.scalar_mode_supported_p (TImode))
    lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
					   TYPE_DECL,
					   get_identifier ("__int128_t"),
					   intTI_type_node));
#endif
  lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
					 TYPE_DECL, NULL_TREE,
					 unsigned_intQI_type_node));
  lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
					 TYPE_DECL, NULL_TREE,
					 unsigned_intHI_type_node));
  lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
					 TYPE_DECL, NULL_TREE,
					 unsigned_intSI_type_node));
  lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
					 TYPE_DECL, NULL_TREE,
					 unsigned_intDI_type_node));
#if HOST_BITS_PER_WIDE_INT >= 64
  if (targetm.scalar_mode_supported_p (TImode))
    lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
					   TYPE_DECL,
					   get_identifier ("__uint128_t"),
					   unsigned_intTI_type_node));
#endif

  /* Create the widest literal types.  */
  if (targetm.scalar_mode_supported_p (TImode))
    {
      widest_integer_literal_type_node = intTI_type_node;
      widest_unsigned_literal_type_node = unsigned_intTI_type_node;
    }
  else
    {
      widest_integer_literal_type_node = intDI_type_node;
      widest_unsigned_literal_type_node = unsigned_intDI_type_node;
    }

  signed_size_type_node = c_common_signed_type (size_type_node);

  pid_type_node =
    TREE_TYPE (identifier_global_value (get_identifier (PID_TYPE)));

  record_builtin_type (RID_FLOAT, NULL, float_type_node);
  record_builtin_type (RID_DOUBLE, NULL, double_type_node);
  record_builtin_type (RID_MAX, "long double", long_double_type_node);

  if (!c_dialect_cxx ())
    for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
      if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
	record_builtin_type ((enum rid) (RID_FLOATN_NX_FIRST + i), NULL,
			     FLOATN_NX_TYPE_NODE (i));

  /* Only supported decimal floating point extension if the target
     actually supports underlying modes. */
  if (targetm.scalar_mode_supported_p (SDmode)
      && targetm.scalar_mode_supported_p (DDmode)
      && targetm.scalar_mode_supported_p (TDmode))
    {
      record_builtin_type (RID_DFLOAT32, NULL, dfloat32_type_node);
      record_builtin_type (RID_DFLOAT64, NULL, dfloat64_type_node);
      record_builtin_type (RID_DFLOAT128, NULL, dfloat128_type_node);
    }

  if (targetm.fixed_point_supported_p ())
    {
      record_builtin_type (RID_MAX, "short _Fract", short_fract_type_node);
      record_builtin_type (RID_FRACT, NULL, fract_type_node);
      record_builtin_type (RID_MAX, "long _Fract", long_fract_type_node);
      record_builtin_type (RID_MAX, "long long _Fract",
			   long_long_fract_type_node);
      record_builtin_type (RID_MAX, "unsigned short _Fract",
			   unsigned_short_fract_type_node);
      record_builtin_type (RID_MAX, "unsigned _Fract",
			   unsigned_fract_type_node);
      record_builtin_type (RID_MAX, "unsigned long _Fract",
			   unsigned_long_fract_type_node);
      record_builtin_type (RID_MAX, "unsigned long long _Fract",
			   unsigned_long_long_fract_type_node);
      record_builtin_type (RID_MAX, "_Sat short _Fract",
			   sat_short_fract_type_node);
      record_builtin_type (RID_MAX, "_Sat _Fract", sat_fract_type_node);
      record_builtin_type (RID_MAX, "_Sat long _Fract",
			   sat_long_fract_type_node);
      record_builtin_type (RID_MAX, "_Sat long long _Fract",
			   sat_long_long_fract_type_node);
      record_builtin_type (RID_MAX, "_Sat unsigned short _Fract",
			   sat_unsigned_short_fract_type_node);
      record_builtin_type (RID_MAX, "_Sat unsigned _Fract",
			   sat_unsigned_fract_type_node);
      record_builtin_type (RID_MAX, "_Sat unsigned long _Fract",
			   sat_unsigned_long_fract_type_node);
      record_builtin_type (RID_MAX, "_Sat unsigned long long _Fract",
			   sat_unsigned_long_long_fract_type_node);
      record_builtin_type (RID_MAX, "short _Accum", short_accum_type_node);
      record_builtin_type (RID_ACCUM, NULL, accum_type_node);
      record_builtin_type (RID_MAX, "long _Accum", long_accum_type_node);
      record_builtin_type (RID_MAX, "long long _Accum",
			   long_long_accum_type_node);
      record_builtin_type (RID_MAX, "unsigned short _Accum",
			   unsigned_short_accum_type_node);
      record_builtin_type (RID_MAX, "unsigned _Accum",
			   unsigned_accum_type_node);
      record_builtin_type (RID_MAX, "unsigned long _Accum",
			   unsigned_long_accum_type_node);
      record_builtin_type (RID_MAX, "unsigned long long _Accum",
			   unsigned_long_long_accum_type_node);
      record_builtin_type (RID_MAX, "_Sat short _Accum",
			   sat_short_accum_type_node);
      record_builtin_type (RID_MAX, "_Sat _Accum", sat_accum_type_node);
      record_builtin_type (RID_MAX, "_Sat long _Accum",
			   sat_long_accum_type_node);
      record_builtin_type (RID_MAX, "_Sat long long _Accum",
			  sat_long_long_accum_type_node);
      record_builtin_type (RID_MAX, "_Sat unsigned short _Accum",
			   sat_unsigned_short_accum_type_node);
      record_builtin_type (RID_MAX, "_Sat unsigned _Accum",
			   sat_unsigned_accum_type_node);
      record_builtin_type (RID_MAX, "_Sat unsigned long _Accum",
			   sat_unsigned_long_accum_type_node);
      record_builtin_type (RID_MAX, "_Sat unsigned long long _Accum",
			   sat_unsigned_long_long_accum_type_node);

    }

  lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
					 TYPE_DECL,
					 get_identifier ("complex int"),
					 complex_integer_type_node));
  lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
					 TYPE_DECL,
					 get_identifier ("complex float"),
					 complex_float_type_node));
  lang_hooks.decls.pushdecl (build_decl (UNKNOWN_LOCATION,
					 TYPE_DECL,
					 get_identifier ("complex double"),
					 complex_double_type_node));
  lang_hooks.decls.pushdecl
    (build_decl (UNKNOWN_LOCATION,
		 TYPE_DECL, get_identifier ("complex long double"),
		 complex_long_double_type_node));

  if (!c_dialect_cxx ())
    for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
      if (COMPLEX_FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
	{
	  char buf[30];
	  sprintf (buf, "complex _Float%d%s", floatn_nx_types[i].n,
		   floatn_nx_types[i].extended ? "x" : "");
	  lang_hooks.decls.pushdecl
	    (build_decl (UNKNOWN_LOCATION,
			 TYPE_DECL,
			 get_identifier (buf),
			 COMPLEX_FLOATN_NX_TYPE_NODE (i)));
	}

  /* Make fileptr_type_node a distinct void * type until
     FILE type is defined.  Likewise for const struct tm*.  */
  for (unsigned i = 0;
       i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
       ++i)
    builtin_structptr_types[i].node
      = build_variant_type_copy (builtin_structptr_types[i].base);

  record_builtin_type (RID_VOID, NULL, void_type_node);

  /* Set the TYPE_NAME for any variants that were built before
     record_builtin_type gave names to the built-in types. */
  {
    tree void_name = TYPE_NAME (void_type_node);
    TYPE_NAME (void_type_node) = NULL_TREE;
    TYPE_NAME (build_qualified_type (void_type_node, TYPE_QUAL_CONST))
      = void_name;
    TYPE_NAME (void_type_node) = void_name;
  }

  void_list_node = build_void_list_node ();

  /* Make a type to be the domain of a few array types
     whose domains don't really matter.
     200 is small enough that it always fits in size_t
     and large enough that it can hold most function names for the
     initializations of __FUNCTION__ and __PRETTY_FUNCTION__.  */
  array_domain_type = build_index_type (size_int (200));

  /* Make a type for arrays of characters.
     With luck nothing will ever really depend on the length of this
     array type.  */
  char_array_type_node
    = build_array_type (char_type_node, array_domain_type);

  string_type_node = build_pointer_type (char_type_node);
  const_string_type_node
    = build_pointer_type (build_qualified_type
			  (char_type_node, TYPE_QUAL_CONST));

  /* This is special for C++ so functions can be overloaded.  */
  wchar_type_node = get_identifier (MODIFIED_WCHAR_TYPE);
  wchar_type_node = TREE_TYPE (identifier_global_value (wchar_type_node));
  wchar_type_size = TYPE_PRECISION (wchar_type_node);
  underlying_wchar_type_node = wchar_type_node;
  if (c_dialect_cxx ())
    {
      if (TYPE_UNSIGNED (wchar_type_node))
	wchar_type_node = make_unsigned_type (wchar_type_size);
      else
	wchar_type_node = make_signed_type (wchar_type_size);
      record_builtin_type (RID_WCHAR, "wchar_t", wchar_type_node);
    }

  /* This is for wide string constants.  */
  wchar_array_type_node
    = build_array_type (wchar_type_node, array_domain_type);

  /* Define 'char8_t'.  */
  char8_type_node = get_identifier (CHAR8_TYPE);
  char8_type_node = TREE_TYPE (identifier_global_value (char8_type_node));
  char8_type_size = TYPE_PRECISION (char8_type_node);
  if (c_dialect_cxx ())
    {
      char8_type_node = make_unsigned_type (char8_type_size);

      if (flag_char8_t)
        record_builtin_type (RID_CHAR8, "char8_t", char8_type_node);
    }

  /* This is for UTF-8 string constants.  */
  char8_array_type_node
    = build_array_type (char8_type_node, array_domain_type);

  /* Define 'char16_t'.  */
  char16_type_node = get_identifier (CHAR16_TYPE);
  char16_type_node = TREE_TYPE (identifier_global_value (char16_type_node));
  char16_type_size = TYPE_PRECISION (char16_type_node);
  if (c_dialect_cxx ())
    {
      char16_type_node = make_unsigned_type (char16_type_size);

      if (cxx_dialect >= cxx11)
	record_builtin_type (RID_CHAR16, "char16_t", char16_type_node);
    }

  /* This is for UTF-16 string constants.  */
  char16_array_type_node
    = build_array_type (char16_type_node, array_domain_type);

  /* Define 'char32_t'.  */
  char32_type_node = get_identifier (CHAR32_TYPE);
  char32_type_node = TREE_TYPE (identifier_global_value (char32_type_node));
  char32_type_size = TYPE_PRECISION (char32_type_node);
  if (c_dialect_cxx ())
    {
      char32_type_node = make_unsigned_type (char32_type_size);

      if (cxx_dialect >= cxx11)
	record_builtin_type (RID_CHAR32, "char32_t", char32_type_node);
    }

  /* This is for UTF-32 string constants.  */
  char32_array_type_node
    = build_array_type (char32_type_node, array_domain_type);

  wint_type_node =
    TREE_TYPE (identifier_global_value (get_identifier (WINT_TYPE)));

  intmax_type_node =
    TREE_TYPE (identifier_global_value (get_identifier (INTMAX_TYPE)));
  uintmax_type_node =
    TREE_TYPE (identifier_global_value (get_identifier (UINTMAX_TYPE)));

  if (SIG_ATOMIC_TYPE)
    sig_atomic_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (SIG_ATOMIC_TYPE)));
  if (INT8_TYPE)
    int8_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (INT8_TYPE)));
  if (INT16_TYPE)
    int16_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (INT16_TYPE)));
  if (INT32_TYPE)
    int32_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (INT32_TYPE)));
  if (INT64_TYPE)
    int64_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (INT64_TYPE)));
  if (UINT8_TYPE)
    uint8_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (UINT8_TYPE)));
  if (UINT16_TYPE)
    c_uint16_type_node = uint16_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (UINT16_TYPE)));
  if (UINT32_TYPE)
    c_uint32_type_node = uint32_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (UINT32_TYPE)));
  if (UINT64_TYPE)
    c_uint64_type_node = uint64_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (UINT64_TYPE)));
  if (INT_LEAST8_TYPE)
    int_least8_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (INT_LEAST8_TYPE)));
  if (INT_LEAST16_TYPE)
    int_least16_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (INT_LEAST16_TYPE)));
  if (INT_LEAST32_TYPE)
    int_least32_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (INT_LEAST32_TYPE)));
  if (INT_LEAST64_TYPE)
    int_least64_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (INT_LEAST64_TYPE)));
  if (UINT_LEAST8_TYPE)
    uint_least8_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (UINT_LEAST8_TYPE)));
  if (UINT_LEAST16_TYPE)
    uint_least16_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (UINT_LEAST16_TYPE)));
  if (UINT_LEAST32_TYPE)
    uint_least32_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (UINT_LEAST32_TYPE)));
  if (UINT_LEAST64_TYPE)
    uint_least64_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (UINT_LEAST64_TYPE)));
  if (INT_FAST8_TYPE)
    int_fast8_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (INT_FAST8_TYPE)));
  if (INT_FAST16_TYPE)
    int_fast16_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (INT_FAST16_TYPE)));
  if (INT_FAST32_TYPE)
    int_fast32_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (INT_FAST32_TYPE)));
  if (INT_FAST64_TYPE)
    int_fast64_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (INT_FAST64_TYPE)));
  if (UINT_FAST8_TYPE)
    uint_fast8_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (UINT_FAST8_TYPE)));
  if (UINT_FAST16_TYPE)
    uint_fast16_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (UINT_FAST16_TYPE)));
  if (UINT_FAST32_TYPE)
    uint_fast32_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (UINT_FAST32_TYPE)));
  if (UINT_FAST64_TYPE)
    uint_fast64_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (UINT_FAST64_TYPE)));
  if (INTPTR_TYPE)
    intptr_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (INTPTR_TYPE)));
  if (UINTPTR_TYPE)
    uintptr_type_node =
      TREE_TYPE (identifier_global_value (c_get_ident (UINTPTR_TYPE)));

  default_function_type
    = build_varargs_function_type_list (integer_type_node, NULL_TREE);
  unsigned_ptrdiff_type_node = c_common_unsigned_type (ptrdiff_type_node);

  lang_hooks.decls.pushdecl
    (build_decl (UNKNOWN_LOCATION,
		 TYPE_DECL, get_identifier ("__builtin_va_list"),
		 va_list_type_node));
  if (targetm.enum_va_list_p)
    {
      int l;
      const char *pname;
      tree ptype;

      for (l = 0; targetm.enum_va_list_p (l, &pname, &ptype); ++l)
	{
	  lang_hooks.decls.pushdecl
	    (build_decl (UNKNOWN_LOCATION,
		         TYPE_DECL, get_identifier (pname),
	  	         ptype));

	}
    }

  if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
    {
      va_list_arg_type_node = va_list_ref_type_node =
	build_pointer_type (TREE_TYPE (va_list_type_node));
    }
  else
    {
      va_list_arg_type_node = va_list_type_node;
      va_list_ref_type_node = build_reference_type (va_list_type_node);
    }

  c_define_builtins (va_list_ref_type_node, va_list_arg_type_node);

  main_identifier_node = get_identifier ("main");

  /* Create the built-in __null node.  It is important that this is
     not shared.  */
  null_node = make_int_cst (1, 1);
  TREE_TYPE (null_node) = c_common_type_for_size (POINTER_SIZE, 0);

  /* Since builtin_types isn't gc'ed, don't export these nodes.  */
  memset (builtin_types, 0, sizeof (builtin_types));
}

/* The number of named compound-literals generated thus far.  */
static GTY(()) int compound_literal_number;

/* Set DECL_NAME for DECL, a VAR_DECL for a compound-literal.  */

void
set_compound_literal_name (tree decl)
{
  char *name;
  ASM_FORMAT_PRIVATE_NAME (name, "__compound_literal",
			   compound_literal_number);
  compound_literal_number++;
  DECL_NAME (decl) = get_identifier (name);
}

/* build_va_arg helper function.  Return a VA_ARG_EXPR with location LOC, type
   TYPE and operand OP.  */

static tree
build_va_arg_1 (location_t loc, tree type, tree op)
{
  tree expr = build1 (VA_ARG_EXPR, type, op);
  SET_EXPR_LOCATION (expr, loc);
  return expr;
}

/* Return a VA_ARG_EXPR corresponding to a source-level expression
   va_arg (EXPR, TYPE) at source location LOC.  */

tree
build_va_arg (location_t loc, tree expr, tree type)
{
  tree va_type = TREE_TYPE (expr);
  tree canon_va_type = (va_type == error_mark_node
			? error_mark_node
			: targetm.canonical_va_list_type (va_type));

  if (va_type == error_mark_node
      || canon_va_type == NULL_TREE)
    {
      if (canon_va_type == NULL_TREE)
	error_at (loc, "first argument to %<va_arg%> not of type %<va_list%>");

      /* Let's handle things neutrally, if expr:
	 - has undeclared type, or
	 - is not an va_list type.  */
      return build_va_arg_1 (loc, type, error_mark_node);
    }

  if (TREE_CODE (canon_va_type) != ARRAY_TYPE)
    {
      /* Case 1: Not an array type.  */

      /* Take the address, to get '&ap'.  Note that &ap is not a va_list
	 type.  */
      c_common_mark_addressable_vec (expr);
      expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (expr)), expr);

      return build_va_arg_1 (loc, type, expr);
    }

  /* Case 2: Array type.

     Background:

     For contrast, let's start with the simple case (case 1).  If
     canon_va_type is not an array type, but say a char *, then when
     passing-by-value a va_list, the type of the va_list param decl is
     the same as for another va_list decl (all ap's are char *):

     f2_1 (char * ap)
       D.1815 = VA_ARG (&ap, 0B, 1);
       return D.1815;

     f2 (int i)
       char * ap.0;
       char * ap;
       __builtin_va_start (&ap, 0);
       ap.0 = ap;
       res = f2_1 (ap.0);
       __builtin_va_end (&ap);
       D.1812 = res;
       return D.1812;

     However, if canon_va_type is ARRAY_TYPE, then when passing-by-value a
     va_list the type of the va_list param decl (case 2b, struct * ap) is not
     the same as for another va_list decl (case 2a, struct ap[1]).

     f2_1 (struct  * ap)
       D.1844 = VA_ARG (ap, 0B, 0);
       return D.1844;

     f2 (int i)
       struct  ap[1];
       __builtin_va_start (&ap, 0);
       res = f2_1 (&ap);
       __builtin_va_end (&ap);
       D.1841 = res;
       return D.1841;

     Case 2b is different because:
     - on the callee side, the parm decl has declared type va_list, but
       grokdeclarator changes the type of the parm decl to a pointer to the
       array elem type.
     - on the caller side, the pass-by-value uses &ap.

     We unify these two cases (case 2a: va_list is array type,
     case 2b: va_list is pointer to array elem type), by adding '&' for the
     array type case, such that we have a pointer to array elem in both
     cases.  */

  if (TREE_CODE (va_type) == ARRAY_TYPE)
    {
      /* Case 2a: va_list is array type.  */

      /* Take the address, to get '&ap'.  Make sure it's a pointer to array
	 elem type.  */
      c_common_mark_addressable_vec (expr);
      expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (canon_va_type)),
		     expr);

      /* Verify that &ap is still recognized as having va_list type.  */
      tree canon_expr_type
	= targetm.canonical_va_list_type (TREE_TYPE (expr));
      gcc_assert (canon_expr_type != NULL_TREE);
    }
  else
    {
      /* Case 2b: va_list is pointer to array elem type.  */
      gcc_assert (POINTER_TYPE_P (va_type));

      /* Comparison as in std_canonical_va_list_type.  */
      gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (va_type))
		  == TYPE_MAIN_VARIANT (TREE_TYPE (canon_va_type)));

      /* Don't take the address.  We've already got '&ap'.  */
      ;
    }

  return build_va_arg_1 (loc, type, expr);
}


/* Linked list of disabled built-in functions.  */

struct disabled_builtin
{
  const char *name;
  struct disabled_builtin *next;
};
static disabled_builtin *disabled_builtins = NULL;

static bool builtin_function_disabled_p (const char *);

/* Disable a built-in function specified by -fno-builtin-NAME.  If NAME
   begins with "__builtin_", give an error.  */

void
disable_builtin_function (const char *name)
{
  if (startswith (name, "__builtin_"))
    error ("cannot disable built-in function %qs", name);
  else
    {
      disabled_builtin *new_disabled_builtin = XNEW (disabled_builtin);
      new_disabled_builtin->name = name;
      new_disabled_builtin->next = disabled_builtins;
      disabled_builtins = new_disabled_builtin;
    }
}


/* Return true if the built-in function NAME has been disabled, false
   otherwise.  */

static bool
builtin_function_disabled_p (const char *name)
{
  disabled_builtin *p;
  for (p = disabled_builtins; p != NULL; p = p->next)
    {
      if (strcmp (name, p->name) == 0)
	return true;
    }
  return false;
}


/* Worker for DEF_BUILTIN.
   Possibly define a builtin function with one or two names.
   Does not declare a non-__builtin_ function if flag_no_builtin, or if
   nonansi_p and flag_no_nonansi_builtin.  */

static void
def_builtin_1 (enum built_in_function fncode,
	       const char *name,
	       enum built_in_class fnclass,
	       tree fntype, tree libtype,
	       bool both_p, bool fallback_p, bool nonansi_p,
	       tree fnattrs, bool implicit_p)
{
  tree decl;
  const char *libname;

  if (fntype == error_mark_node)
    return;

  gcc_assert ((!both_p && !fallback_p)
	      || startswith (name, "__builtin_"));

  libname = name + strlen ("__builtin_");
  decl = add_builtin_function (name, fntype, fncode, fnclass,
			       (fallback_p ? libname : NULL),
			       fnattrs);

  set_builtin_decl (fncode, decl, implicit_p);

  if (both_p
      && !flag_no_builtin && !builtin_function_disabled_p (libname)
      && !(nonansi_p && flag_no_nonansi_builtin))
    add_builtin_function (libname, libtype, fncode, fnclass,
			  NULL, fnattrs);
}

/* Nonzero if the type T promotes to int.  This is (nearly) the
   integral promotions defined in ISO C99 6.3.1.1/2.  */

bool
c_promoting_integer_type_p (const_tree t)
{
  switch (TREE_CODE (t))
    {
    case INTEGER_TYPE:
      return (TYPE_MAIN_VARIANT (t) == char_type_node
	      || TYPE_MAIN_VARIANT (t) == signed_char_type_node
	      || TYPE_MAIN_VARIANT (t) == unsigned_char_type_node
	      || TYPE_MAIN_VARIANT (t) == short_integer_type_node
	      || TYPE_MAIN_VARIANT (t) == short_unsigned_type_node
	      || TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node));

    case ENUMERAL_TYPE:
      /* ??? Technically all enumerations not larger than an int
	 promote to an int.  But this is used along code paths
	 that only want to notice a size change.  */
      return TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node);

    case BOOLEAN_TYPE:
      return true;

    default:
      return false;
    }
}

/* Return 1 if PARMS specifies a fixed number of parameters
   and none of their types is affected by default promotions.  */

bool
self_promoting_args_p (const_tree parms)
{
  const_tree t;
  for (t = parms; t; t = TREE_CHAIN (t))
    {
      tree type = TREE_VALUE (t);

      if (type == error_mark_node)
	continue;

      if (TREE_CHAIN (t) == NULL_TREE && type != void_type_node)
	return false;

      if (type == NULL_TREE)
	return false;

      if (TYPE_MAIN_VARIANT (type) == float_type_node)
	return false;

      if (c_promoting_integer_type_p (type))
	return false;
    }
  return true;
}

/* Recursively remove any '*' or '&' operator from TYPE.  */
tree
strip_pointer_operator (tree t)
{
  while (POINTER_TYPE_P (t))
    t = TREE_TYPE (t);
  return t;
}

/* Recursively remove pointer or array type from TYPE. */
tree
strip_pointer_or_array_types (tree t)
{
  while (TREE_CODE (t) == ARRAY_TYPE || POINTER_TYPE_P (t))
    t = TREE_TYPE (t);
  return t;
}

/* Used to compare case labels.  K1 and K2 are actually tree nodes
   representing case labels, or NULL_TREE for a `default' label.
   Returns -1 if K1 is ordered before K2, -1 if K1 is ordered after
   K2, and 0 if K1 and K2 are equal.  */

int
case_compare (splay_tree_key k1, splay_tree_key k2)
{
  /* Consider a NULL key (such as arises with a `default' label) to be
     smaller than anything else.  */
  if (!k1)
    return k2 ? -1 : 0;
  else if (!k2)
    return k1 ? 1 : 0;

  return tree_int_cst_compare ((tree) k1, (tree) k2);
}

/* Process a case label, located at LOC, for the range LOW_VALUE
   ... HIGH_VALUE.  If LOW_VALUE and HIGH_VALUE are both NULL_TREE
   then this case label is actually a `default' label.  If only
   HIGH_VALUE is NULL_TREE, then case label was declared using the
   usual C/C++ syntax, rather than the GNU case range extension.
   CASES is a tree containing all the case ranges processed so far;
   COND is the condition for the switch-statement itself.
   Returns the CASE_LABEL_EXPR created, or ERROR_MARK_NODE if no
   CASE_LABEL_EXPR is created.  */

tree
c_add_case_label (location_t loc, splay_tree cases, tree cond,
		  tree low_value, tree high_value)
{
  tree type;
  tree label;
  tree case_label;
  splay_tree_node node;

  /* Create the LABEL_DECL itself.  */
  label = create_artificial_label (loc);

  /* If there was an error processing the switch condition, bail now
     before we get more confused.  */
  if (!cond || cond == error_mark_node)
    goto error_out;

  if ((low_value && TREE_TYPE (low_value)
       && POINTER_TYPE_P (TREE_TYPE (low_value)))
      || (high_value && TREE_TYPE (high_value)
	  && POINTER_TYPE_P (TREE_TYPE (high_value))))
    {
      error_at (loc, "pointers are not permitted as case values");
      goto error_out;
    }

  /* Case ranges are a GNU extension.  */
  if (high_value)
    pedwarn (loc, OPT_Wpedantic,
	     "range expressions in switch statements are non-standard");

  type = TREE_TYPE (cond);
  if (low_value)
    {
      low_value = check_case_value (loc, low_value);
      low_value = convert_and_check (loc, type, low_value);
      low_value = fold (low_value);
      if (low_value == error_mark_node)
	goto error_out;
    }
  if (high_value)
    {
      high_value = check_case_value (loc, high_value);
      high_value = convert_and_check (loc, type, high_value);
      high_value = fold (high_value);
      if (high_value == error_mark_node)
	goto error_out;
    }

  if (low_value && high_value)
    {
      /* If the LOW_VALUE and HIGH_VALUE are the same, then this isn't
	 really a case range, even though it was written that way.
	 Remove the HIGH_VALUE to simplify later processing.  */
      if (tree_int_cst_equal (low_value, high_value))
	high_value = NULL_TREE;
      else if (!tree_int_cst_lt (low_value, high_value))
	warning_at (loc, 0, "empty range specified");
    }

  /* Look up the LOW_VALUE in the table of case labels we already
     have.  */
  node = splay_tree_lookup (cases, (splay_tree_key) low_value);
  /* If there was not an exact match, check for overlapping ranges.
     There's no need to do this if there's no LOW_VALUE or HIGH_VALUE;
     that's a `default' label and the only overlap is an exact match.  */
  if (!node && (low_value || high_value))
    {
      splay_tree_node low_bound;
      splay_tree_node high_bound;

      /* Even though there wasn't an exact match, there might be an
	 overlap between this case range and another case range.
	 Since we've (inductively) not allowed any overlapping case
	 ranges, we simply need to find the greatest low case label
	 that is smaller that LOW_VALUE, and the smallest low case
	 label that is greater than LOW_VALUE.  If there is an overlap
	 it will occur in one of these two ranges.  */
      low_bound = splay_tree_predecessor (cases,
					  (splay_tree_key) low_value);
      high_bound = splay_tree_successor (cases,
					 (splay_tree_key) low_value);

      /* Check to see if the LOW_BOUND overlaps.  It is smaller than
	 the LOW_VALUE, so there is no need to check unless the
	 LOW_BOUND is in fact itself a case range.  */
      if (low_bound
	  && CASE_HIGH ((tree) low_bound->value)
	  && tree_int_cst_compare (CASE_HIGH ((tree) low_bound->value),
				    low_value) >= 0)
	node = low_bound;
      /* Check to see if the HIGH_BOUND overlaps.  The low end of that
	 range is bigger than the low end of the current range, so we
	 are only interested if the current range is a real range, and
	 not an ordinary case label.  */
      else if (high_bound
	       && high_value
	       && (tree_int_cst_compare ((tree) high_bound->key,
					 high_value)
		   <= 0))
	node = high_bound;
    }
  /* If there was an overlap, issue an error.  */
  if (node)
    {
      tree duplicate = CASE_LABEL ((tree) node->value);

      if (high_value)
	{
	  error_at (loc, "duplicate (or overlapping) case value");
	  inform (DECL_SOURCE_LOCATION (duplicate),
		  "this is the first entry overlapping that value");
	}
      else if (low_value)
	{
	  error_at (loc, "duplicate case value") ;
	  inform (DECL_SOURCE_LOCATION (duplicate), "previously used here");
	}
      else
	{
	  error_at (loc, "multiple default labels in one switch");
	  inform (DECL_SOURCE_LOCATION (duplicate),
		  "this is the first default label");
	}
      goto error_out;
    }

  /* Add a CASE_LABEL to the statement-tree.  */
  case_label = add_stmt (build_case_label (low_value, high_value, label));
  /* Register this case label in the splay tree.  */
  splay_tree_insert (cases,
		     (splay_tree_key) low_value,
		     (splay_tree_value) case_label);

  return case_label;

 error_out:
  /* Add a label so that the back-end doesn't think that the beginning of
     the switch is unreachable.  Note that we do not add a case label, as
     that just leads to duplicates and thence to failure later on.  */
  if (!cases->root)
    {
      tree t = create_artificial_label (loc);
      add_stmt (build_stmt (loc, LABEL_EXPR, t));
    }
  return error_mark_node;
}

/* Subroutine of c_switch_covers_all_cases_p, called via
   splay_tree_foreach.  Return 1 if it doesn't cover all the cases.
   ARGS[0] is initially NULL and after the first iteration is the
   so far highest case label.  ARGS[1] is the minimum of SWITCH_COND's
   type.  */

static int
c_switch_covers_all_cases_p_1 (splay_tree_node node, void *data)
{
  tree label = (tree) node->value;
  tree *args = (tree *) data;

  /* If there is a default case, we shouldn't have called this.  */
  gcc_assert (CASE_LOW (label));

  if (args[0] == NULL_TREE)
    {
      if (wi::to_widest (args[1]) < wi::to_widest (CASE_LOW (label)))
	return 1;
    }
  else if (wi::add (wi::to_widest (args[0]), 1)
	   != wi::to_widest (CASE_LOW (label)))
    return 1;
  if (CASE_HIGH (label))
    args[0] = CASE_HIGH (label);
  else
    args[0] = CASE_LOW (label);
  return 0;
}

/* Return true if switch with CASES and switch condition with type
   covers all possible values in the case labels.  */

bool
c_switch_covers_all_cases_p (splay_tree cases, tree type)
{
  /* If there is default:, this is always the case.  */
  splay_tree_node default_node
    = splay_tree_lookup (cases, (splay_tree_key) NULL);
  if (default_node)
    return true;

  if (!INTEGRAL_TYPE_P (type))
    return false;

  tree args[2] = { NULL_TREE, TYPE_MIN_VALUE (type) };
  if (splay_tree_foreach (cases, c_switch_covers_all_cases_p_1, args))
    return false;

  /* If there are no cases at all, or if the highest case label
     is smaller than TYPE_MAX_VALUE, return false.  */
  if (args[0] == NULL_TREE
      || wi::to_widest (args[0]) < wi::to_widest (TYPE_MAX_VALUE (type)))
    return false;

  return true;
}

/* Return true if stmt can fall through.  Used by block_may_fallthru
   default case.  */

bool
c_block_may_fallthru (const_tree stmt)
{
  switch (TREE_CODE (stmt))
    {
    case SWITCH_STMT:
      return (!SWITCH_STMT_ALL_CASES_P (stmt)
	      || !SWITCH_STMT_NO_BREAK_P (stmt)
	      || block_may_fallthru (SWITCH_STMT_BODY (stmt)));

    default:
      return true;
    }
}

/* Finish an expression taking the address of LABEL (an
   IDENTIFIER_NODE).  Returns an expression for the address.

   LOC is the location for the expression returned.  */

tree
finish_label_address_expr (tree label, location_t loc)
{
  tree result;

  pedwarn (input_location, OPT_Wpedantic, "taking the address of a label is non-standard");

  if (label == error_mark_node)
    return error_mark_node;

  label = lookup_label (label);
  if (label == NULL_TREE)
    result = null_pointer_node;
  else
    {
      TREE_USED (label) = 1;
      result = build1 (ADDR_EXPR, ptr_type_node, label);
      /* The current function is not necessarily uninlinable.
	 Computed gotos are incompatible with inlining, but the value
	 here could be used only in a diagnostic, for example.  */
      protected_set_expr_location (result, loc);
    }

  return result;
}


/* Given a boolean expression ARG, return a tree representing an increment
   or decrement (as indicated by CODE) of ARG.  The front end must check for
   invalid cases (e.g., decrement in C++).  */
tree
boolean_increment (enum tree_code code, tree arg)
{
  tree val;
  tree true_res = build_int_cst (TREE_TYPE (arg), 1);

  arg = stabilize_reference (arg);
  switch (code)
    {
    case PREINCREMENT_EXPR:
      val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
      break;
    case POSTINCREMENT_EXPR:
      val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
      arg = save_expr (arg);
      val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
      val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
      break;
    case PREDECREMENT_EXPR:
      val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg,
		    invert_truthvalue_loc (input_location, arg));
      break;
    case POSTDECREMENT_EXPR:
      val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg,
		    invert_truthvalue_loc (input_location, arg));
      arg = save_expr (arg);
      val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
      val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
      break;
    default:
      gcc_unreachable ();
    }
  TREE_SIDE_EFFECTS (val) = 1;
  return val;
}

/* Built-in macros for stddef.h and stdint.h, that require macros
   defined in this file.  */
void
c_stddef_cpp_builtins(void)
{
  builtin_define_with_value ("__SIZE_TYPE__", SIZE_TYPE, 0);
  builtin_define_with_value ("__PTRDIFF_TYPE__", PTRDIFF_TYPE, 0);
  builtin_define_with_value ("__WCHAR_TYPE__", MODIFIED_WCHAR_TYPE, 0);
  builtin_define_with_value ("__WINT_TYPE__", WINT_TYPE, 0);
  builtin_define_with_value ("__INTMAX_TYPE__", INTMAX_TYPE, 0);
  builtin_define_with_value ("__UINTMAX_TYPE__", UINTMAX_TYPE, 0);
  if (flag_char8_t)
    builtin_define_with_value ("__CHAR8_TYPE__", CHAR8_TYPE, 0);
  builtin_define_with_value ("__CHAR16_TYPE__", CHAR16_TYPE, 0);
  builtin_define_with_value ("__CHAR32_TYPE__", CHAR32_TYPE, 0);
  if (SIG_ATOMIC_TYPE)
    builtin_define_with_value ("__SIG_ATOMIC_TYPE__", SIG_ATOMIC_TYPE, 0);
  if (INT8_TYPE)
    builtin_define_with_value ("__INT8_TYPE__", INT8_TYPE, 0);
  if (INT16_TYPE)
    builtin_define_with_value ("__INT16_TYPE__", INT16_TYPE, 0);
  if (INT32_TYPE)
    builtin_define_with_value ("__INT32_TYPE__", INT32_TYPE, 0);
  if (INT64_TYPE)
    builtin_define_with_value ("__INT64_TYPE__", INT64_TYPE, 0);
  if (UINT8_TYPE)
    builtin_define_with_value ("__UINT8_TYPE__", UINT8_TYPE, 0);
  if (UINT16_TYPE)
    builtin_define_with_value ("__UINT16_TYPE__", UINT16_TYPE, 0);
  if (UINT32_TYPE)
    builtin_define_with_value ("__UINT32_TYPE__", UINT32_TYPE, 0);
  if (UINT64_TYPE)
    builtin_define_with_value ("__UINT64_TYPE__", UINT64_TYPE, 0);
  if (INT_LEAST8_TYPE)
    builtin_define_with_value ("__INT_LEAST8_TYPE__", INT_LEAST8_TYPE, 0);
  if (INT_LEAST16_TYPE)
    builtin_define_with_value ("__INT_LEAST16_TYPE__", INT_LEAST16_TYPE, 0);
  if (INT_LEAST32_TYPE)
    builtin_define_with_value ("__INT_LEAST32_TYPE__", INT_LEAST32_TYPE, 0);
  if (INT_LEAST64_TYPE)
    builtin_define_with_value ("__INT_LEAST64_TYPE__", INT_LEAST64_TYPE, 0);
  if (UINT_LEAST8_TYPE)
    builtin_define_with_value ("__UINT_LEAST8_TYPE__", UINT_LEAST8_TYPE, 0);
  if (UINT_LEAST16_TYPE)
    builtin_define_with_value ("__UINT_LEAST16_TYPE__", UINT_LEAST16_TYPE, 0);
  if (UINT_LEAST32_TYPE)
    builtin_define_with_value ("__UINT_LEAST32_TYPE__", UINT_LEAST32_TYPE, 0);
  if (UINT_LEAST64_TYPE)
    builtin_define_with_value ("__UINT_LEAST64_TYPE__", UINT_LEAST64_TYPE, 0);
  if (INT_FAST8_TYPE)
    builtin_define_with_value ("__INT_FAST8_TYPE__", INT_FAST8_TYPE, 0);
  if (INT_FAST16_TYPE)
    builtin_define_with_value ("__INT_FAST16_TYPE__", INT_FAST16_TYPE, 0);
  if (INT_FAST32_TYPE)
    builtin_define_with_value ("__INT_FAST32_TYPE__", INT_FAST32_TYPE, 0);
  if (INT_FAST64_TYPE)
    builtin_define_with_value ("__INT_FAST64_TYPE__", INT_FAST64_TYPE, 0);
  if (UINT_FAST8_TYPE)
    builtin_define_with_value ("__UINT_FAST8_TYPE__", UINT_FAST8_TYPE, 0);
  if (UINT_FAST16_TYPE)
    builtin_define_with_value ("__UINT_FAST16_TYPE__", UINT_FAST16_TYPE, 0);
  if (UINT_FAST32_TYPE)
    builtin_define_with_value ("__UINT_FAST32_TYPE__", UINT_FAST32_TYPE, 0);
  if (UINT_FAST64_TYPE)
    builtin_define_with_value ("__UINT_FAST64_TYPE__", UINT_FAST64_TYPE, 0);
  if (INTPTR_TYPE)
    builtin_define_with_value ("__INTPTR_TYPE__", INTPTR_TYPE, 0);
  if (UINTPTR_TYPE)
    builtin_define_with_value ("__UINTPTR_TYPE__", UINTPTR_TYPE, 0);
  /* GIMPLE FE testcases need access to the GCC internal 'sizetype'.
     Expose it as __SIZETYPE__.  */
  if (flag_gimple)
    builtin_define_with_value ("__SIZETYPE__", SIZETYPE, 0);
}

static void
c_init_attributes (void)
{
  /* Fill in the built_in_attributes array.  */
#define DEF_ATTR_NULL_TREE(ENUM)				\
  built_in_attributes[(int) ENUM] = NULL_TREE;
#define DEF_ATTR_INT(ENUM, VALUE)				\
  built_in_attributes[(int) ENUM] = build_int_cst (integer_type_node, VALUE);
#define DEF_ATTR_STRING(ENUM, VALUE)				\
  built_in_attributes[(int) ENUM] = build_string (strlen (VALUE), VALUE);
#define DEF_ATTR_IDENT(ENUM, STRING)				\
  built_in_attributes[(int) ENUM] = get_identifier (STRING);
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN)	\
  built_in_attributes[(int) ENUM]			\
    = tree_cons (built_in_attributes[(int) PURPOSE],	\
		 built_in_attributes[(int) VALUE],	\
		 built_in_attributes[(int) CHAIN]);
#include "builtin-attrs.def"
#undef DEF_ATTR_NULL_TREE
#undef DEF_ATTR_INT
#undef DEF_ATTR_IDENT
#undef DEF_ATTR_TREE_LIST
}

/* Check whether the byte alignment ALIGN is a valid user-specified
   alignment less than the supported maximum.  If so, return ALIGN's
   base-2 log; if not, output an error and return -1.  If OBJFILE
   then reject alignments greater than MAX_OFILE_ALIGNMENT when
   converted to bits.  Otherwise, consider valid only alignments
   that are less than HOST_BITS_PER_INT - LOG2_BITS_PER_UNIT.
   Zero is not considered a valid argument (and results in -1 on
   return) but it only triggers a warning when WARN_ZERO is set.  */

int
check_user_alignment (const_tree align, bool objfile, bool warn_zero)
{
  if (error_operand_p (align))
    return -1;

  if (TREE_CODE (align) != INTEGER_CST
      || !INTEGRAL_TYPE_P (TREE_TYPE (align)))
    {
      error ("requested alignment is not an integer constant");
      return -1;
    }

  if (integer_zerop (align))
    {
      if (warn_zero)
	warning (OPT_Wattributes,
		 "requested alignment %qE is not a positive power of 2",
		 align);
      return -1;
    }

  /* Log2 of the byte alignment ALIGN.  */
  int log2align;
  if (tree_int_cst_sgn (align) == -1
      || (log2align = tree_log2 (align)) == -1)
    {
      error ("requested alignment %qE is not a positive power of 2",
	     align);
      return -1;
    }

  if (objfile)
    {
      unsigned maxalign = MAX_OFILE_ALIGNMENT / BITS_PER_UNIT;
      if (!tree_fits_uhwi_p (align) || tree_to_uhwi (align) > maxalign)
	{
	  error ("requested alignment %qE exceeds object file maximum %u",
		 align, maxalign);
	  return -1;
	}
    }

  if (log2align >= HOST_BITS_PER_INT - LOG2_BITS_PER_UNIT)
    {
      error ("requested alignment %qE exceeds maximum %u",
	     align, 1U << (HOST_BITS_PER_INT - LOG2_BITS_PER_UNIT - 1));
      return -1;
    }

  return log2align;
}

/* Determine the ELF symbol visibility for DECL, which is either a
   variable or a function.  It is an error to use this function if a
   definition of DECL is not available in this translation unit.
   Returns true if the final visibility has been determined by this
   function; false if the caller is free to make additional
   modifications.  */

bool
c_determine_visibility (tree decl)
{
  gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));

  /* If the user explicitly specified the visibility with an
     attribute, honor that.  DECL_VISIBILITY will have been set during
     the processing of the attribute.  We check for an explicit
     attribute, rather than just checking DECL_VISIBILITY_SPECIFIED,
     to distinguish the use of an attribute from the use of a "#pragma
     GCC visibility push(...)"; in the latter case we still want other
     considerations to be able to overrule the #pragma.  */
  if (lookup_attribute ("visibility", DECL_ATTRIBUTES (decl))
      || (TARGET_DLLIMPORT_DECL_ATTRIBUTES
	  && (lookup_attribute ("dllimport", DECL_ATTRIBUTES (decl))
	      || lookup_attribute ("dllexport", DECL_ATTRIBUTES (decl)))))
    return true;

  /* Set default visibility to whatever the user supplied with
     visibility_specified depending on #pragma GCC visibility.  */
  if (!DECL_VISIBILITY_SPECIFIED (decl))
    {
      if (visibility_options.inpragma
	  || DECL_VISIBILITY (decl) != default_visibility)
	{
	  DECL_VISIBILITY (decl) = default_visibility;
	  DECL_VISIBILITY_SPECIFIED (decl) = visibility_options.inpragma;
	  /* If visibility changed and DECL already has DECL_RTL, ensure
	     symbol flags are updated.  */
	  if (((VAR_P (decl) && TREE_STATIC (decl))
	       || TREE_CODE (decl) == FUNCTION_DECL)
	      && DECL_RTL_SET_P (decl))
	    make_decl_rtl (decl);
	}
    }
  return false;
}

/* Data to communicate through check_function_arguments_recurse between
   check_function_nonnull and check_nonnull_arg.  */

struct nonnull_arg_ctx
{
  /* Location of the call.  */
  location_t loc;
  /* The function whose arguments are being checked and its type (used
     for calls through function pointers).  */
  const_tree fndecl, fntype;
  /* True if a warning has been issued.  */
  bool warned_p;
};

/* Check the argument list of a function call to CTX.FNDECL of CTX.FNTYPE
   for null in argument slots that are marked as requiring a non-null
   pointer argument.  The NARGS arguments are passed in the array ARGARRAY.
   Return true if we have warned.  */

static bool
check_function_nonnull (nonnull_arg_ctx &ctx, int nargs, tree *argarray)
{
  int firstarg = 0;
  if (TREE_CODE (ctx.fntype) == METHOD_TYPE)
    {
      bool closure = false;
      if (ctx.fndecl)
	{
	  /* For certain lambda expressions the C++ front end emits calls
	     that pass a null this pointer as an argument named __closure
	     to the member operator() of empty function.  Detect those
	     and avoid checking them, but proceed to check the remaining
	     arguments.  */
	  tree arg0 = DECL_ARGUMENTS (ctx.fndecl);
	  if (tree arg0name = DECL_NAME (arg0))
	    closure = id_equal (arg0name, "__closure");
	}

      /* In calls to C++ non-static member functions check the this
	 pointer regardless of whether the function is declared with
	 attribute nonnull.  */
      firstarg = 1;
      if (!closure)
	check_function_arguments_recurse (check_nonnull_arg, &ctx, argarray[0],
					  firstarg, OPT_Wnonnull);
    }

  tree attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (ctx.fntype));
  if (attrs == NULL_TREE)
    return ctx.warned_p;

  tree a = attrs;
  /* See if any of the nonnull attributes has no arguments.  If so,
     then every pointer argument is checked (in which case the check
     for pointer type is done in check_nonnull_arg).  */
  if (TREE_VALUE (a) != NULL_TREE)
    do
      a = lookup_attribute ("nonnull", TREE_CHAIN (a));
    while (a != NULL_TREE && TREE_VALUE (a) != NULL_TREE);

  if (a != NULL_TREE)
    for (int i = firstarg; i < nargs; i++)
      check_function_arguments_recurse (check_nonnull_arg, &ctx, argarray[i],
					i + 1, OPT_Wnonnull);
  else
    {
      /* Walk the argument list.  If we encounter an argument number we
	 should check for non-null, do it.  */
      for (int i = firstarg; i < nargs; i++)
	{
	  for (a = attrs; ; a = TREE_CHAIN (a))
	    {
	      a = lookup_attribute ("nonnull", a);
	      if (a == NULL_TREE || nonnull_check_p (TREE_VALUE (a), i + 1))
		break;
	    }

	  if (a != NULL_TREE)
	    check_function_arguments_recurse (check_nonnull_arg, &ctx,
					      argarray[i], i + 1,
					      OPT_Wnonnull);
	}
    }
  return ctx.warned_p;
}

/* Check that the Nth argument of a function call (counting backwards
   from the end) is a (pointer)0.  The NARGS arguments are passed in the
   array ARGARRAY.  */

static void
check_function_sentinel (const_tree fntype, int nargs, tree *argarray)
{
  tree attr = lookup_attribute ("sentinel", TYPE_ATTRIBUTES (fntype));

  if (attr)
    {
      int len = 0;
      int pos = 0;
      tree sentinel;
      function_args_iterator iter;
      tree t;

      /* Skip over the named arguments.  */
      FOREACH_FUNCTION_ARGS (fntype, t, iter)
	{
	  if (len == nargs)
	    break;
	  len++;
	}

      if (TREE_VALUE (attr))
	{
	  tree p = TREE_VALUE (TREE_VALUE (attr));
	  pos = TREE_INT_CST_LOW (p);
	}

      /* The sentinel must be one of the varargs, i.e.
	 in position >= the number of fixed arguments.  */
      if ((nargs - 1 - pos) < len)
	{
	  warning (OPT_Wformat_,
		   "not enough variable arguments to fit a sentinel");
	  return;
	}

      /* Validate the sentinel.  */
      sentinel = fold_for_warn (argarray[nargs - 1 - pos]);
      if ((!POINTER_TYPE_P (TREE_TYPE (sentinel))
	   || !integer_zerop (sentinel))
	  /* Although __null (in C++) is only an integer we allow it
	     nevertheless, as we are guaranteed that it's exactly
	     as wide as a pointer, and we don't want to force
	     users to cast the NULL they have written there.
	     We warn with -Wstrict-null-sentinel, though.  */
	  && (warn_strict_null_sentinel || null_node != sentinel))
	warning (OPT_Wformat_, "missing sentinel in function call");
    }
}

/* Check that the same argument isn't passed to two or more
   restrict-qualified formal and issue a -Wrestrict warning
   if it is.  Return true if a warning has been issued.  */

static bool
check_function_restrict (const_tree fndecl, const_tree fntype,
			 int nargs, tree *unfolded_argarray)
{
  int i;
  tree parms = TYPE_ARG_TYPES (fntype);

  /* Call fold_for_warn on all of the arguments.  */
  auto_vec<tree> argarray (nargs);
  for (i = 0; i < nargs; i++)
    argarray.quick_push (fold_for_warn (unfolded_argarray[i]));

  if (fndecl
      && TREE_CODE (fndecl) == FUNCTION_DECL)
    {
      /* Avoid diagnosing calls built-ins with a zero size/bound
	 here.  They are checked in more detail elsewhere.  */
      if (fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
	  && nargs == 3
	  && TREE_CODE (argarray[2]) == INTEGER_CST
	  && integer_zerop (argarray[2]))
	return false;

      if (DECL_ARGUMENTS (fndecl))
	parms = DECL_ARGUMENTS (fndecl);
    }

  for (i = 0; i < nargs; i++)
    TREE_VISITED (argarray[i]) = 0;

  bool warned = false;

  for (i = 0; i < nargs && parms && parms != void_list_node; i++)
    {
      tree type;
      if (TREE_CODE (parms) == PARM_DECL)
	{
	  type = TREE_TYPE (parms);
	  parms = DECL_CHAIN (parms);
	}
      else
	{
	  type = TREE_VALUE (parms);
	  parms = TREE_CHAIN (parms);
	}
      if (POINTER_TYPE_P (type)
	  && TYPE_RESTRICT (type)
	  && !TYPE_READONLY (TREE_TYPE (type)))
	warned |= warn_for_restrict (i, argarray.address (), nargs);
    }

  for (i = 0; i < nargs; i++)
    TREE_VISITED (argarray[i]) = 0;

  return warned;
}

/* Helper for check_function_nonnull; given a list of operands which
   must be non-null in ARGS, determine if operand PARAM_NUM should be
   checked.  */

static bool
nonnull_check_p (tree args, unsigned HOST_WIDE_INT param_num)
{
  unsigned HOST_WIDE_INT arg_num = 0;

  for (; args; args = TREE_CHAIN (args))
    {
      bool found = get_attribute_operand (TREE_VALUE (args), &arg_num);

      gcc_assert (found);

      if (arg_num == param_num)
	return true;
    }
  return false;
}

/* Check that the function argument PARAM (which is operand number
   PARAM_NUM) is non-null.  This is called by check_function_nonnull
   via check_function_arguments_recurse.  */

static void
check_nonnull_arg (void *ctx, tree param, unsigned HOST_WIDE_INT param_num)
{
  struct nonnull_arg_ctx *pctx = (struct nonnull_arg_ctx *) ctx;

  /* Just skip checking the argument if it's not a pointer.  This can
     happen if the "nonnull" attribute was given without an operand
     list (which means to check every pointer argument).  */

  tree paramtype = TREE_TYPE (param);
  if (TREE_CODE (paramtype) != POINTER_TYPE
      && TREE_CODE (paramtype) != NULLPTR_TYPE)
    return;

  /* Diagnose the simple cases of null arguments.  */
  if (!integer_zerop (fold_for_warn (param)))
    return;

  auto_diagnostic_group adg;

  const location_t loc = EXPR_LOC_OR_LOC (param, pctx->loc);

  if (TREE_CODE (pctx->fntype) == METHOD_TYPE)
    --param_num;

  bool warned;
  if (param_num == 0)
    {
      warned = warning_at (loc, OPT_Wnonnull,
			   "%qs pointer is null", "this");
      if (warned && pctx->fndecl)
	inform (DECL_SOURCE_LOCATION (pctx->fndecl),
		"in a call to non-static member function %qD",
		pctx->fndecl);
    }
  else
    {
      warned = warning_at (loc, OPT_Wnonnull,
			   "argument %u null where non-null expected",
			   (unsigned) param_num);
      if (warned && pctx->fndecl)
	inform (DECL_SOURCE_LOCATION (pctx->fndecl),
		"in a call to function %qD declared %qs",
		pctx->fndecl, "nonnull");
    }

  if (warned)
    pctx->warned_p = true;
}

/* Helper for attribute handling; fetch the operand number from
   the attribute argument list.  */

bool
get_attribute_operand (tree arg_num_expr, unsigned HOST_WIDE_INT *valp)
{
  /* Verify the arg number is a small constant.  */
  if (tree_fits_uhwi_p (arg_num_expr))
    {
      *valp = tree_to_uhwi (arg_num_expr);
      return true;
    }
  else
    return false;
}

/* Arguments being collected for optimization.  */
typedef const char *const_char_p;		/* For DEF_VEC_P.  */
static GTY(()) vec<const_char_p, va_gc> *optimize_args;


/* Inner function to convert a TREE_LIST to argv string to parse the optimize
   options in ARGS.  ATTR_P is true if this is for attribute(optimize), and
   false for #pragma GCC optimize.  */

bool
parse_optimize_options (tree args, bool attr_p)
{
  bool ret = true;
  unsigned opt_argc;
  unsigned i;
  const char **opt_argv;
  struct cl_decoded_option *decoded_options;
  unsigned int decoded_options_count;
  tree ap;

  /* Build up argv vector.  Just in case the string is stored away, use garbage
     collected strings.  */
  vec_safe_truncate (optimize_args, 0);
  vec_safe_push (optimize_args, (const char *) NULL);

  for (ap = args; ap != NULL_TREE; ap = TREE_CHAIN (ap))
    {
      tree value = TREE_VALUE (ap);

      if (TREE_CODE (value) == INTEGER_CST)
	{
	  char buffer[HOST_BITS_PER_LONG / 3 + 4];
	  sprintf (buffer, "-O%ld", (long) TREE_INT_CST_LOW (value));
	  vec_safe_push (optimize_args, ggc_strdup (buffer));
	}

      else if (TREE_CODE (value) == STRING_CST)
	{
	  /* Split string into multiple substrings.  */
	  size_t len = TREE_STRING_LENGTH (value);
	  char *p = ASTRDUP (TREE_STRING_POINTER (value));
	  char *end = p + len;
	  char *comma;
	  char *next_p = p;

	  while (next_p != NULL)
	    {
	      size_t len2;
	      char *q, *r;

	      p = next_p;
	      comma = strchr (p, ',');
	      if (comma)
		{
		  len2 = comma - p;
		  *comma = '\0';
		  next_p = comma+1;
		}
	      else
		{
		  len2 = end - p;
		  next_p = NULL;
		}

	      /* If the user supplied -Oxxx or -fxxx, only allow -Oxxx or -fxxx
		 options.  */
	      if (*p == '-' && p[1] != 'O' && p[1] != 'f')
		{
		  ret = false;
		  if (attr_p)
		    warning (OPT_Wattributes,
			     "bad option %qs to attribute %<optimize%>", p);
		  else
		    warning (OPT_Wpragmas,
			     "bad option %qs to pragma %<optimize%>", p);
		  continue;
		}

	      /* Can't use GC memory here, see PR88007.  */
	      r = q = XOBNEWVEC (&opts_obstack, char, len2 + 3);

	      if (*p != '-')
		{
		  *r++ = '-';

		  /* Assume that Ox is -Ox, a numeric value is -Ox, a s by
		     itself is -Os, and any other switch begins with a -f.  */
		  if ((*p >= '0' && *p <= '9')
		      || (p[0] == 's' && p[1] == '\0'))
		    *r++ = 'O';
		  else if (*p != 'O')
		    *r++ = 'f';
		}

	      memcpy (r, p, len2);
	      r[len2] = '\0';
	      vec_safe_push (optimize_args, (const char *) q);
	    }

	}
    }

  opt_argc = optimize_args->length ();
  opt_argv = (const char **) alloca (sizeof (char *) * (opt_argc + 1));

  for (i = 1; i < opt_argc; i++)
    opt_argv[i] = (*optimize_args)[i];

  /* Now parse the options.  */
  decode_cmdline_options_to_array_default_mask (opt_argc, opt_argv,
						&decoded_options,
						&decoded_options_count);
  /* Drop non-Optimization options.  */
  unsigned j = 1;
  for (i = 1; i < decoded_options_count; ++i)
    {
      if (! (cl_options[decoded_options[i].opt_index].flags & CL_OPTIMIZATION))
	{
	  ret = false;
	  if (attr_p)
	    warning (OPT_Wattributes,
		     "bad option %qs to attribute %<optimize%>",
		     decoded_options[i].orig_option_with_args_text);
	  else
	    warning (OPT_Wpragmas,
		     "bad option %qs to pragma %<optimize%>",
		     decoded_options[i].orig_option_with_args_text);
	  continue;
	}
      if (i != j)
	decoded_options[j] = decoded_options[i];
      j++;
    }
  decoded_options_count = j;

  /* Merge the decoded options with save_decoded_options.  */
  unsigned save_opt_count = save_opt_decoded_options->length ();
  unsigned merged_decoded_options_count
    = save_opt_count + decoded_options_count;
  cl_decoded_option *merged_decoded_options
    = XNEWVEC (cl_decoded_option, merged_decoded_options_count);

  /* Note the first decoded_options is used for the program name.  */
  for (unsigned i = 0; i < save_opt_count; ++i)
    merged_decoded_options[i + 1] = (*save_opt_decoded_options)[i];
  for (unsigned i = 1; i < decoded_options_count; ++i)
    merged_decoded_options[save_opt_count + i] = decoded_options[i];

   /* And apply them.  */
  decode_options (&global_options, &global_options_set,
		  merged_decoded_options, merged_decoded_options_count,
		  input_location, global_dc, NULL);
  free (decoded_options);

  targetm.override_options_after_change();

  optimize_args->truncate (0);
  return ret;
}

/* Check whether ATTR is a valid attribute fallthrough.  */

bool
attribute_fallthrough_p (tree attr)
{
  if (attr == error_mark_node)
   return false;
  tree t = lookup_attribute ("fallthrough", attr);
  if (t == NULL_TREE)
    return false;
  /* It is no longer true that "this attribute shall appear at most once in
     each attribute-list", but we still give a warning.  */
  if (lookup_attribute ("fallthrough", TREE_CHAIN (t)))
    warning (OPT_Wattributes, "attribute %<fallthrough%> specified multiple "
	     "times");
  /* No attribute-argument-clause shall be present.  */
  else if (TREE_VALUE (t) != NULL_TREE)
    warning (OPT_Wattributes, "%<fallthrough%> attribute specified with "
	     "a parameter");
  /* Warn if other attributes are found.  */
  for (t = attr; t != NULL_TREE; t = TREE_CHAIN (t))
    {
      tree name = get_attribute_name (t);
      if (!is_attribute_p ("fallthrough", name))
	{
	  if (!c_dialect_cxx () && get_attribute_namespace (t) == NULL_TREE)
	    /* The specifications of standard attributes in C mean
	       this is a constraint violation.  */
	    pedwarn (input_location, OPT_Wattributes, "%qE attribute ignored",
		     get_attribute_name (t));
	  else
	    warning (OPT_Wattributes, "%qE attribute ignored", name);
	}
    }
  return true;
}


/* Check for valid arguments being passed to a function with FNTYPE.
   There are NARGS arguments in the array ARGARRAY.  LOC should be used
   for diagnostics.  Return true if either -Wnonnull or -Wrestrict has
   been issued.

   The arguments in ARGARRAY may not have been folded yet (e.g. for C++,
   to preserve location wrappers); checks that require folded arguments
   should call fold_for_warn on them.  */

bool
check_function_arguments (location_t loc, const_tree fndecl, const_tree fntype,
			  int nargs, tree *argarray, vec<location_t> *arglocs)
{
  bool warned_p = false;

  /* Check for null being passed in a pointer argument that must be
     non-null.  In C++, this includes the this pointer.  We also need
     to do this if format checking is enabled.  */
  if (warn_nonnull)
    {
      nonnull_arg_ctx ctx = { loc, fndecl, fntype, false };
      warned_p = check_function_nonnull (ctx, nargs, argarray);
    }

  /* Check for errors in format strings.  */

  if (warn_format || warn_suggest_attribute_format)
    check_function_format (fntype, TYPE_ATTRIBUTES (fntype), nargs, argarray,
			   arglocs);

  if (warn_format)
    check_function_sentinel (fntype, nargs, argarray);

  if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
    {
      switch (DECL_FUNCTION_CODE (fndecl))
	{
	case BUILT_IN_SPRINTF:
	case BUILT_IN_SPRINTF_CHK:
	case BUILT_IN_SNPRINTF:
	case BUILT_IN_SNPRINTF_CHK:
	  /* Let the sprintf pass handle these.  */
	  return warned_p;

	default:
	  break;
	}
    }

  /* check_function_restrict sets the DECL_READ_P for arguments
     so it must be called unconditionally.  */
  warned_p |= check_function_restrict (fndecl, fntype, nargs, argarray);

  return warned_p;
}

/* Generic argument checking recursion routine.  PARAM is the argument to
   be checked.  PARAM_NUM is the number of the argument.  CALLBACK is invoked
   once the argument is resolved.  CTX is context for the callback.
   OPT is the warning for which this is done.  */
void
check_function_arguments_recurse (void (*callback)
				  (void *, tree, unsigned HOST_WIDE_INT),
				  void *ctx, tree param,
				  unsigned HOST_WIDE_INT param_num,
				  opt_code opt)
{
  if (opt != OPT_Wformat_ && warning_suppressed_p (param))
    return;

  if (CONVERT_EXPR_P (param)
      && (TYPE_PRECISION (TREE_TYPE (param))
	  == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (param, 0)))))
    {
      /* Strip coercion.  */
      check_function_arguments_recurse (callback, ctx,
					TREE_OPERAND (param, 0), param_num,
					opt);
      return;
    }

  if (TREE_CODE (param) == CALL_EXPR && CALL_EXPR_FN (param))
    {
      tree type = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (param)));
      tree attrs;
      bool found_format_arg = false;

      /* See if this is a call to a known internationalization function
	 that modifies a format arg.  Such a function may have multiple
	 format_arg attributes (for example, ngettext).  */

      for (attrs = TYPE_ATTRIBUTES (type);
	   attrs;
	   attrs = TREE_CHAIN (attrs))
	if (is_attribute_p ("format_arg", get_attribute_name (attrs)))
	  {
	    tree inner_arg;
	    tree format_num_expr;
	    int format_num;
	    int i;
	    call_expr_arg_iterator iter;

	    /* Extract the argument number, which was previously checked
	       to be valid.  */
	    format_num_expr = TREE_VALUE (TREE_VALUE (attrs));

	    format_num = tree_to_uhwi (format_num_expr);

	    for (inner_arg = first_call_expr_arg (param, &iter), i = 1;
		 inner_arg != NULL_TREE;
		 inner_arg = next_call_expr_arg (&iter), i++)
	      if (i == format_num)
		{
		  check_function_arguments_recurse (callback, ctx,
						    inner_arg, param_num,
						    opt);
		  found_format_arg = true;
		  break;
		}
	  }

      /* If we found a format_arg attribute and did a recursive check,
	 we are done with checking this argument.  Otherwise, we continue
	 and this will be considered a non-literal.  */
      if (found_format_arg)
	return;
    }

  if (TREE_CODE (param) == COND_EXPR)
    {
      /* Simplify to avoid warning for an impossible case.  */
      param = fold_for_warn (param);
      if (TREE_CODE (param) == COND_EXPR)
	{
	  /* Check both halves of the conditional expression.  */
	  check_function_arguments_recurse (callback, ctx,
					    TREE_OPERAND (param, 1),
					    param_num, opt);
	  check_function_arguments_recurse (callback, ctx,
					    TREE_OPERAND (param, 2),
					    param_num, opt);
	  return;
	}
    }

  (*callback) (ctx, param, param_num);
}

/* Checks for a builtin function FNDECL that the number of arguments
   NARGS against the required number REQUIRED and issues an error if
   there is a mismatch.  Returns true if the number of arguments is
   correct, otherwise false.  LOC is the location of FNDECL.  */

static bool
builtin_function_validate_nargs (location_t loc, tree fndecl, int nargs,
				 int required)
{
  if (nargs < required)
    {
      error_at (loc, "too few arguments to function %qE", fndecl);
      return false;
    }
  else if (nargs > required)
    {
      error_at (loc, "too many arguments to function %qE", fndecl);
      return false;
    }
  return true;
}

/* Helper macro for check_builtin_function_arguments.  */
#define ARG_LOCATION(N)					\
  (arg_loc.is_empty ()					\
   ? EXPR_LOC_OR_LOC (args[(N)], input_location)	\
   : expansion_point_location (arg_loc[(N)]))

/* Verifies the NARGS arguments ARGS to the builtin function FNDECL.
   Returns false if there was an error, otherwise true.  LOC is the
   location of the function; ARG_LOC is a vector of locations of the
   arguments.  If FNDECL is the result of resolving an overloaded
   target built-in, ORIG_FNDECL is the original function decl,
   otherwise it is null.  */

bool
check_builtin_function_arguments (location_t loc, vec<location_t> arg_loc,
				  tree fndecl, tree orig_fndecl,
				  int nargs, tree *args)
{
  if (!fndecl_built_in_p (fndecl))
    return true;

  if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
    return (!targetm.check_builtin_call
	    || targetm.check_builtin_call (loc, arg_loc, fndecl,
					   orig_fndecl, nargs, args));

  if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_FRONTEND)
    return true;

  gcc_assert (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL);
  switch (DECL_FUNCTION_CODE (fndecl))
    {
    case BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX:
      if (!tree_fits_uhwi_p (args[2]))
	{
	  error_at (ARG_LOCATION (2),
		    "third argument to function %qE must be a constant integer",
		    fndecl);
	  return false;
	}
      /* fall through */

    case BUILT_IN_ALLOCA_WITH_ALIGN:
      {
	/* Get the requested alignment (in bits) if it's a constant
	   integer expression.  */
	unsigned HOST_WIDE_INT align
	  = tree_fits_uhwi_p (args[1]) ? tree_to_uhwi (args[1]) : 0;

	/* Determine if the requested alignment is a power of 2.  */
	if ((align & (align - 1)))
	  align = 0;

	/* The maximum alignment in bits corresponding to the same
	   maximum in bytes enforced in check_user_alignment().  */
	unsigned maxalign = (UINT_MAX >> 1) + 1;

	/* Reject invalid alignments.  */
	if (align < BITS_PER_UNIT || maxalign < align)
	  {
	    error_at (ARG_LOCATION (1),
		      "second argument to function %qE must be a constant "
		      "integer power of 2 between %qi and %qu bits",
		      fndecl, BITS_PER_UNIT, maxalign);
	    return false;
	  }
	return true;
      }

    case BUILT_IN_CONSTANT_P:
      return builtin_function_validate_nargs (loc, fndecl, nargs, 1);

    case BUILT_IN_ISFINITE:
    case BUILT_IN_ISINF:
    case BUILT_IN_ISINF_SIGN:
    case BUILT_IN_ISNAN:
    case BUILT_IN_ISNORMAL:
    case BUILT_IN_SIGNBIT:
      if (builtin_function_validate_nargs (loc, fndecl, nargs, 1))
	{
	  if (TREE_CODE (TREE_TYPE (args[0])) != REAL_TYPE)
	    {
	      error_at (ARG_LOCATION (0), "non-floating-point argument in "
			"call to function %qE", fndecl);
	      return false;
	    }
	  return true;
	}
      return false;

    case BUILT_IN_ISGREATER:
    case BUILT_IN_ISGREATEREQUAL:
    case BUILT_IN_ISLESS:
    case BUILT_IN_ISLESSEQUAL:
    case BUILT_IN_ISLESSGREATER:
    case BUILT_IN_ISUNORDERED:
      if (builtin_function_validate_nargs (loc, fndecl, nargs, 2))
	{
	  enum tree_code code0, code1;
	  code0 = TREE_CODE (TREE_TYPE (args[0]));
	  code1 = TREE_CODE (TREE_TYPE (args[1]));
	  if (!((code0 == REAL_TYPE && code1 == REAL_TYPE)
		|| (code0 == REAL_TYPE && code1 == INTEGER_TYPE)
		|| (code0 == INTEGER_TYPE && code1 == REAL_TYPE)))
	    {
	      error_at (loc, "non-floating-point arguments in call to "
			"function %qE", fndecl);
	      return false;
	    }
	  return true;
	}
      return false;

    case BUILT_IN_FPCLASSIFY:
      if (builtin_function_validate_nargs (loc, fndecl, nargs, 6))
	{
	  for (unsigned int i = 0; i < 5; i++)
	    if (TREE_CODE (args[i]) != INTEGER_CST)
	      {
		error_at (ARG_LOCATION (i), "non-const integer argument %u in "
			  "call to function %qE", i + 1, fndecl);
		return false;
	      }

	  if (TREE_CODE (TREE_TYPE (args[5])) != REAL_TYPE)
	    {
	      error_at (ARG_LOCATION (5), "non-floating-point argument in "
			"call to function %qE", fndecl);
	      return false;
	    }
	  return true;
	}
      return false;

    case BUILT_IN_ASSUME_ALIGNED:
      if (builtin_function_validate_nargs (loc, fndecl, nargs, 2 + (nargs > 2)))
	{
	  if (nargs >= 3 && TREE_CODE (TREE_TYPE (args[2])) != INTEGER_TYPE)
	    {
	      error_at (ARG_LOCATION (2), "non-integer argument 3 in call to "
			"function %qE", fndecl);
	      return false;
	    }
	  return true;
	}
      return false;

    case BUILT_IN_ADD_OVERFLOW:
    case BUILT_IN_SUB_OVERFLOW:
    case BUILT_IN_MUL_OVERFLOW:
      if (builtin_function_validate_nargs (loc, fndecl, nargs, 3))
	{
	  unsigned i;
	  for (i = 0; i < 2; i++)
	    if (!INTEGRAL_TYPE_P (TREE_TYPE (args[i])))
	      {
		error_at (ARG_LOCATION (i), "argument %u in call to function "
			  "%qE does not have integral type", i + 1, fndecl);
		return false;
	      }
	  if (TREE_CODE (TREE_TYPE (args[2])) != POINTER_TYPE
	      || !INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (args[2]))))
	    {
	      error_at (ARG_LOCATION (2), "argument 3 in call to function %qE "
			"does not have pointer to integral type", fndecl);
	      return false;
	    }
	  else if (TREE_CODE (TREE_TYPE (TREE_TYPE (args[2]))) == ENUMERAL_TYPE)
	    {
	      error_at (ARG_LOCATION (2), "argument 3 in call to function %qE "
			"has pointer to enumerated type", fndecl);
	      return false;
	    }
	  else if (TREE_CODE (TREE_TYPE (TREE_TYPE (args[2]))) == BOOLEAN_TYPE)
	    {
	      error_at (ARG_LOCATION (2), "argument 3 in call to function %qE "
			"has pointer to boolean type", fndecl);
	      return false;
	    }
	  else if (TYPE_READONLY (TREE_TYPE (TREE_TYPE (args[2]))))
	    {
	      error_at (ARG_LOCATION (2), "argument %u in call to function %qE "
			"has pointer to %qs type (%qT)", 3, fndecl, "const",
			TREE_TYPE (args[2]));
	      return false;
	    }
	  else if (TYPE_ATOMIC (TREE_TYPE (TREE_TYPE (args[2]))))
	    {
	      error_at (ARG_LOCATION (2), "argument %u in call to function %qE "
			"has pointer to %qs type (%qT)", 3, fndecl,
			"_Atomic", TREE_TYPE (args[2]));
	      return false;
	    }
	  return true;
	}
      return false;

    case BUILT_IN_ADD_OVERFLOW_P:
    case BUILT_IN_SUB_OVERFLOW_P:
    case BUILT_IN_MUL_OVERFLOW_P:
      if (builtin_function_validate_nargs (loc, fndecl, nargs, 3))
	{
	  unsigned i;
	  for (i = 0; i < 3; i++)
	    if (!INTEGRAL_TYPE_P (TREE_TYPE (args[i])))
	      {
		error_at (ARG_LOCATION (i), "argument %u in call to function "
			  "%qE does not have integral type", i + 1, fndecl);
		return false;
	      }
	  if (TREE_CODE (TREE_TYPE (args[2])) == ENUMERAL_TYPE)
	    {
	      error_at (ARG_LOCATION (2), "argument 3 in call to function "
			"%qE has enumerated type", fndecl);
	      return false;
	    }
	  else if (TREE_CODE (TREE_TYPE (args[2])) == BOOLEAN_TYPE)
	    {
	      error_at (ARG_LOCATION (2), "argument 3 in call to function "
			"%qE has boolean type", fndecl);
	      return false;
	    }
	  return true;
	}
      return false;

    case BUILT_IN_CLEAR_PADDING:
      if (builtin_function_validate_nargs (loc, fndecl, nargs, 1))
	{
	  if (!POINTER_TYPE_P (TREE_TYPE (args[0])))
	    {
	      error_at (ARG_LOCATION (0), "argument %u in call to function "
			"%qE does not have pointer type", 1, fndecl);
	      return false;
	    }
	  else if (!COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (args[0]))))
	    {
	      error_at (ARG_LOCATION (0), "argument %u in call to function "
			"%qE points to incomplete type", 1, fndecl);
	      return false;
	    }
	  else if (TYPE_READONLY (TREE_TYPE (TREE_TYPE (args[0]))))
	    {
	      error_at (ARG_LOCATION (0), "argument %u in call to function %qE "
			"has pointer to %qs type (%qT)", 1, fndecl, "const",
			TREE_TYPE (args[0]));
	      return false;
	    }
	  else if (TYPE_ATOMIC (TREE_TYPE (TREE_TYPE (args[0]))))
	    {
	      error_at (ARG_LOCATION (0), "argument %u in call to function %qE "
			"has pointer to %qs type (%qT)", 1, fndecl,
			"_Atomic", TREE_TYPE (args[0]));
	      return false;
	    }
	  return true;
	}
      return false;

    default:
      return true;
    }
}

/* Subroutine of c_parse_error.
   Return the result of concatenating LHS and RHS. RHS is really
   a string literal, its first character is indicated by RHS_START and
   RHS_SIZE is its length (including the terminating NUL character).

   The caller is responsible for deleting the returned pointer.  */

static char *
catenate_strings (const char *lhs, const char *rhs_start, int rhs_size)
{
  const size_t lhs_size = strlen (lhs);
  char *result = XNEWVEC (char, lhs_size + rhs_size);
  memcpy (result, lhs, lhs_size);
  memcpy (result + lhs_size, rhs_start, rhs_size);
  return result;
}

/* Issue the error given by GMSGID at RICHLOC, indicating that it occurred
   before TOKEN, which had the associated VALUE.  */

void
c_parse_error (const char *gmsgid, enum cpp_ttype token_type,
	       tree value, unsigned char token_flags,
	       rich_location *richloc)
{
#define catenate_messages(M1, M2) catenate_strings ((M1), (M2), sizeof (M2))

  char *message = NULL;

  if (token_type == CPP_EOF)
    message = catenate_messages (gmsgid, " at end of input");
  else if (token_type == CPP_CHAR
	   || token_type == CPP_WCHAR
	   || token_type == CPP_CHAR16
	   || token_type == CPP_CHAR32
	   || token_type == CPP_UTF8CHAR)
    {
      unsigned int val = TREE_INT_CST_LOW (value);
      const char *prefix;

      switch (token_type)
	{
	default:
	  prefix = "";
	  break;
	case CPP_WCHAR:
	  prefix = "L";
	  break;
	case CPP_CHAR16:
	  prefix = "u";
	  break;
	case CPP_CHAR32:
	  prefix = "U";
	  break;
	case CPP_UTF8CHAR:
	  prefix = "u8";
	  break;
        }

      if (val <= UCHAR_MAX && ISGRAPH (val))
	message = catenate_messages (gmsgid, " before %s'%c'");
      else
	message = catenate_messages (gmsgid, " before %s'\\x%x'");

      error_at (richloc, message, prefix, val);
      free (message);
      message = NULL;
    }
  else if (token_type == CPP_CHAR_USERDEF
	   || token_type == CPP_WCHAR_USERDEF
	   || token_type == CPP_CHAR16_USERDEF
	   || token_type == CPP_CHAR32_USERDEF
	   || token_type == CPP_UTF8CHAR_USERDEF)
    message = catenate_messages (gmsgid,
				 " before user-defined character literal");
  else if (token_type == CPP_STRING_USERDEF
	   || token_type == CPP_WSTRING_USERDEF
	   || token_type == CPP_STRING16_USERDEF
	   || token_type == CPP_STRING32_USERDEF
	   || token_type == CPP_UTF8STRING_USERDEF)
    message = catenate_messages (gmsgid, " before user-defined string literal");
  else if (token_type == CPP_STRING
	   || token_type == CPP_WSTRING
	   || token_type == CPP_STRING16
	   || token_type == CPP_STRING32
	   || token_type == CPP_UTF8STRING)
    message = catenate_messages (gmsgid, " before string constant");
  else if (token_type == CPP_NUMBER)
    message = catenate_messages (gmsgid, " before numeric constant");
  else if (token_type == CPP_NAME)
    {
      message = catenate_messages (gmsgid, " before %qE");
      error_at (richloc, message, value);
      free (message);
      message = NULL;
    }
  else if (token_type == CPP_PRAGMA)
    message = catenate_messages (gmsgid, " before %<#pragma%>");
  else if (token_type == CPP_PRAGMA_EOL)
    message = catenate_messages (gmsgid, " before end of line");
  else if (token_type == CPP_DECLTYPE)
    message = catenate_messages (gmsgid, " before %<decltype%>");
  else if (token_type < N_TTYPES)
    {
      message = catenate_messages (gmsgid, " before %qs token");
      error_at (richloc, message, cpp_type2name (token_type, token_flags));
      free (message);
      message = NULL;
    }
  else
    error_at (richloc, gmsgid);

  if (message)
    {
      error_at (richloc, message);
      free (message);
    }
#undef catenate_messages
}

/* Return the gcc option code associated with the reason for a cpp
   message, or 0 if none.  */

static int
c_option_controlling_cpp_diagnostic (enum cpp_warning_reason reason)
{
  const struct cpp_reason_option_codes_t *entry;

  for (entry = cpp_reason_option_codes; entry->reason != CPP_W_NONE; entry++)
    {
      if (entry->reason == reason)
	return entry->option_code;
    }
  return 0;
}

/* Callback from cpp_diagnostic for PFILE to print diagnostics from the
   preprocessor.  The diagnostic is of type LEVEL, with REASON set
   to the reason code if LEVEL is represents a warning, at location
   RICHLOC unless this is after lexing and the compiler's location
   should be used instead; MSG is the translated message and AP
   the arguments.  Returns true if a diagnostic was emitted, false
   otherwise.  */

bool
c_cpp_diagnostic (cpp_reader *pfile ATTRIBUTE_UNUSED,
		  enum cpp_diagnostic_level level,
		  enum cpp_warning_reason reason,
		  rich_location *richloc,
		  const char *msg, va_list *ap)
{
  diagnostic_info diagnostic;
  diagnostic_t dlevel;
  bool save_warn_system_headers = global_dc->dc_warn_system_headers;
  bool ret;

  switch (level)
    {
    case CPP_DL_WARNING_SYSHDR:
      if (flag_no_output)
	return false;
      global_dc->dc_warn_system_headers = 1;
      /* Fall through.  */
    case CPP_DL_WARNING:
      if (flag_no_output)
	return false;
      dlevel = DK_WARNING;
      break;
    case CPP_DL_PEDWARN:
      if (flag_no_output && !flag_pedantic_errors)
	return false;
      dlevel = DK_PEDWARN;
      break;
    case CPP_DL_ERROR:
      dlevel = DK_ERROR;
      break;
    case CPP_DL_ICE:
      dlevel = DK_ICE;
      break;
    case CPP_DL_NOTE:
      dlevel = DK_NOTE;
      break;
    case CPP_DL_FATAL:
      dlevel = DK_FATAL;
      break;
    default:
      gcc_unreachable ();
    }
  if (done_lexing)
    richloc->set_range (0, input_location, SHOW_RANGE_WITH_CARET);
  diagnostic_set_info_translated (&diagnostic, msg, ap,
				  richloc, dlevel);
  diagnostic_override_option_index
    (&diagnostic,
     c_option_controlling_cpp_diagnostic (reason));
  ret = diagnostic_report_diagnostic (global_dc, &diagnostic);
  if (level == CPP_DL_WARNING_SYSHDR)
    global_dc->dc_warn_system_headers = save_warn_system_headers;
  return ret;
}

/* Convert a character from the host to the target execution character
   set.  cpplib handles this, mostly.  */

HOST_WIDE_INT
c_common_to_target_charset (HOST_WIDE_INT c)
{
  /* Character constants in GCC proper are sign-extended under -fsigned-char,
     zero-extended under -fno-signed-char.  cpplib insists that characters
     and character constants are always unsigned.  Hence we must convert
     back and forth.  */
  cppchar_t uc = ((cppchar_t)c) & ((((cppchar_t)1) << CHAR_BIT)-1);

  uc = cpp_host_to_exec_charset (parse_in, uc);

  if (flag_signed_char)
    return ((HOST_WIDE_INT)uc) << (HOST_BITS_PER_WIDE_INT - CHAR_TYPE_SIZE)
			       >> (HOST_BITS_PER_WIDE_INT - CHAR_TYPE_SIZE);
  else
    return uc;
}

/* Fold an offsetof-like expression.  EXPR is a nested sequence of component
   references with an INDIRECT_REF of a constant at the bottom; much like the
   traditional rendering of offsetof as a macro.  TYPE is the desired type of
   the whole expression.  Return the folded result.  */

tree
fold_offsetof (tree expr, tree type, enum tree_code ctx)
{
  tree base, off, t;
  tree_code code = TREE_CODE (expr);
  switch (code)
    {
    case ERROR_MARK:
      return expr;

    case VAR_DECL:
      error ("cannot apply %<offsetof%> to static data member %qD", expr);
      return error_mark_node;

    case CALL_EXPR:
    case TARGET_EXPR:
      error ("cannot apply %<offsetof%> when %<operator[]%> is overloaded");
      return error_mark_node;

    case NOP_EXPR:
    case INDIRECT_REF:
      if (!TREE_CONSTANT (TREE_OPERAND (expr, 0)))
	{
	  error ("cannot apply %<offsetof%> to a non constant address");
	  return error_mark_node;
	}
      return convert (type, TREE_OPERAND (expr, 0));

    case COMPONENT_REF:
      base = fold_offsetof (TREE_OPERAND (expr, 0), type, code);
      if (base == error_mark_node)
	return base;

      t = TREE_OPERAND (expr, 1);
      if (DECL_C_BIT_FIELD (t))
	{
	  error ("attempt to take address of bit-field structure "
		 "member %qD", t);
	  return error_mark_node;
	}
      off = size_binop_loc (input_location, PLUS_EXPR, DECL_FIELD_OFFSET (t),
			    size_int (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (t))
				      / BITS_PER_UNIT));
      break;

    case ARRAY_REF:
      base = fold_offsetof (TREE_OPERAND (expr, 0), type, code);
      if (base == error_mark_node)
	return base;

      t = TREE_OPERAND (expr, 1);
      STRIP_ANY_LOCATION_WRAPPER (t);

      /* Check if the offset goes beyond the upper bound of the array.  */
      if (TREE_CODE (t) == INTEGER_CST && tree_int_cst_sgn (t) >= 0)
	{
	  tree upbound = array_ref_up_bound (expr);
	  if (upbound != NULL_TREE
	      && TREE_CODE (upbound) == INTEGER_CST
	      && !tree_int_cst_equal (upbound,
				      TYPE_MAX_VALUE (TREE_TYPE (upbound))))
	    {
	      if (ctx != ARRAY_REF && ctx != COMPONENT_REF)
	        upbound = size_binop (PLUS_EXPR, upbound,
				      build_int_cst (TREE_TYPE (upbound), 1));
	      if (tree_int_cst_lt (upbound, t))
		{
		  tree v;

		  for (v = TREE_OPERAND (expr, 0);
		       TREE_CODE (v) == COMPONENT_REF;
		       v = TREE_OPERAND (v, 0))
		    if (TREE_CODE (TREE_TYPE (TREE_OPERAND (v, 0)))
			== RECORD_TYPE)
		      {
			tree fld_chain = DECL_CHAIN (TREE_OPERAND (v, 1));
			for (; fld_chain; fld_chain = DECL_CHAIN (fld_chain))
			  if (TREE_CODE (fld_chain) == FIELD_DECL)
			    break;

			if (fld_chain)
			  break;
		      }
		  /* Don't warn if the array might be considered a poor
		     man's flexible array member with a very permissive
		     definition thereof.  */
		  if (TREE_CODE (v) == ARRAY_REF
		      || TREE_CODE (v) == COMPONENT_REF)
		    warning (OPT_Warray_bounds,
			     "index %E denotes an offset "
			     "greater than size of %qT",
			     t, TREE_TYPE (TREE_OPERAND (expr, 0)));
		}
	    }
	}

      t = convert (sizetype, t);
      off = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (TREE_TYPE (expr)), t);
      break;

    case COMPOUND_EXPR:
      /* Handle static members of volatile structs.  */
      t = TREE_OPERAND (expr, 1);
      gcc_checking_assert (VAR_P (get_base_address (t)));
      return fold_offsetof (t, type);

    default:
      gcc_unreachable ();
    }

  if (!POINTER_TYPE_P (type))
    return size_binop (PLUS_EXPR, base, convert (type, off));
  return fold_build_pointer_plus (base, off);
}

/* *PTYPE is an incomplete array.  Complete it with a domain based on
   INITIAL_VALUE.  If INITIAL_VALUE is not present, use 1 if DO_DEFAULT
   is true.  Return 0 if successful, 1 if INITIAL_VALUE can't be deciphered,
   2 if INITIAL_VALUE was NULL, and 3 if INITIAL_VALUE was empty.  */

int
complete_array_type (tree *ptype, tree initial_value, bool do_default)
{
  tree maxindex, type, main_type, elt, unqual_elt;
  int failure = 0, quals;
  bool overflow_p = false;

  maxindex = size_zero_node;
  if (initial_value)
    {
      STRIP_ANY_LOCATION_WRAPPER (initial_value);

      if (TREE_CODE (initial_value) == STRING_CST)
	{
	  int eltsize
	    = int_size_in_bytes (TREE_TYPE (TREE_TYPE (initial_value)));
	  maxindex = size_int (TREE_STRING_LENGTH (initial_value)/eltsize - 1);
	}
      else if (TREE_CODE (initial_value) == CONSTRUCTOR)
	{
	  vec<constructor_elt, va_gc> *v = CONSTRUCTOR_ELTS (initial_value);

	  if (vec_safe_is_empty (v))
	    {
	      if (pedantic)
		failure = 3;
	      maxindex = ssize_int (-1);
	    }
	  else
	    {
	      tree curindex;
	      unsigned HOST_WIDE_INT cnt;
	      constructor_elt *ce;
	      bool fold_p = false;

	      if ((*v)[0].index)
		maxindex = (*v)[0].index, fold_p = true;

	      curindex = maxindex;

	      for (cnt = 1; vec_safe_iterate (v, cnt, &ce); cnt++)
		{
		  bool curfold_p = false;
		  if (ce->index)
		    curindex = ce->index, curfold_p = true;
		  else
		    {
		      if (fold_p)
			{
			  /* Since we treat size types now as ordinary
			     unsigned types, we need an explicit overflow
			     check.  */
			  tree orig = curindex;
		          curindex = fold_convert (sizetype, curindex);
			  overflow_p |= tree_int_cst_lt (curindex, orig);
			}
		      curindex = size_binop (PLUS_EXPR, curindex,
					     size_one_node);
		    }
		  if (tree_int_cst_lt (maxindex, curindex))
		    maxindex = curindex, fold_p = curfold_p;
		}
	      if (fold_p)
		{
		  tree orig = maxindex;
	          maxindex = fold_convert (sizetype, maxindex);
		  overflow_p |= tree_int_cst_lt (maxindex, orig);
		}
	    }
	}
      else
	{
	  /* Make an error message unless that happened already.  */
	  if (initial_value != error_mark_node)
	    failure = 1;
	}
    }
  else
    {
      failure = 2;
      if (!do_default)
	return failure;
    }

  type = *ptype;
  elt = TREE_TYPE (type);
  quals = TYPE_QUALS (strip_array_types (elt));
  if (quals == 0)
    unqual_elt = elt;
  else
    unqual_elt = c_build_qualified_type (elt, KEEP_QUAL_ADDR_SPACE (quals));

  /* Using build_distinct_type_copy and modifying things afterward instead
     of using build_array_type to create a new type preserves all of the
     TYPE_LANG_FLAG_? bits that the front end may have set.  */
  main_type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
  TREE_TYPE (main_type) = unqual_elt;
  TYPE_DOMAIN (main_type)
    = build_range_type (TREE_TYPE (maxindex),
			build_int_cst (TREE_TYPE (maxindex), 0), maxindex);
  TYPE_TYPELESS_STORAGE (main_type) = TYPE_TYPELESS_STORAGE (type);
  layout_type (main_type);

  /* Make sure we have the canonical MAIN_TYPE. */
  hashval_t hashcode = type_hash_canon_hash (main_type);
  main_type = type_hash_canon (hashcode, main_type);

  /* Fix the canonical type.  */
  if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (main_type))
      || TYPE_STRUCTURAL_EQUALITY_P (TYPE_DOMAIN (main_type)))
    SET_TYPE_STRUCTURAL_EQUALITY (main_type);
  else if (TYPE_CANONICAL (TREE_TYPE (main_type)) != TREE_TYPE (main_type)
	   || (TYPE_CANONICAL (TYPE_DOMAIN (main_type))
	       != TYPE_DOMAIN (main_type)))
    TYPE_CANONICAL (main_type)
      = build_array_type (TYPE_CANONICAL (TREE_TYPE (main_type)),
			  TYPE_CANONICAL (TYPE_DOMAIN (main_type)),
			  TYPE_TYPELESS_STORAGE (main_type));
  else
    TYPE_CANONICAL (main_type) = main_type;

  if (quals == 0)
    type = main_type;
  else
    type = c_build_qualified_type (main_type, quals);

  if (COMPLETE_TYPE_P (type)
      && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST
      && (overflow_p || TREE_OVERFLOW (TYPE_SIZE_UNIT (type))))
    {
      error ("size of array is too large");
      /* If we proceed with the array type as it is, we'll eventually
	 crash in tree_to_[su]hwi().  */
      type = error_mark_node;
    }

  *ptype = type;
  return failure;
}

/* INIT is an constructor of a structure with a flexible array member.
   Complete the flexible array member with a domain based on it's value.  */
void
complete_flexible_array_elts (tree init)
{
  tree elt, type;

  if (init == NULL_TREE || TREE_CODE (init) != CONSTRUCTOR)
    return;

  if (vec_safe_is_empty (CONSTRUCTOR_ELTS (init)))
    return;

  elt = CONSTRUCTOR_ELTS (init)->last ().value;
  type = TREE_TYPE (elt);
  if (TREE_CODE (type) == ARRAY_TYPE
      && TYPE_SIZE (type) == NULL_TREE)
    complete_array_type (&TREE_TYPE (elt), elt, false);
  else
    complete_flexible_array_elts (elt);
}

/* Like c_mark_addressable but don't check register qualifier.  */
void 
c_common_mark_addressable_vec (tree t)
{   
  while (handled_component_p (t) || TREE_CODE (t) == C_MAYBE_CONST_EXPR)
    {
      if (TREE_CODE (t) == C_MAYBE_CONST_EXPR)
	t = C_MAYBE_CONST_EXPR_EXPR (t);
      else
	t = TREE_OPERAND (t, 0);
    }
  if (!VAR_P (t)
      && TREE_CODE (t) != PARM_DECL
      && TREE_CODE (t) != COMPOUND_LITERAL_EXPR
      && TREE_CODE (t) != TARGET_EXPR)
    return;
  if (!VAR_P (t) || !DECL_HARD_REGISTER (t))
    TREE_ADDRESSABLE (t) = 1;
  if (TREE_CODE (t) == COMPOUND_LITERAL_EXPR)
    TREE_ADDRESSABLE (COMPOUND_LITERAL_EXPR_DECL (t)) = 1;
  else if (TREE_CODE (t) == TARGET_EXPR)
    TREE_ADDRESSABLE (TARGET_EXPR_SLOT (t)) = 1;
}



/* Used to help initialize the builtin-types.def table.  When a type of
   the correct size doesn't exist, use error_mark_node instead of NULL.
   The later results in segfaults even when a decl using the type doesn't
   get invoked.  */

tree
builtin_type_for_size (int size, bool unsignedp)
{
  tree type = c_common_type_for_size (size, unsignedp);
  return type ? type : error_mark_node;
}

/* Work out the size of the first argument of a call to
   __builtin_speculation_safe_value.  Only pointers and integral types
   are permitted.  Return -1 if the argument type is not supported or
   the size is too large; 0 if the argument type is a pointer or the
   size if it is integral.  */
static enum built_in_function
speculation_safe_value_resolve_call (tree function, vec<tree, va_gc> *params)
{
  /* Type of the argument.  */
  tree type;
  int size;

  if (vec_safe_is_empty (params))
    {
      error ("too few arguments to function %qE", function);
      return BUILT_IN_NONE;
    }

  type = TREE_TYPE ((*params)[0]);
  if (TREE_CODE (type) == ARRAY_TYPE && c_dialect_cxx ())
    {
      /* Force array-to-pointer decay for C++.   */
      (*params)[0] = default_conversion ((*params)[0]);
      type = TREE_TYPE ((*params)[0]);
    }

  if (POINTER_TYPE_P (type))
    return BUILT_IN_SPECULATION_SAFE_VALUE_PTR;

  if (!INTEGRAL_TYPE_P (type))
    goto incompatible;

  if (!COMPLETE_TYPE_P (type))
    goto incompatible;

  size = tree_to_uhwi (TYPE_SIZE_UNIT (type));
  if (size == 1 || size == 2 || size == 4 || size == 8 || size == 16)
    return ((enum built_in_function)
	    ((int) BUILT_IN_SPECULATION_SAFE_VALUE_1 + exact_log2 (size)));

 incompatible:
  /* Issue the diagnostic only if the argument is valid, otherwise
     it would be redundant at best and could be misleading.  */
  if (type != error_mark_node)
    error ("operand type %qT is incompatible with argument %d of %qE",
	   type, 1, function);

  return BUILT_IN_NONE;
}

/* Validate and coerce PARAMS, the arguments to ORIG_FUNCTION to fit
   the prototype for FUNCTION.  The first argument is mandatory, a second
   argument, if present, must be type compatible with the first.  */
static bool
speculation_safe_value_resolve_params (location_t loc, tree orig_function,
				       vec<tree, va_gc> *params)
{
  tree val;

  if (params->length () == 0)
    {
      error_at (loc, "too few arguments to function %qE", orig_function);
      return false;
    }

  else if (params->length () > 2)
    {
      error_at (loc, "too many arguments to function %qE", orig_function);
      return false;
    }

  val = (*params)[0];
  if (TREE_CODE (TREE_TYPE (val)) == ARRAY_TYPE)
    val = default_conversion (val);
  if (!(TREE_CODE (TREE_TYPE (val)) == POINTER_TYPE
	|| TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE))
    {
      error_at (loc,
		"expecting argument of type pointer or of type integer "
		"for argument 1");
      return false;
    }
  (*params)[0] = val;

  if (params->length () == 2)
    {
      tree val2 = (*params)[1];
      if (TREE_CODE (TREE_TYPE (val2)) == ARRAY_TYPE)
	val2 = default_conversion (val2);
      if (error_operand_p (val2))
	return false;
      if (!(TREE_TYPE (val) == TREE_TYPE (val2)
	    || useless_type_conversion_p (TREE_TYPE (val), TREE_TYPE (val2))))
	{
	  error_at (loc, "both arguments must be compatible");
	  return false;
	}
      (*params)[1] = val2;
    }

  return true;
}

/* Cast the result of the builtin back to the type of the first argument,
   preserving any qualifiers that it might have.  */
static tree
speculation_safe_value_resolve_return (tree first_param, tree result)
{
  tree ptype = TREE_TYPE (first_param);
  tree rtype = TREE_TYPE (result);
  ptype = TYPE_MAIN_VARIANT (ptype);

  if (tree_int_cst_equal (TYPE_SIZE (ptype), TYPE_SIZE (rtype)))
    return convert (ptype, result);

  return result;
}

/* A helper function for resolve_overloaded_builtin in resolving the
   overloaded __sync_ builtins.  Returns a positive power of 2 if the
   first operand of PARAMS is a pointer to a supported data type.
   Returns 0 if an error is encountered.
   FETCH is true when FUNCTION is one of the _FETCH_OP_ or _OP_FETCH_
   built-ins.  */

static int
sync_resolve_size (tree function, vec<tree, va_gc> *params, bool fetch)
{
  /* Type of the argument.  */
  tree argtype;
  /* Type the argument points to.  */
  tree type;
  int size;

  if (vec_safe_is_empty (params))
    {
      error ("too few arguments to function %qE", function);
      return 0;
    }

  argtype = type = TREE_TYPE ((*params)[0]);
  if (TREE_CODE (type) == ARRAY_TYPE && c_dialect_cxx ())
    {
      /* Force array-to-pointer decay for C++.  */
      (*params)[0] = default_conversion ((*params)[0]);
      type = TREE_TYPE ((*params)[0]);
    }
  if (TREE_CODE (type) != POINTER_TYPE)
    goto incompatible;

  type = TREE_TYPE (type);
  if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
    goto incompatible;

  if (!COMPLETE_TYPE_P (type))
    goto incompatible;

  if (fetch && TREE_CODE (type) == BOOLEAN_TYPE)
    goto incompatible;

  size = tree_to_uhwi (TYPE_SIZE_UNIT (type));
  if (size == 1 || size == 2 || size == 4 || size == 8 || size == 16)
    return size;

 incompatible:
  /* Issue the diagnostic only if the argument is valid, otherwise
     it would be redundant at best and could be misleading.  */
  if (argtype != error_mark_node)
    error ("operand type %qT is incompatible with argument %d of %qE",
	   argtype, 1, function);
  return 0;
}

/* A helper function for resolve_overloaded_builtin.  Adds casts to
   PARAMS to make arguments match up with those of FUNCTION.  Drops
   the variadic arguments at the end.  Returns false if some error
   was encountered; true on success.  */

static bool
sync_resolve_params (location_t loc, tree orig_function, tree function,
		     vec<tree, va_gc> *params, bool orig_format)
{
  function_args_iterator iter;
  tree ptype;
  unsigned int parmnum;

  function_args_iter_init (&iter, TREE_TYPE (function));
  /* We've declared the implementation functions to use "volatile void *"
     as the pointer parameter, so we shouldn't get any complaints from the
     call to check_function_arguments what ever type the user used.  */
  function_args_iter_next (&iter);
  ptype = TREE_TYPE (TREE_TYPE ((*params)[0]));
  ptype = TYPE_MAIN_VARIANT (ptype);

  /* For the rest of the values, we need to cast these to FTYPE, so that we
     don't get warnings for passing pointer types, etc.  */
  parmnum = 0;
  while (1)
    {
      tree val, arg_type;

      arg_type = function_args_iter_cond (&iter);
      /* XXX void_type_node belies the abstraction.  */
      if (arg_type == void_type_node)
	break;

      ++parmnum;
      if (params->length () <= parmnum)
	{
	  error_at (loc, "too few arguments to function %qE", orig_function);
	  return false;
	}

      /* Only convert parameters if arg_type is unsigned integer type with
	 new format sync routines, i.e. don't attempt to convert pointer
	 arguments (e.g. EXPECTED argument of __atomic_compare_exchange_n),
	 bool arguments (e.g. WEAK argument) or signed int arguments (memmodel
	 kinds).  */
      if (TREE_CODE (arg_type) == INTEGER_TYPE && TYPE_UNSIGNED (arg_type))
	{
	  /* Ideally for the first conversion we'd use convert_for_assignment
	     so that we get warnings for anything that doesn't match the pointer
	     type.  This isn't portable across the C and C++ front ends atm.  */
	  val = (*params)[parmnum];
	  val = convert (ptype, val);
	  val = convert (arg_type, val);
	  (*params)[parmnum] = val;
	}

      function_args_iter_next (&iter);
    }

  /* __atomic routines are not variadic.  */
  if (!orig_format && params->length () != parmnum + 1)
    {
      error_at (loc, "too many arguments to function %qE", orig_function);
      return false;
    }

  /* The definition of these primitives is variadic, with the remaining
     being "an optional list of variables protected by the memory barrier".
     No clue what that's supposed to mean, precisely, but we consider all
     call-clobbered variables to be protected so we're safe.  */
  params->truncate (parmnum + 1);

  return true;
}

/* A helper function for resolve_overloaded_builtin.  Adds a cast to
   RESULT to make it match the type of the first pointer argument in
   PARAMS.  */

static tree
sync_resolve_return (tree first_param, tree result, bool orig_format)
{
  tree ptype = TREE_TYPE (TREE_TYPE (first_param));
  tree rtype = TREE_TYPE (result);
  ptype = TYPE_MAIN_VARIANT (ptype);

  /* New format doesn't require casting unless the types are the same size.  */
  if (orig_format || tree_int_cst_equal (TYPE_SIZE (ptype), TYPE_SIZE (rtype)))
    return convert (ptype, result);
  else
    return result;
}

/* This function verifies the PARAMS to generic atomic FUNCTION.
   It returns the size if all the parameters are the same size, otherwise
   0 is returned if the parameters are invalid.  */

static int
get_atomic_generic_size (location_t loc, tree function,
			 vec<tree, va_gc> *params)
{
  unsigned int n_param;
  unsigned int n_model;
  unsigned int outputs = 0; // bitset of output parameters
  unsigned int x;
  int size_0;
  tree type_0;

  /* Determine the parameter makeup.  */
  switch (DECL_FUNCTION_CODE (function))
    {
    case BUILT_IN_ATOMIC_EXCHANGE:
      n_param = 4;
      n_model = 1;
      outputs = 5;
      break;
    case BUILT_IN_ATOMIC_LOAD:
      n_param = 3;
      n_model = 1;
      outputs = 2;
      break;
    case BUILT_IN_ATOMIC_STORE:
      n_param = 3;
      n_model = 1;
      outputs = 1;
      break;
    case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
      n_param = 6;
      n_model = 2;
      outputs = 3;
      break;
    default:
      gcc_unreachable ();
    }

  if (vec_safe_length (params) != n_param)
    {
      error_at (loc, "incorrect number of arguments to function %qE", function);
      return 0;
    }

  /* Get type of first parameter, and determine its size.  */
  type_0 = TREE_TYPE ((*params)[0]);
  if (TREE_CODE (type_0) == ARRAY_TYPE && c_dialect_cxx ())
    {
      /* Force array-to-pointer decay for C++.  */
      (*params)[0] = default_conversion ((*params)[0]);
      type_0 = TREE_TYPE ((*params)[0]);
    }
  if (TREE_CODE (type_0) != POINTER_TYPE || VOID_TYPE_P (TREE_TYPE (type_0)))
    {
      error_at (loc, "argument 1 of %qE must be a non-void pointer type",
		function);
      return 0;
    }

  if (!COMPLETE_TYPE_P (TREE_TYPE (type_0)))
    {
      error_at (loc, "argument 1 of %qE must be a pointer to a complete type",
		function);
      return 0;
    }

  /* Types must be compile time constant sizes. */
  if (!tree_fits_uhwi_p ((TYPE_SIZE_UNIT (TREE_TYPE (type_0)))))
    {
      error_at (loc, 
		"argument 1 of %qE must be a pointer to a constant size type",
		function);
      return 0;
    }

  size_0 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (type_0)));

  /* Zero size objects are not allowed.  */
  if (size_0 == 0)
    {
      error_at (loc, 
		"argument 1 of %qE must be a pointer to a nonzero size object",
		function);
      return 0;
    }

  /* Check each other parameter is a pointer and the same size.  */
  for (x = 0; x < n_param - n_model; x++)
    {
      int size;
      tree type = TREE_TYPE ((*params)[x]);
      /* __atomic_compare_exchange has a bool in the 4th position, skip it.  */
      if (n_param == 6 && x == 3)
        continue;
      if (TREE_CODE (type) == ARRAY_TYPE && c_dialect_cxx ())
	{
	  /* Force array-to-pointer decay for C++.  */
	  (*params)[x] = default_conversion ((*params)[x]);
	  type = TREE_TYPE ((*params)[x]);
	}
      if (!POINTER_TYPE_P (type))
	{
	  error_at (loc, "argument %d of %qE must be a pointer type", x + 1,
		    function);
	  return 0;
	}
      else if (TYPE_SIZE_UNIT (TREE_TYPE (type))
	       && TREE_CODE ((TYPE_SIZE_UNIT (TREE_TYPE (type))))
		  != INTEGER_CST)
	{
	  error_at (loc, "argument %d of %qE must be a pointer to a constant "
		    "size type", x + 1, function);
	  return 0;
	}
      else if (FUNCTION_POINTER_TYPE_P (type))
	{
	  error_at (loc, "argument %d of %qE must not be a pointer to a "
		    "function", x + 1, function);
	  return 0;
	}
      tree type_size = TYPE_SIZE_UNIT (TREE_TYPE (type));
      size = type_size ? tree_to_uhwi (type_size) : 0;
      if (size != size_0)
	{
	  error_at (loc, "size mismatch in argument %d of %qE", x + 1,
		    function);
	  return 0;
	}

      {
	auto_diagnostic_group d;
	int quals = TYPE_QUALS (TREE_TYPE (type));
	/* Must not write to an argument of a const-qualified type.  */
	if (outputs & (1 << x) && quals & TYPE_QUAL_CONST)
	  {
	    if (c_dialect_cxx ())
	      {
		error_at (loc, "argument %d of %qE must not be a pointer to "
			  "a %<const%> type", x + 1, function);
		return 0;
	      }
	    else
	      pedwarn (loc, OPT_Wincompatible_pointer_types, "argument %d "
		       "of %qE discards %<const%> qualifier", x + 1,
		       function);
	  }
	/* Only the first argument is allowed to be volatile.  */
	if (x > 0 && quals & TYPE_QUAL_VOLATILE)
	  {
	    if (c_dialect_cxx ())
	      {
		error_at (loc, "argument %d of %qE must not be a pointer to "
			  "a %<volatile%> type", x + 1, function);
		return 0;
	      }
	    else
	      pedwarn (loc, OPT_Wincompatible_pointer_types, "argument %d "
		       "of %qE discards %<volatile%> qualifier", x + 1,
		       function);
	  }
      }
    }

  /* Check memory model parameters for validity.  */
  for (x = n_param - n_model ; x < n_param; x++)
    {
      tree p = (*params)[x];
      if (!INTEGRAL_TYPE_P (TREE_TYPE (p)))
	{
	  error_at (loc, "non-integer memory model argument %d of %qE", x + 1,
		    function);
	  return 0;
	}
      p = fold_for_warn (p);
      if (TREE_CODE (p) == INTEGER_CST)
	{
	  /* memmodel_base masks the low 16 bits, thus ignore any bits above
	     it by using TREE_INT_CST_LOW instead of tree_to_*hwi.  Those high
	     bits will be checked later during expansion in target specific
	     way.  */
	  if (memmodel_base (TREE_INT_CST_LOW (p)) >= MEMMODEL_LAST)
	    warning_at (loc, OPT_Winvalid_memory_model,
			"invalid memory model argument %d of %qE", x + 1,
			function);
	}
    }

  return size_0;
}


/* This will take an __atomic_ generic FUNCTION call, and add a size parameter N
   at the beginning of the parameter list PARAMS representing the size of the
   objects.  This is to match the library ABI requirement.  LOC is the location
   of the function call.  
   The new function is returned if it needed rebuilding, otherwise NULL_TREE is
   returned to allow the external call to be constructed.  */

static tree
add_atomic_size_parameter (unsigned n, location_t loc, tree function, 
			   vec<tree, va_gc> *params)
{
  tree size_node;

  /* Insert a SIZE_T parameter as the first param.  If there isn't
     enough space, allocate a new vector and recursively re-build with that.  */
  if (!params->space (1))
    {
      unsigned int z, len;
      vec<tree, va_gc> *v;
      tree f;

      len = params->length ();
      vec_alloc (v, len + 1);
      v->quick_push (build_int_cst (size_type_node, n));
      for (z = 0; z < len; z++)
	v->quick_push ((*params)[z]);
      f = build_function_call_vec (loc, vNULL, function, v, NULL);
      vec_free (v);
      return f;
    }

  /* Add the size parameter and leave as a function call for processing.  */
  size_node = build_int_cst (size_type_node, n);
  params->quick_insert (0, size_node);
  return NULL_TREE;
}


/* Return whether atomic operations for naturally aligned N-byte
   arguments are supported, whether inline or through libatomic.  */
static bool
atomic_size_supported_p (int n)
{
  switch (n)
    {
    case 1:
    case 2:
    case 4:
    case 8:
      return true;

    case 16:
      return targetm.scalar_mode_supported_p (TImode);

    default:
      return false;
    }
}

/* This will process an __atomic_exchange function call, determine whether it
   needs to be mapped to the _N variation, or turned into a library call.
   LOC is the location of the builtin call.
   FUNCTION is the DECL that has been invoked;
   PARAMS is the argument list for the call.  The return value is non-null
   TRUE is returned if it is translated into the proper format for a call to the
   external library, and NEW_RETURN is set the tree for that function.
   FALSE is returned if processing for the _N variation is required, and 
   NEW_RETURN is set to the return value the result is copied into.  */
static bool
resolve_overloaded_atomic_exchange (location_t loc, tree function, 
				    vec<tree, va_gc> *params, tree *new_return)
{	
  tree p0, p1, p2, p3;
  tree I_type, I_type_ptr;
  int n = get_atomic_generic_size (loc, function, params);

  /* Size of 0 is an error condition.  */
  if (n == 0)
    {
      *new_return = error_mark_node;
      return true;
    }

  /* If not a lock-free size, change to the library generic format.  */
  if (!atomic_size_supported_p (n))
    {
      *new_return = add_atomic_size_parameter (n, loc, function, params);
      return true;
    }

  /* Otherwise there is a lockfree match, transform the call from:
       void fn(T* mem, T* desired, T* return, model)
     into
       *return = (T) (fn (In* mem, (In) *desired, model))  */

  p0 = (*params)[0];
  p1 = (*params)[1];
  p2 = (*params)[2];
  p3 = (*params)[3];
  
  /* Create pointer to appropriate size.  */
  I_type = builtin_type_for_size (BITS_PER_UNIT * n, 1);
  I_type_ptr = build_pointer_type (I_type);

  /* Convert object pointer to required type.  */
  p0 = build1 (VIEW_CONVERT_EXPR, I_type_ptr, p0);
  (*params)[0] = p0; 
  /* Convert new value to required type, and dereference it.  */
  p1 = build_indirect_ref (loc, p1, RO_UNARY_STAR);
  p1 = build1 (VIEW_CONVERT_EXPR, I_type, p1);
  (*params)[1] = p1;

  /* Move memory model to the 3rd position, and end param list.  */
  (*params)[2] = p3;
  params->truncate (3);

  /* Convert return pointer and dereference it for later assignment.  */
  *new_return = build_indirect_ref (loc, p2, RO_UNARY_STAR);

  return false;
}


/* This will process an __atomic_compare_exchange function call, determine 
   whether it needs to be mapped to the _N variation, or turned into a lib call.
   LOC is the location of the builtin call.
   FUNCTION is the DECL that has been invoked;
   PARAMS is the argument list for the call.  The return value is non-null
   TRUE is returned if it is translated into the proper format for a call to the
   external library, and NEW_RETURN is set the tree for that function.
   FALSE is returned if processing for the _N variation is required.  */

static bool
resolve_overloaded_atomic_compare_exchange (location_t loc, tree function, 
					    vec<tree, va_gc> *params, 
					    tree *new_return)
{	
  tree p0, p1, p2;
  tree I_type, I_type_ptr;
  int n = get_atomic_generic_size (loc, function, params);

  /* Size of 0 is an error condition.  */
  if (n == 0)
    {
      *new_return = error_mark_node;
      return true;
    }

  /* If not a lock-free size, change to the library generic format.  */
  if (!atomic_size_supported_p (n))
    {
      /* The library generic format does not have the weak parameter, so 
	 remove it from the param list.  Since a parameter has been removed,
	 we can be sure that there is room for the SIZE_T parameter, meaning
	 there will not be a recursive rebuilding of the parameter list, so
	 there is no danger this will be done twice.  */
      if (n > 0)
        {
	  (*params)[3] = (*params)[4];
	  (*params)[4] = (*params)[5];
	  params->truncate (5);
	}
      *new_return = add_atomic_size_parameter (n, loc, function, params);
      return true;
    }

  /* Otherwise, there is a match, so the call needs to be transformed from:
       bool fn(T* mem, T* desired, T* return, weak, success, failure)
     into
       bool fn ((In *)mem, (In *)expected, (In) *desired, weak, succ, fail)  */

  p0 = (*params)[0];
  p1 = (*params)[1];
  p2 = (*params)[2];
  
  /* Create pointer to appropriate size.  */
  I_type = builtin_type_for_size (BITS_PER_UNIT * n, 1);
  I_type_ptr = build_pointer_type (I_type);

  /* Convert object pointer to required type.  */
  p0 = build1 (VIEW_CONVERT_EXPR, I_type_ptr, p0);
  (*params)[0] = p0;

  /* Convert expected pointer to required type.  */
  p1 = build1 (VIEW_CONVERT_EXPR, I_type_ptr, p1);
  (*params)[1] = p1;

  /* Convert desired value to required type, and dereference it.  */
  p2 = build_indirect_ref (loc, p2, RO_UNARY_STAR);
  p2 = build1 (VIEW_CONVERT_EXPR, I_type, p2);
  (*params)[2] = p2;

  /* The rest of the parameters are fine. NULL means no special return value
     processing.*/
  *new_return = NULL;
  return false;
}


/* This will process an __atomic_load function call, determine whether it
   needs to be mapped to the _N variation, or turned into a library call.
   LOC is the location of the builtin call.
   FUNCTION is the DECL that has been invoked;
   PARAMS is the argument list for the call.  The return value is non-null
   TRUE is returned if it is translated into the proper format for a call to the
   external library, and NEW_RETURN is set the tree for that function.
   FALSE is returned if processing for the _N variation is required, and 
   NEW_RETURN is set to the return value the result is copied into.  */

static bool
resolve_overloaded_atomic_load (location_t loc, tree function, 
				vec<tree, va_gc> *params, tree *new_return)
{	
  tree p0, p1, p2;
  tree I_type, I_type_ptr;
  int n = get_atomic_generic_size (loc, function, params);

  /* Size of 0 is an error condition.  */
  if (n == 0)
    {
      *new_return = error_mark_node;
      return true;
    }

  /* If not a lock-free size, change to the library generic format.  */
  if (!atomic_size_supported_p (n))
    {
      *new_return = add_atomic_size_parameter (n, loc, function, params);
      return true;
    }

  /* Otherwise, there is a match, so the call needs to be transformed from:
       void fn(T* mem, T* return, model)
     into
       *return = (T) (fn ((In *) mem, model))  */

  p0 = (*params)[0];
  p1 = (*params)[1];
  p2 = (*params)[2];
  
  /* Create pointer to appropriate size.  */
  I_type = builtin_type_for_size (BITS_PER_UNIT * n, 1);
  I_type_ptr = build_pointer_type (I_type);

  /* Convert object pointer to required type.  */
  p0 = build1 (VIEW_CONVERT_EXPR, I_type_ptr, p0);
  (*params)[0] = p0;

  /* Move memory model to the 2nd position, and end param list.  */
  (*params)[1] = p2;
  params->truncate (2);

  /* Convert return pointer and dereference it for later assignment.  */
  *new_return = build_indirect_ref (loc, p1, RO_UNARY_STAR);

  return false;
}


/* This will process an __atomic_store function call, determine whether it
   needs to be mapped to the _N variation, or turned into a library call.
   LOC is the location of the builtin call.
   FUNCTION is the DECL that has been invoked;
   PARAMS is the argument list for the call.  The return value is non-null
   TRUE is returned if it is translated into the proper format for a call to the
   external library, and NEW_RETURN is set the tree for that function.
   FALSE is returned if processing for the _N variation is required, and 
   NEW_RETURN is set to the return value the result is copied into.  */

static bool
resolve_overloaded_atomic_store (location_t loc, tree function, 
				 vec<tree, va_gc> *params, tree *new_return)
{	
  tree p0, p1;
  tree I_type, I_type_ptr;
  int n = get_atomic_generic_size (loc, function, params);

  /* Size of 0 is an error condition.  */
  if (n == 0)
    {
      *new_return = error_mark_node;
      return true;
    }

  /* If not a lock-free size, change to the library generic format.  */
  if (!atomic_size_supported_p (n))
    {
      *new_return = add_atomic_size_parameter (n, loc, function, params);
      return true;
    }

  /* Otherwise, there is a match, so the call needs to be transformed from:
       void fn(T* mem, T* value, model)
     into
       fn ((In *) mem, (In) *value, model)  */

  p0 = (*params)[0];
  p1 = (*params)[1];
  
  /* Create pointer to appropriate size.  */
  I_type = builtin_type_for_size (BITS_PER_UNIT * n, 1);
  I_type_ptr = build_pointer_type (I_type);

  /* Convert object pointer to required type.  */
  p0 = build1 (VIEW_CONVERT_EXPR, I_type_ptr, p0);
  (*params)[0] = p0;

  /* Convert new value to required type, and dereference it.  */
  p1 = build_indirect_ref (loc, p1, RO_UNARY_STAR);
  p1 = build1 (VIEW_CONVERT_EXPR, I_type, p1);
  (*params)[1] = p1;
  
  /* The memory model is in the right spot already. Return is void.  */
  *new_return = NULL_TREE;

  return false;
}


/* Some builtin functions are placeholders for other expressions.  This
   function should be called immediately after parsing the call expression
   before surrounding code has committed to the type of the expression.

   LOC is the location of the builtin call.

   FUNCTION is the DECL that has been invoked; it is known to be a builtin.
   PARAMS is the argument list for the call.  The return value is non-null
   when expansion is complete, and null if normal processing should
   continue.  */

tree
resolve_overloaded_builtin (location_t loc, tree function,
			    vec<tree, va_gc> *params)
{
  /* Is function one of the _FETCH_OP_ or _OP_FETCH_ built-ins?
     Those are not valid to call with a pointer to _Bool (or C++ bool)
     and so must be rejected.  */
  bool fetch_op = true;
  bool orig_format = true;
  tree new_return = NULL_TREE;

  switch (DECL_BUILT_IN_CLASS (function))
    {
    case BUILT_IN_NORMAL:
      break;
    case BUILT_IN_MD:
      if (targetm.resolve_overloaded_builtin)
	return targetm.resolve_overloaded_builtin (loc, function, params);
      else
	return NULL_TREE;
    default:
      return NULL_TREE;
    }

  /* Handle BUILT_IN_NORMAL here.  */
  enum built_in_function orig_code = DECL_FUNCTION_CODE (function);
  switch (orig_code)
    {
    case BUILT_IN_SPECULATION_SAFE_VALUE_N:
      {
	tree new_function, first_param, result;
	enum built_in_function fncode
	  = speculation_safe_value_resolve_call (function, params);

	if (fncode == BUILT_IN_NONE)
	  return error_mark_node;

	first_param = (*params)[0];
	if (!speculation_safe_value_resolve_params (loc, function, params))
	  return error_mark_node;

	if (targetm.have_speculation_safe_value (true))
	  {
	    new_function = builtin_decl_explicit (fncode);
	    result = build_function_call_vec (loc, vNULL, new_function, params,
					      NULL);

	    if (result == error_mark_node)
	      return result;

	    return speculation_safe_value_resolve_return (first_param, result);
	  }
	else
	  {
	    /* This target doesn't have, or doesn't need, active mitigation
	       against incorrect speculative execution.  Simply return the
	       first parameter to the builtin.  */
	    if (!targetm.have_speculation_safe_value (false))
	      /* The user has invoked __builtin_speculation_safe_value
		 even though __HAVE_SPECULATION_SAFE_VALUE is not
		 defined: emit a warning.  */
	      warning_at (input_location, 0,
			  "this target does not define a speculation barrier; "
			  "your program will still execute correctly, "
			  "but incorrect speculation may not be "
			  "restricted");

	    /* If the optional second argument is present, handle any side
	       effects now.  */
	    if (params->length () == 2
		&& TREE_SIDE_EFFECTS ((*params)[1]))
	      return build2 (COMPOUND_EXPR, TREE_TYPE (first_param),
			     (*params)[1], first_param);

	    return first_param;
	  }
      }

    case BUILT_IN_ATOMIC_EXCHANGE:
    case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
    case BUILT_IN_ATOMIC_LOAD:
    case BUILT_IN_ATOMIC_STORE:
      {
	/* Handle these 4 together so that they can fall through to the next
	   case if the call is transformed to an _N variant.  */
        switch (orig_code)
	  {
	  case BUILT_IN_ATOMIC_EXCHANGE:
	    {
	      if (resolve_overloaded_atomic_exchange (loc, function, params,
						      &new_return))
		return new_return;
	      /* Change to the _N variant.  */
	      orig_code = BUILT_IN_ATOMIC_EXCHANGE_N;
	      break;
	    }

	  case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
	    {
	      if (resolve_overloaded_atomic_compare_exchange (loc, function,
							      params,
							      &new_return))
		return new_return;
	      /* Change to the _N variant.  */
	      orig_code = BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N;
	      break;
	    }
	  case BUILT_IN_ATOMIC_LOAD:
	    {
	      if (resolve_overloaded_atomic_load (loc, function, params,
						  &new_return))
		return new_return;
	      /* Change to the _N variant.  */
	      orig_code = BUILT_IN_ATOMIC_LOAD_N;
	      break;
	    }
	  case BUILT_IN_ATOMIC_STORE:
	    {
	      if (resolve_overloaded_atomic_store (loc, function, params,
						   &new_return))
		return new_return;
	      /* Change to the _N variant.  */
	      orig_code = BUILT_IN_ATOMIC_STORE_N;
	      break;
	    }
	  default:
	    gcc_unreachable ();
	  }
      }
      /* FALLTHRU */
    case BUILT_IN_ATOMIC_EXCHANGE_N:
    case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
    case BUILT_IN_ATOMIC_LOAD_N:
    case BUILT_IN_ATOMIC_STORE_N:
      fetch_op = false;
      /* FALLTHRU */
    case BUILT_IN_ATOMIC_ADD_FETCH_N:
    case BUILT_IN_ATOMIC_SUB_FETCH_N:
    case BUILT_IN_ATOMIC_AND_FETCH_N:
    case BUILT_IN_ATOMIC_NAND_FETCH_N:
    case BUILT_IN_ATOMIC_XOR_FETCH_N:
    case BUILT_IN_ATOMIC_OR_FETCH_N:
    case BUILT_IN_ATOMIC_FETCH_ADD_N:
    case BUILT_IN_ATOMIC_FETCH_SUB_N:
    case BUILT_IN_ATOMIC_FETCH_AND_N:
    case BUILT_IN_ATOMIC_FETCH_NAND_N:
    case BUILT_IN_ATOMIC_FETCH_XOR_N:
    case BUILT_IN_ATOMIC_FETCH_OR_N:
      orig_format = false;
      /* FALLTHRU */
    case BUILT_IN_SYNC_FETCH_AND_ADD_N:
    case BUILT_IN_SYNC_FETCH_AND_SUB_N:
    case BUILT_IN_SYNC_FETCH_AND_OR_N:
    case BUILT_IN_SYNC_FETCH_AND_AND_N:
    case BUILT_IN_SYNC_FETCH_AND_XOR_N:
    case BUILT_IN_SYNC_FETCH_AND_NAND_N:
    case BUILT_IN_SYNC_ADD_AND_FETCH_N:
    case BUILT_IN_SYNC_SUB_AND_FETCH_N:
    case BUILT_IN_SYNC_OR_AND_FETCH_N:
    case BUILT_IN_SYNC_AND_AND_FETCH_N:
    case BUILT_IN_SYNC_XOR_AND_FETCH_N:
    case BUILT_IN_SYNC_NAND_AND_FETCH_N:
    case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
    case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_N:
    case BUILT_IN_SYNC_LOCK_TEST_AND_SET_N:
    case BUILT_IN_SYNC_LOCK_RELEASE_N:
      {
	/* The following are not _FETCH_OPs and must be accepted with
	   pointers to _Bool (or C++ bool).  */
	if (fetch_op)
	  fetch_op =
	    (orig_code != BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N
	     && orig_code != BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_N
	     && orig_code != BUILT_IN_SYNC_LOCK_TEST_AND_SET_N
	     && orig_code != BUILT_IN_SYNC_LOCK_RELEASE_N);

	int n = sync_resolve_size (function, params, fetch_op);
	tree new_function, first_param, result;
	enum built_in_function fncode;

	if (n == 0)
	  return error_mark_node;

	fncode = (enum built_in_function)((int)orig_code + exact_log2 (n) + 1);
	new_function = builtin_decl_explicit (fncode);
	if (!sync_resolve_params (loc, function, new_function, params,
				  orig_format))
	  return error_mark_node;

	first_param = (*params)[0];
	result = build_function_call_vec (loc, vNULL, new_function, params,
					  NULL);
	if (result == error_mark_node)
	  return result;
	if (orig_code != BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N
	    && orig_code != BUILT_IN_SYNC_LOCK_RELEASE_N
	    && orig_code != BUILT_IN_ATOMIC_STORE_N
	    && orig_code != BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N)
	  result = sync_resolve_return (first_param, result, orig_format);

	if (fetch_op)
	  /* Prevent -Wunused-value warning.  */
	  TREE_USED (result) = true;

	/* If new_return is set, assign function to that expr and cast the
	   result to void since the generic interface returned void.  */
	if (new_return)
	  {
	    /* Cast function result from I{1,2,4,8,16} to the required type.  */
	    result = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (new_return), result);
	    result = build2 (MODIFY_EXPR, TREE_TYPE (new_return), new_return,
			     result);
	    TREE_SIDE_EFFECTS (result) = 1;
	    protected_set_expr_location (result, loc);
	    result = convert (void_type_node, result);
	  }
	return result;
      }

    default:
      return NULL_TREE;
    }
}

/* vector_types_compatible_elements_p is used in type checks of vectors
   values used as operands of binary operators.  Where it returns true, and
   the other checks of the caller succeed (being vector types in he first
   place, and matching number of elements), we can just treat the types
   as essentially the same.
   Contrast with vector_targets_convertible_p, which is used for vector
   pointer types,  and vector_types_convertible_p, which will allow
   language-specific matches under the control of flag_lax_vector_conversions,
   and might still require a conversion.  */
/* True if vector types T1 and T2 can be inputs to the same binary
   operator without conversion.
   We don't check the overall vector size here because some of our callers
   want to give different error messages when the vectors are compatible
   except for the element count.  */

bool
vector_types_compatible_elements_p (tree t1, tree t2)
{
  bool opaque = TYPE_VECTOR_OPAQUE (t1) || TYPE_VECTOR_OPAQUE (t2);
  t1 = TREE_TYPE (t1);
  t2 = TREE_TYPE (t2);

  enum tree_code c1 = TREE_CODE (t1), c2 = TREE_CODE (t2);

  gcc_assert ((INTEGRAL_TYPE_P (t1)
	       || c1 == REAL_TYPE
	       || c1 == FIXED_POINT_TYPE)
	      && (INTEGRAL_TYPE_P (t2)
		  || c2 == REAL_TYPE
		  || c2 == FIXED_POINT_TYPE));

  t1 = c_common_signed_type (t1);
  t2 = c_common_signed_type (t2);
  /* Equality works here because c_common_signed_type uses
     TYPE_MAIN_VARIANT.  */
  if (t1 == t2)
    return true;
  if (opaque && c1 == c2
      && (INTEGRAL_TYPE_P (t1) || c1 == REAL_TYPE)
      && TYPE_PRECISION (t1) == TYPE_PRECISION (t2))
    return true;
  return false;
}

/* Check for missing format attributes on function pointers.  LTYPE is
   the new type or left-hand side type.  RTYPE is the old type or
   right-hand side type.  Returns TRUE if LTYPE is missing the desired
   attribute.  */

bool
check_missing_format_attribute (tree ltype, tree rtype)
{
  tree const ttr = TREE_TYPE (rtype), ttl = TREE_TYPE (ltype);
  tree ra;

  for (ra = TYPE_ATTRIBUTES (ttr); ra; ra = TREE_CHAIN (ra))
    if (is_attribute_p ("format", get_attribute_name (ra)))
      break;
  if (ra)
    {
      tree la;
      for (la = TYPE_ATTRIBUTES (ttl); la; la = TREE_CHAIN (la))
	if (is_attribute_p ("format", get_attribute_name (la)))
	  break;
      return !la;
    }
  else
    return false;
}

/* Setup a TYPE_DECL node as a typedef representation.

   X is a TYPE_DECL for a typedef statement.  Create a brand new
   ..._TYPE node (which will be just a variant of the existing
   ..._TYPE node with identical properties) and then install X
   as the TYPE_NAME of this brand new (duplicate) ..._TYPE node.

   The whole point here is to end up with a situation where each
   and every ..._TYPE node the compiler creates will be uniquely
   associated with AT MOST one node representing a typedef name.
   This way, even though the compiler substitutes corresponding
   ..._TYPE nodes for TYPE_DECL (i.e. "typedef name") nodes very
   early on, later parts of the compiler can always do the reverse
   translation and get back the corresponding typedef name.  For
   example, given:

	typedef struct S MY_TYPE;
	MY_TYPE object;

   Later parts of the compiler might only know that `object' was of
   type `struct S' if it were not for code just below.  With this
   code however, later parts of the compiler see something like:

	struct S' == struct S
	typedef struct S' MY_TYPE;
	struct S' object;

    And they can then deduce (from the node for type struct S') that
    the original object declaration was:

		MY_TYPE object;

    Being able to do this is important for proper support of protoize,
    and also for generating precise symbolic debugging information
    which takes full account of the programmer's (typedef) vocabulary.

    Obviously, we don't want to generate a duplicate ..._TYPE node if
    the TYPE_DECL node that we are now processing really represents a
    standard built-in type.  */

void
set_underlying_type (tree x)
{
  if (x == error_mark_node)
    return;
  if (DECL_IS_UNDECLARED_BUILTIN (x) && TREE_CODE (TREE_TYPE (x)) != ARRAY_TYPE)
    {
      if (TYPE_NAME (TREE_TYPE (x)) == 0)
	TYPE_NAME (TREE_TYPE (x)) = x;
    }
  else if (TREE_TYPE (x) != error_mark_node
	   && DECL_ORIGINAL_TYPE (x) == NULL_TREE)
    {
      tree tt = TREE_TYPE (x);
      DECL_ORIGINAL_TYPE (x) = tt;
      tt = build_variant_type_copy (tt);
      TYPE_STUB_DECL (tt) = TYPE_STUB_DECL (DECL_ORIGINAL_TYPE (x));
      TYPE_NAME (tt) = x;

      /* Mark the type as used only when its type decl is decorated
	 with attribute unused.  */
      if (lookup_attribute ("unused", DECL_ATTRIBUTES (x)))
	TREE_USED (tt) = 1;

      TREE_TYPE (x) = tt;
    }
}

/* Return true if it is worth exposing the DECL_ORIGINAL_TYPE of TYPE to
   the user in diagnostics, false if it would be better to use TYPE itself.
   TYPE is known to satisfy typedef_variant_p.  */

bool
user_facing_original_type_p (const_tree type)
{
  gcc_assert (typedef_variant_p (type));
  tree decl = TYPE_NAME (type);

  /* Look through any typedef in "user" code.  */
  if (!DECL_IN_SYSTEM_HEADER (decl) && !DECL_IS_UNDECLARED_BUILTIN (decl))
    return true;

  /* If the original type is also named and is in the user namespace,
     assume it too is a user-facing type.  */
  tree orig_type = DECL_ORIGINAL_TYPE (decl);
  if (tree orig_id = TYPE_IDENTIFIER (orig_type))
    if (!name_reserved_for_implementation_p (IDENTIFIER_POINTER (orig_id)))
      return true;

  switch (TREE_CODE (orig_type))
    {
    /* Don't look through to an anonymous vector type, since the syntax
       we use for them in diagnostics isn't real C or C++ syntax.
       And if ORIG_TYPE is named but in the implementation namespace,
       TYPE is likely to be more meaningful to the user.  */
    case VECTOR_TYPE:
      return false;

    /* Don't expose anonymous tag types that are presumably meant to be
       known by their typedef name.  Also don't expose tags that are in
       the implementation namespace, such as:

         typedef struct __foo foo;  */
    case RECORD_TYPE:
    case UNION_TYPE:
    case ENUMERAL_TYPE:
      return false;

    /* Look through to anything else.  */
    default:
      return true;
    }
}

/* Record the types used by the current global variable declaration
   being parsed, so that we can decide later to emit their debug info.
   Those types are in types_used_by_cur_var_decl, and we are going to
   store them in the types_used_by_vars_hash hash table.
   DECL is the declaration of the global variable that has been parsed.  */

void
record_types_used_by_current_var_decl (tree decl)
{
  gcc_assert (decl && DECL_P (decl) && TREE_STATIC (decl));

  while (types_used_by_cur_var_decl && !types_used_by_cur_var_decl->is_empty ())
    {
      tree type = types_used_by_cur_var_decl->pop ();
      types_used_by_var_decl_insert (type, decl);
    }
}

/* The C and C++ parsers both use vectors to hold function arguments.
   For efficiency, we keep a cache of unused vectors.  This is the
   cache.  */

typedef vec<tree, va_gc> *tree_gc_vec;
static GTY((deletable)) vec<tree_gc_vec, va_gc> *tree_vector_cache;

/* Return a new vector from the cache.  If the cache is empty,
   allocate a new vector.  These vectors are GC'ed, so it is OK if the
   pointer is not released..  */

vec<tree, va_gc> *
make_tree_vector (void)
{
  if (tree_vector_cache && !tree_vector_cache->is_empty ())
    return tree_vector_cache->pop ();
  else
    {
      /* Passing 0 to vec::alloc returns NULL, and our callers require
	 that we always return a non-NULL value.  The vector code uses
	 4 when growing a NULL vector, so we do too.  */
      vec<tree, va_gc> *v;
      vec_alloc (v, 4);
      return v;
    }
}

/* Release a vector of trees back to the cache.  */

void
release_tree_vector (vec<tree, va_gc> *vec)
{
  if (vec != NULL)
    {
      if (vec->allocated () >= 16)
	/* Don't cache vecs that have expanded more than once.  On a p64
	   target, vecs double in alloc size with each power of 2 elements, e.g
	   at 16 elements the alloc increases from 128 to 256 bytes.  */
	vec_free (vec);
      else
	{
	  vec->truncate (0);
	  vec_safe_push (tree_vector_cache, vec);
	}
    }
}

/* Get a new tree vector holding a single tree.  */

vec<tree, va_gc> *
make_tree_vector_single (tree t)
{
  vec<tree, va_gc> *ret = make_tree_vector ();
  ret->quick_push (t);
  return ret;
}

/* Get a new tree vector of the TREE_VALUEs of a TREE_LIST chain.  */

vec<tree, va_gc> *
make_tree_vector_from_list (tree list)
{
  vec<tree, va_gc> *ret = make_tree_vector ();
  for (; list; list = TREE_CHAIN (list))
    vec_safe_push (ret, TREE_VALUE (list));
  return ret;
}

/* Get a new tree vector of the values of a CONSTRUCTOR.  */

vec<tree, va_gc> *
make_tree_vector_from_ctor (tree ctor)
{
  vec<tree,va_gc> *ret = make_tree_vector ();
  vec_safe_reserve (ret, CONSTRUCTOR_NELTS (ctor));
  for (unsigned i = 0; i < CONSTRUCTOR_NELTS (ctor); ++i)
    ret->quick_push (CONSTRUCTOR_ELT (ctor, i)->value);
  return ret;
}

/* Get a new tree vector which is a copy of an existing one.  */

vec<tree, va_gc> *
make_tree_vector_copy (const vec<tree, va_gc> *orig)
{
  vec<tree, va_gc> *ret;
  unsigned int ix;
  tree t;

  ret = make_tree_vector ();
  vec_safe_reserve (ret, vec_safe_length (orig));
  FOR_EACH_VEC_SAFE_ELT (orig, ix, t)
    ret->quick_push (t);
  return ret;
}

/* Return true if KEYWORD starts a type specifier.  */

bool
keyword_begins_type_specifier (enum rid keyword)
{
  switch (keyword)
    {
    case RID_AUTO_TYPE:
    case RID_INT:
    case RID_CHAR:
    case RID_FLOAT:
    case RID_DOUBLE:
    case RID_VOID:
    case RID_UNSIGNED:
    case RID_LONG:
    case RID_SHORT:
    case RID_SIGNED:
    CASE_RID_FLOATN_NX:
    case RID_DFLOAT32:
    case RID_DFLOAT64:
    case RID_DFLOAT128:
    case RID_FRACT:
    case RID_ACCUM:
    case RID_BOOL:
    case RID_WCHAR:
    case RID_CHAR8:
    case RID_CHAR16:
    case RID_CHAR32:
    case RID_SAT:
    case RID_COMPLEX:
    case RID_TYPEOF:
    case RID_STRUCT:
    case RID_CLASS:
    case RID_UNION:
    case RID_ENUM:
      return true;
    default:
      if (keyword >= RID_FIRST_INT_N
	  && keyword < RID_FIRST_INT_N + NUM_INT_N_ENTS
	  && int_n_enabled_p[keyword-RID_FIRST_INT_N])
	return true;
      return false;
    }
}

/* Return true if KEYWORD names a type qualifier.  */

bool
keyword_is_type_qualifier (enum rid keyword)
{
  switch (keyword)
    {
    case RID_CONST:
    case RID_VOLATILE:
    case RID_RESTRICT:
    case RID_ATOMIC:
      return true;
    default:
      return false;
    }
}

/* Return true if KEYWORD names a storage class specifier.

   RID_TYPEDEF is not included in this list despite `typedef' being
   listed in C99 6.7.1.1.  6.7.1.3 indicates that `typedef' is listed as
   such for syntactic convenience only.  */

bool
keyword_is_storage_class_specifier (enum rid keyword)
{
  switch (keyword)
    {
    case RID_STATIC:
    case RID_EXTERN:
    case RID_REGISTER:
    case RID_AUTO:
    case RID_MUTABLE:
    case RID_THREAD:
      return true;
    default:
      return false;
    }
}

/* Return true if KEYWORD names a function-specifier [dcl.fct.spec].  */

static bool
keyword_is_function_specifier (enum rid keyword)
{
  switch (keyword)
    {
    case RID_INLINE:
    case RID_NORETURN:
    case RID_VIRTUAL:
    case RID_EXPLICIT:
      return true;
    default:
      return false;
    }
}

/* Return true if KEYWORD names a decl-specifier [dcl.spec] or a
   declaration-specifier (C99 6.7).  */

bool
keyword_is_decl_specifier (enum rid keyword)
{
  if (keyword_is_storage_class_specifier (keyword)
      || keyword_is_type_qualifier (keyword)
      || keyword_is_function_specifier (keyword))
    return true;

  switch (keyword)
    {
    case RID_TYPEDEF:
    case RID_FRIEND:
    case RID_CONSTEXPR:
    case RID_CONSTINIT:
      return true;
    default:
      return false;
    }
}

/* Initialize language-specific-bits of tree_contains_struct.  */

void
c_common_init_ts (void)
{
  MARK_TS_EXP (SIZEOF_EXPR);
  MARK_TS_EXP (PAREN_SIZEOF_EXPR);
  MARK_TS_EXP (C_MAYBE_CONST_EXPR);
  MARK_TS_EXP (EXCESS_PRECISION_EXPR);
  MARK_TS_EXP (BREAK_STMT);
  MARK_TS_EXP (CONTINUE_STMT);
  MARK_TS_EXP (DO_STMT);
  MARK_TS_EXP (FOR_STMT);
  MARK_TS_EXP (SWITCH_STMT);
  MARK_TS_EXP (WHILE_STMT);
}

/* Build a user-defined numeric literal out of an integer constant type VALUE
   with identifier SUFFIX.  */

tree
build_userdef_literal (tree suffix_id, tree value,
		       enum overflow_type overflow, tree num_string)
{
  tree literal = make_node (USERDEF_LITERAL);
  USERDEF_LITERAL_SUFFIX_ID (literal) = suffix_id;
  USERDEF_LITERAL_VALUE (literal) = value;
  USERDEF_LITERAL_OVERFLOW (literal) = overflow;
  USERDEF_LITERAL_NUM_STRING (literal) = num_string;
  return literal;
}

/* For vector[index], convert the vector to an array of the underlying type.
   Return true if the resulting ARRAY_REF should not be an lvalue.  */

bool
convert_vector_to_array_for_subscript (location_t loc,
				       tree *vecp, tree index)
{
  bool ret = false;
  if (gnu_vector_type_p (TREE_TYPE (*vecp)))
    {
      tree type = TREE_TYPE (*vecp);

      ret = !lvalue_p (*vecp);

      index = fold_for_warn (index);
      if (TREE_CODE (index) == INTEGER_CST)
        if (!tree_fits_uhwi_p (index)
	    || maybe_ge (tree_to_uhwi (index), TYPE_VECTOR_SUBPARTS (type)))
          warning_at (loc, OPT_Warray_bounds, "index value is out of bound");

      /* We are building an ARRAY_REF so mark the vector as addressable
         to not run into the gimplifiers premature setting of DECL_GIMPLE_REG_P
	 for function parameters.  */
      c_common_mark_addressable_vec (*vecp);

      *vecp = build1 (VIEW_CONVERT_EXPR,
		      build_array_type_nelts (TREE_TYPE (type),
					      TYPE_VECTOR_SUBPARTS (type)),
		      *vecp);
    }
  return ret;
}

/* Determine which of the operands, if any, is a scalar that needs to be
   converted to a vector, for the range of operations.  */
enum stv_conv
scalar_to_vector (location_t loc, enum tree_code code, tree op0, tree op1,
		  bool complain)
{
  tree type0 = TREE_TYPE (op0);
  tree type1 = TREE_TYPE (op1);
  bool integer_only_op = false;
  enum stv_conv ret = stv_firstarg;

  gcc_assert (gnu_vector_type_p (type0) || gnu_vector_type_p (type1));
  switch (code)
    {
      /* Most GENERIC binary expressions require homogeneous arguments.
	 LSHIFT_EXPR and RSHIFT_EXPR are exceptions and accept a first
	 argument that is a vector and a second one that is a scalar, so
	 we never return stv_secondarg for them.  */
      case RSHIFT_EXPR:
      case LSHIFT_EXPR:
	if (TREE_CODE (type0) == INTEGER_TYPE
	    && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE)
	  {
	    if (unsafe_conversion_p (TREE_TYPE (type1), op0,
				     NULL_TREE, false))
	      {
		if (complain)
		  error_at (loc, "conversion of scalar %qT to vector %qT "
			    "involves truncation", type0, type1);
		return stv_error;
	      }
	    else
	      return stv_firstarg;
	  }
	break;

      case BIT_IOR_EXPR:
      case BIT_XOR_EXPR:
      case BIT_AND_EXPR:
	integer_only_op = true;
	/* fall through */

      case VEC_COND_EXPR:

      case PLUS_EXPR:
      case MINUS_EXPR:
      case MULT_EXPR:
      case TRUNC_DIV_EXPR:
      case CEIL_DIV_EXPR:
      case FLOOR_DIV_EXPR:
      case ROUND_DIV_EXPR:
      case EXACT_DIV_EXPR:
      case TRUNC_MOD_EXPR:
      case FLOOR_MOD_EXPR:
      case RDIV_EXPR:
      case EQ_EXPR:
      case NE_EXPR:
      case LE_EXPR:
      case GE_EXPR:
      case LT_EXPR:
      case GT_EXPR:
      /* What about UNLT_EXPR?  */
	if (gnu_vector_type_p (type0))
	  {
	    ret = stv_secondarg;
	    std::swap (type0, type1);
	    std::swap (op0, op1);
	  }

	if (TREE_CODE (type0) == INTEGER_TYPE
	    && TREE_CODE (TREE_TYPE (type1)) == INTEGER_TYPE)
	  {
	    if (unsafe_conversion_p (TREE_TYPE (type1), op0,
				     NULL_TREE, false))
	      {
		if (complain)
		  error_at (loc, "conversion of scalar %qT to vector %qT "
			    "involves truncation", type0, type1);
		return stv_error;
	      }
	    return ret;
	  }
	else if (!integer_only_op
		    /* Allow integer --> real conversion if safe.  */
		 && (TREE_CODE (type0) == REAL_TYPE
		     || TREE_CODE (type0) == INTEGER_TYPE)
		 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (type1)))
	  {
	    if (unsafe_conversion_p (TREE_TYPE (type1), op0,
				     NULL_TREE, false))
	      {
		if (complain)
		  error_at (loc, "conversion of scalar %qT to vector %qT "
			    "involves truncation", type0, type1);
		return stv_error;
	      }
	    return ret;
	  }
      default:
	break;
    }

  return stv_nothing;
}

/* Return the alignment of std::max_align_t.

   [support.types.layout] The type max_align_t is a POD type whose alignment
   requirement is at least as great as that of every scalar type, and whose
   alignment requirement is supported in every context.  */

unsigned
max_align_t_align ()
{
  unsigned int max_align = MAX (TYPE_ALIGN (long_long_integer_type_node),
				TYPE_ALIGN (long_double_type_node));
  if (float128_type_node != NULL_TREE)
    max_align = MAX (max_align, TYPE_ALIGN (float128_type_node));
  return max_align;
}

/* Return true iff ALIGN is an integral constant that is a fundamental
   alignment, as defined by [basic.align] in the c++-11
   specifications.

   That is:

       [A fundamental alignment is represented by an alignment less than or
        equal to the greatest alignment supported by the implementation
        in all contexts, which is equal to alignof(max_align_t)].  */

bool
cxx_fundamental_alignment_p (unsigned align)
{
  return (align <= max_align_t_align ());
}

/* Return true if T is a pointer to a zero-sized aggregate.  */

bool
pointer_to_zero_sized_aggr_p (tree t)
{
  if (!POINTER_TYPE_P (t))
    return false;
  t = TREE_TYPE (t);
  return (TYPE_SIZE (t) && integer_zerop (TYPE_SIZE (t)));
}

/* For an EXPR of a FUNCTION_TYPE that references a GCC built-in function
   with no library fallback or for an ADDR_EXPR whose operand is such type
   issues an error pointing to the location LOC.
   Returns true when the expression has been diagnosed and false
   otherwise.  */

bool
reject_gcc_builtin (const_tree expr, location_t loc /* = UNKNOWN_LOCATION */)
{
  if (TREE_CODE (expr) == ADDR_EXPR)
    expr = TREE_OPERAND (expr, 0);

  STRIP_ANY_LOCATION_WRAPPER (expr);

  if (TREE_TYPE (expr)
      && TREE_CODE (TREE_TYPE (expr)) == FUNCTION_TYPE
      && TREE_CODE (expr) == FUNCTION_DECL
      /* The intersection of DECL_BUILT_IN and DECL_IS_UNDECLARED_BUILTIN avoids
	 false positives for user-declared built-ins such as abs or
	 strlen, and for C++ operators new and delete.
	 The c_decl_implicit() test avoids false positives for implicitly
	 declared built-ins with library fallbacks (such as abs).  */
      && fndecl_built_in_p (expr)
      && DECL_IS_UNDECLARED_BUILTIN (expr)
      && !c_decl_implicit (expr)
      && !DECL_ASSEMBLER_NAME_SET_P (expr))
    {
      if (loc == UNKNOWN_LOCATION)
	loc = EXPR_LOC_OR_LOC (expr, input_location);

      /* Reject arguments that are built-in functions with
	 no library fallback.  */
      error_at (loc, "built-in function %qE must be directly called", expr);

      return true;
    }

  return false;
}

/* Issue an ERROR for an invalid SIZE of array NAME which is null
   for unnamed arrays.  */

void
invalid_array_size_error (location_t loc, cst_size_error error,
			  const_tree size, const_tree name)
{
  tree maxsize = max_object_size ();
  switch (error)
    {
    case cst_size_not_constant:
      if (name)
	error_at (loc, "size of array %qE is not a constant expression",
		  name);
      else
	error_at (loc, "size of array is not a constant expression");
      break;
    case cst_size_negative:
      if (name)
	error_at (loc, "size %qE of array %qE is negative",
		  size, name);
      else
	error_at (loc, "size %qE of array is negative",
		  size);
      break;
    case cst_size_too_big:
      if (name)
	error_at (loc, "size %qE of array %qE exceeds maximum "
		  "object size %qE", size, name, maxsize);
      else
	error_at (loc, "size %qE of array exceeds maximum "
		  "object size %qE", size, maxsize);
      break;
    case cst_size_overflow:
      if (name)
	error_at (loc, "size of array %qE exceeds maximum "
		  "object size %qE", name, maxsize);
      else
	error_at (loc, "size of array exceeds maximum "
		  "object size %qE", maxsize);
      break;
    default:
      gcc_unreachable ();
    }
}

/* Check if array size calculations overflow or if the array covers more
   than half of the address space.  Return true if the size of the array
   is valid, false otherwise.  T is either the type of the array or its
   size, and NAME is the name of the array, or null for unnamed arrays.  */

bool
valid_array_size_p (location_t loc, const_tree t, tree name, bool complain)
{
  if (t == error_mark_node)
    return true;

  const_tree size;
  if (TYPE_P (t))
    {
      if (!COMPLETE_TYPE_P (t))
	return true;
      size = TYPE_SIZE_UNIT (t);
    }
  else
    size = t;

  if (TREE_CODE (size) != INTEGER_CST)
    return true;

  cst_size_error error;
  if (valid_constant_size_p (size, &error))
    return true;

  if (!complain)
    return false;

  if (TREE_CODE (TREE_TYPE (size)) == ENUMERAL_TYPE)
    /* Show the value of the enumerator rather than its name.  */
    size = convert (ssizetype, const_cast<tree> (size));

  invalid_array_size_error (loc, error, size, name);
  return false;
}

/* Read SOURCE_DATE_EPOCH from environment to have a deterministic
   timestamp to replace embedded current dates to get reproducible
   results.  Returns -1 if SOURCE_DATE_EPOCH is not defined.  */

time_t
cb_get_source_date_epoch (cpp_reader *pfile ATTRIBUTE_UNUSED)
{
  char *source_date_epoch;
  int64_t epoch;
  char *endptr;

  source_date_epoch = getenv ("SOURCE_DATE_EPOCH");
  if (!source_date_epoch)
    return (time_t) -1;

  errno = 0;
#if defined(INT64_T_IS_LONG)
  epoch = strtol (source_date_epoch, &endptr, 10);
#else
  epoch = strtoll (source_date_epoch, &endptr, 10);
#endif
  if (errno != 0 || endptr == source_date_epoch || *endptr != '\0'
      || epoch < 0 || epoch > MAX_SOURCE_DATE_EPOCH)
    {
      error_at (input_location, "environment variable %qs must "
	        "expand to a non-negative integer less than or equal to %wd",
		"SOURCE_DATE_EPOCH", MAX_SOURCE_DATE_EPOCH);
      return (time_t) -1;
    }

  return (time_t) epoch;
}

/* Callback for libcpp for offering spelling suggestions for misspelled
   directives.  GOAL is an unrecognized string; CANDIDATES is a
   NULL-terminated array of candidate strings.  Return the closest
   match to GOAL within CANDIDATES, or NULL if none are good
   suggestions.  */

const char *
cb_get_suggestion (cpp_reader *, const char *goal,
		   const char *const *candidates)
{
  best_match<const char *, const char *> bm (goal);
  while (*candidates)
    bm.consider (*candidates++);
  return bm.get_best_meaningful_candidate ();
}

/* Return the latice point which is the wider of the two FLT_EVAL_METHOD
   modes X, Y.  This isn't just  >, as the FLT_EVAL_METHOD values added
   by C TS 18661-3 for interchange  types that are computed in their
   native precision are larger than the C11 values for evaluating in the
   precision of float/double/long double.  If either mode is
   FLT_EVAL_METHOD_UNPREDICTABLE, return that.  */

enum flt_eval_method
excess_precision_mode_join (enum flt_eval_method x,
			    enum flt_eval_method y)
{
  if (x == FLT_EVAL_METHOD_UNPREDICTABLE
      || y == FLT_EVAL_METHOD_UNPREDICTABLE)
    return FLT_EVAL_METHOD_UNPREDICTABLE;

  /* GCC only supports one interchange type right now, _Float16.  If
     we're evaluating _Float16 in 16-bit precision, then flt_eval_method
     will be FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16.  */
  if (x == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
    return y;
  if (y == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
    return x;

  /* Other values for flt_eval_method are directly comparable, and we want
     the maximum.  */
  return MAX (x, y);
}

/* Return the value that should be set for FLT_EVAL_METHOD in the
   context of ISO/IEC TS 18861-3.

   This relates to the effective excess precision seen by the user,
   which is the join point of the precision the target requests for
   -fexcess-precision={standard,fast,16} and the implicit excess precision
   the target uses.  */

static enum flt_eval_method
c_ts18661_flt_eval_method (void)
{
  enum flt_eval_method implicit
    = targetm.c.excess_precision (EXCESS_PRECISION_TYPE_IMPLICIT);

  enum excess_precision_type flag_type
    = (flag_excess_precision == EXCESS_PRECISION_STANDARD
       ? EXCESS_PRECISION_TYPE_STANDARD
       : (flag_excess_precision == EXCESS_PRECISION_FLOAT16
	  ? EXCESS_PRECISION_TYPE_FLOAT16
	  : EXCESS_PRECISION_TYPE_FAST));

  enum flt_eval_method requested
    = targetm.c.excess_precision (flag_type);

  return excess_precision_mode_join (implicit, requested);
}

/* As c_cpp_ts18661_flt_eval_method, but clamps the expected values to
   those that were permitted by C11.  That is to say, eliminates
   FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16.  */

static enum flt_eval_method
c_c11_flt_eval_method (void)
{
  return excess_precision_mode_join (c_ts18661_flt_eval_method (),
				     FLT_EVAL_METHOD_PROMOTE_TO_FLOAT);
}

/* Return the value that should be set for FLT_EVAL_METHOD.
   MAYBE_C11_ONLY_P is TRUE if we should check
   FLAG_PERMITTED_EVAL_METHODS as to whether we should limit the possible
   values we can return to those from C99/C11, and FALSE otherwise.
   See the comments on c_ts18661_flt_eval_method for what value we choose
   to set here.  */

int
c_flt_eval_method (bool maybe_c11_only_p)
{
  if (maybe_c11_only_p
      && flag_permitted_flt_eval_methods
	  == PERMITTED_FLT_EVAL_METHODS_C11)
    return c_c11_flt_eval_method ();
  else
    return c_ts18661_flt_eval_method ();
}

/* An enum for get_missing_token_insertion_kind for describing the best
   place to insert a missing token, if there is one.  */

enum missing_token_insertion_kind
{
  MTIK_IMPOSSIBLE,
  MTIK_INSERT_BEFORE_NEXT,
  MTIK_INSERT_AFTER_PREV
};

/* Given a missing token of TYPE, determine if it is reasonable to
   emit a fix-it hint suggesting the insertion of the token, and,
   if so, where the token should be inserted relative to other tokens.

   It only makes sense to do this for values of TYPE that are symbols.

   Some symbols should go before the next token, e.g. in:
     if flag)
   we want to insert the missing '(' immediately before "flag",
   giving:
     if (flag)
   rather than:
     if( flag)
   These use MTIK_INSERT_BEFORE_NEXT.

   Other symbols should go after the previous token, e.g. in:
     if (flag
       do_something ();
   we want to insert the missing ')' immediately after the "flag",
   giving:
     if (flag)
       do_something ();
   rather than:
     if (flag
       )do_something ();
   These use MTIK_INSERT_AFTER_PREV.  */

static enum missing_token_insertion_kind
get_missing_token_insertion_kind (enum cpp_ttype type)
{
  switch (type)
    {
      /* Insert missing "opening" brackets immediately
	 before the next token.  */
    case CPP_OPEN_SQUARE:
    case CPP_OPEN_PAREN:
      return MTIK_INSERT_BEFORE_NEXT;

      /* Insert other missing symbols immediately after
	 the previous token.  */
    case CPP_CLOSE_PAREN:
    case CPP_CLOSE_SQUARE:
    case CPP_SEMICOLON:
    case CPP_COMMA:
    case CPP_COLON:
      return MTIK_INSERT_AFTER_PREV;

      /* Other kinds of token don't get fix-it hints.  */
    default:
      return MTIK_IMPOSSIBLE;
    }
}

/* Given RICHLOC, a location for a diagnostic describing a missing token
   of kind TOKEN_TYPE, potentially add a fix-it hint suggesting the
   insertion of the token.

   The location of the attempted fix-it hint depends on TOKEN_TYPE:
   it will either be:
     (a) immediately after PREV_TOKEN_LOC, or

     (b) immediately before the primary location within RICHLOC (taken to
	 be that of the token following where the token was expected).

   If we manage to add a fix-it hint, then the location of the
   fix-it hint is likely to be more useful as the primary location
   of the diagnostic than that of the following token, so we swap
   these locations.

   For example, given this bogus code:
       123456789012345678901234567890
   1 | int missing_semicolon (void)
   2 | {
   3 |   return 42
   4 | }

   we will emit:

     "expected ';' before '}'"

   RICHLOC's primary location is at the closing brace, so before "swapping"
   we would emit the error at line 4 column 1:

       123456789012345678901234567890
   3 |   return 42  |< fix-it hint emitted for this line
     |            ; |
   4 | }            |< "expected ';' before '}'" emitted at this line
     | ^            |

   It's more useful for the location of the diagnostic to be at the
   fix-it hint, so we swap the locations, so the primary location
   is at the fix-it hint, with the old primary location inserted
   as a secondary location, giving this, with the error at line 3
   column 12:

       123456789012345678901234567890
   3 |   return 42   |< "expected ';' before '}'" emitted at this line,
     |            ^  |   with fix-it hint
   4 |            ;  |
     | }             |< secondary range emitted here
     | ~             |.  */

void
maybe_suggest_missing_token_insertion (rich_location *richloc,
				       enum cpp_ttype token_type,
				       location_t prev_token_loc)
{
  gcc_assert (richloc);

  enum missing_token_insertion_kind mtik
    = get_missing_token_insertion_kind (token_type);

  switch (mtik)
    {
    default:
      gcc_unreachable ();
      break;

    case MTIK_IMPOSSIBLE:
      return;

    case MTIK_INSERT_BEFORE_NEXT:
      /* Attempt to add the fix-it hint before the primary location
	 of RICHLOC.  */
      richloc->add_fixit_insert_before (cpp_type2name (token_type, 0));
      break;

    case MTIK_INSERT_AFTER_PREV:
      /* Attempt to add the fix-it hint after PREV_TOKEN_LOC.  */
      richloc->add_fixit_insert_after (prev_token_loc,
				       cpp_type2name (token_type, 0));
      break;
    }

  /* If we were successful, use the fix-it hint's location as the
     primary location within RICHLOC, adding the old primary location
     back as a secondary location.  */
  if (!richloc->seen_impossible_fixit_p ())
    {
      fixit_hint *hint = richloc->get_last_fixit_hint ();
      location_t hint_loc = hint->get_start_loc ();
      location_t old_loc = richloc->get_loc ();

      richloc->set_range (0, hint_loc, SHOW_RANGE_WITH_CARET);
      richloc->add_range (old_loc);
    }
}

#if CHECKING_P

namespace selftest {

/* Verify that fold_for_warn on error_mark_node is safe.  */

static void
test_fold_for_warn ()
{
  ASSERT_EQ (error_mark_node, fold_for_warn (error_mark_node));
}

/* Run all of the selftests within this file.  */

static void
c_common_cc_tests ()
{
  test_fold_for_warn ();
}

/* Run all of the tests within c-family.  */

void
c_family_tests (void)
{
  c_common_cc_tests ();
  c_format_cc_tests ();
  c_indentation_cc_tests ();
  c_pretty_print_cc_tests ();
  c_spellcheck_cc_tests ();
  c_diagnostic_cc_tests ();
  c_opt_problem_cc_tests ();
}

} // namespace selftest

#endif /* #if CHECKING_P */

/* Attempt to locate a suitable location within FILE for a
   #include directive to be inserted before.  
   LOC is the location of the relevant diagnostic.

   Attempt to return the location within FILE immediately
   after the last #include within that file, or the start of
   that file if it has no #include directives.

   Return UNKNOWN_LOCATION if no suitable location is found,
   or if an error occurs.  */

static location_t
try_to_locate_new_include_insertion_point (const char *file, location_t loc)
{
  /* Locate the last ordinary map within FILE that ended with a #include.  */
  const line_map_ordinary *last_include_ord_map = NULL;

  /* ...and the next ordinary map within FILE after that one.  */
  const line_map_ordinary *last_ord_map_after_include = NULL;

  /* ...and the first ordinary map within FILE.  */
  const line_map_ordinary *first_ord_map_in_file = NULL;

  /*  Get ordinary map containing LOC (or its expansion).  */
  const line_map_ordinary *ord_map_for_loc = NULL;
  linemap_resolve_location (line_table, loc, LRK_MACRO_EXPANSION_POINT,
			    &ord_map_for_loc);
  gcc_assert (ord_map_for_loc);

  for (unsigned int i = 0; i < LINEMAPS_ORDINARY_USED (line_table); i++)
    {
      const line_map_ordinary *ord_map
	= LINEMAPS_ORDINARY_MAP_AT (line_table, i);

      if (const line_map_ordinary *from
	  = linemap_included_from_linemap (line_table, ord_map))
	/* We cannot use pointer equality, because with preprocessed
	   input all filename strings are unique.  */
	if (0 == strcmp (from->to_file, file))
	  {
	    last_include_ord_map = from;
	    last_ord_map_after_include = NULL;
	  }

      /* Likewise, use strcmp, and reject any line-zero introductory
	 map.  */
      if (ord_map->to_line && 0 == strcmp (ord_map->to_file, file))
	{
	  if (!first_ord_map_in_file)
	    first_ord_map_in_file = ord_map;
	  if (last_include_ord_map && !last_ord_map_after_include)
	    last_ord_map_after_include = ord_map;
	}

      /* Stop searching when reaching the ord_map containing LOC,
	 as it makes no sense to provide fix-it hints that appear
	 after the diagnostic in question.  */
      if (ord_map == ord_map_for_loc)
	break;
    }

  /* Determine where to insert the #include.  */
  const line_map_ordinary *ord_map_for_insertion;

  /* We want the next ordmap in the file after the last one that's a
     #include, but failing that, the start of the file.  */
  if (last_ord_map_after_include)
    ord_map_for_insertion = last_ord_map_after_include;
  else
    ord_map_for_insertion = first_ord_map_in_file;

  if (!ord_map_for_insertion)
    return UNKNOWN_LOCATION;

  /* The "start_location" is column 0, meaning "the whole line".
     rich_location and edit_context can't cope with this, so use
     column 1 instead.  */
  location_t col_0 = ord_map_for_insertion->start_location;
  return linemap_position_for_loc_and_offset (line_table, col_0, 1);
}

/* A map from filenames to sets of headers added to them, for
   ensuring idempotency within maybe_add_include_fixit.  */

/* The values within the map.  We need string comparison as there's
   no guarantee that two different diagnostics that are recommending
   adding e.g. "<stdio.h>" are using the same buffer.  */

typedef hash_set <const char *, false, nofree_string_hash> per_file_includes_t;

/* The map itself.  We don't need string comparison for the filename keys,
   as they come from libcpp.  */

typedef hash_map <const char *, per_file_includes_t *> added_includes_t;
static added_includes_t *added_includes;

/* Attempt to add a fix-it hint to RICHLOC, adding "#include HEADER\n"
   in a suitable location within the file of RICHLOC's primary
   location.

   This function is idempotent: a header will be added at most once to
   any given file.

   If OVERRIDE_LOCATION is true, then if a fix-it is added and will be
   printed, then RICHLOC's primary location will be replaced by that of
   the fix-it hint (for use by "inform" notes where the location of the
   issue has already been reported).  */

void
maybe_add_include_fixit (rich_location *richloc, const char *header,
			 bool override_location)
{
  location_t loc = richloc->get_loc ();
  const char *file = LOCATION_FILE (loc);
  if (!file)
    return;

  /* Idempotency: don't add the same header more than once to a given file.  */
  if (!added_includes)
    added_includes = new added_includes_t ();
  per_file_includes_t *&set = added_includes->get_or_insert (file);
  if (set)
    if (set->contains (header))
      /* ...then we've already added HEADER to that file.  */
      return;
  if (!set)
    set = new per_file_includes_t ();
  set->add (header);

  /* Attempt to locate a suitable place for the new directive.  */
  location_t include_insert_loc
    = try_to_locate_new_include_insertion_point (file, loc);
  if (include_insert_loc == UNKNOWN_LOCATION)
    return;

  char *text = xasprintf ("#include %s\n", header);
  richloc->add_fixit_insert_before (include_insert_loc, text);
  free (text);

  if (override_location && global_dc->show_caret)
    {
      /* Replace the primary location with that of the insertion point for the
	 fix-it hint.

	 We use SHOW_LINES_WITHOUT_RANGE so that we don't meaningless print a
	 caret for the insertion point (or colorize it).

	 Hence we print e.g.:

	 ../x86_64-pc-linux-gnu/libstdc++-v3/include/vector:74:1: note: msg 2
	  73 | # include <debug/vector>
	 +++ |+#include <vector>
	  74 | #endif

	 rather than:

	 ../x86_64-pc-linux-gnu/libstdc++-v3/include/vector:74:1: note: msg 2
	  73 | # include <debug/vector>
	 +++ |+#include <vector>
	  74 | #endif
	     | ^

	 avoiding the caret on the first column of line 74.  */
      richloc->set_range (0, include_insert_loc, SHOW_LINES_WITHOUT_RANGE);
    }
}

/* Attempt to convert a braced array initializer list CTOR for array
   TYPE into a STRING_CST for convenience and efficiency.  Return
   the converted string on success or the original ctor on failure.  */

static tree
braced_list_to_string (tree type, tree ctor, bool member)
{
  /* Ignore non-members with unknown size like arrays with unspecified
     bound.  */
  tree typesize = TYPE_SIZE_UNIT (type);
  if (!member && !tree_fits_uhwi_p (typesize))
    return ctor;

  /* If the target char size differes from the host char size, we'd risk
     loosing data and getting object sizes wrong by converting to
     host chars.  */
  if (TYPE_PRECISION (char_type_node) != CHAR_BIT)
    return ctor;

  /* If the array has an explicit bound, use it to constrain the size
     of the string.  If it doesn't, be sure to create a string that's
     as long as implied by the index of the last zero specified via
     a designator, as in:
       const char a[] = { [7] = 0 };  */
  unsigned HOST_WIDE_INT maxelts;
  if (typesize)
    {
      maxelts = tree_to_uhwi (typesize);
      maxelts /= tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (type)));
    }
  else
    maxelts = HOST_WIDE_INT_M1U;

  /* Avoid converting initializers for zero-length arrays (but do
     create them for flexible array members).  */
  if (!maxelts)
    return ctor;

  unsigned HOST_WIDE_INT nelts = CONSTRUCTOR_NELTS (ctor);

  auto_vec<char> str;
  str.reserve (nelts + 1);

  unsigned HOST_WIDE_INT i;
  tree index, value;

  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), i, index, value)
    {
      unsigned HOST_WIDE_INT idx = i;
      if (index)
	{
	  if (!tree_fits_uhwi_p (index))
	    return ctor;
	  idx = tree_to_uhwi (index);
	}

      /* auto_vec is limited to UINT_MAX elements.  */
      if (idx > UINT_MAX)
	return ctor;

     /* Avoid non-constant initializers.  */
     if (!tree_fits_shwi_p (value))
	return ctor;

      /* Skip over embedded nuls except the last one (initializer
	 elements are in ascending order of indices).  */
      HOST_WIDE_INT val = tree_to_shwi (value);
      if (!val && i + 1 < nelts)
	continue;

      if (idx < str.length())
	return ctor;

      /* Bail if the CTOR has a block of more than 256 embedded nuls
	 due to implicitly initialized elements.  */
      unsigned nchars = (idx - str.length ()) + 1;
      if (nchars > 256)
	return ctor;

      if (nchars > 1)
	{
	  str.reserve (idx);
	  str.quick_grow_cleared (idx);
	}

      if (idx >= maxelts)
	return ctor;

      str.safe_insert (idx, val);
    }

  /* Append a nul string termination.  */
  if (maxelts != HOST_WIDE_INT_M1U && str.length () < maxelts)
    str.safe_push (0);

  /* Build a STRING_CST with the same type as the array.  */
  tree res = build_string (str.length (), str.begin ());
  TREE_TYPE (res) = type;
  return res;
}

/* Implementation of the two-argument braced_lists_to_string withe
   the same arguments plus MEMBER which is set for struct members
   to allow initializers for flexible member arrays.  */

static tree
braced_lists_to_strings (tree type, tree ctor, bool member)
{
  if (TREE_CODE (ctor) != CONSTRUCTOR)
    return ctor;

  tree_code code = TREE_CODE (type);

  tree ttp;
  if (code == ARRAY_TYPE)
    ttp = TREE_TYPE (type);
  else if (code == RECORD_TYPE)
    {
      ttp = TREE_TYPE (ctor);
      if (TREE_CODE (ttp) == ARRAY_TYPE)
	{
	  type = ttp;
	  ttp = TREE_TYPE (ttp);
	}
    }
  else
    return ctor;

  if ((TREE_CODE (ttp) == ARRAY_TYPE || TREE_CODE (ttp) == INTEGER_TYPE)
      && TYPE_STRING_FLAG (ttp))
    return braced_list_to_string (type, ctor, member);

  code = TREE_CODE (ttp);
  if (code == ARRAY_TYPE || RECORD_OR_UNION_TYPE_P (ttp))
    {
      bool rec = RECORD_OR_UNION_TYPE_P (ttp);

      /* Handle array of arrays or struct member initializers.  */
      tree val;
      unsigned HOST_WIDE_INT idx;
      FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), idx, val)
	{
	  val = braced_lists_to_strings (ttp, val, rec);
	  CONSTRUCTOR_ELT (ctor, idx)->value = val;
	}
    }

  return ctor;
}

/* Attempt to convert a CTOR containing braced array initializer lists
   for array TYPE into one containing STRING_CSTs, for convenience and
   efficiency.  Recurse for arrays of arrays and member initializers.
   Return the converted CTOR or STRING_CST on success or the original
   CTOR otherwise.  */

tree
braced_lists_to_strings (tree type, tree ctor)
{
  return braced_lists_to_strings (type, ctor, false);
}


/* Emit debug for functions before finalizing early debug.  */

void
c_common_finalize_early_debug (void)
{
  /* Emit early debug for reachable functions, and by consequence,
     locally scoped symbols.  Also emit debug for extern declared
     functions that are still reachable at this point.  */
  struct cgraph_node *cnode;
  FOR_EACH_FUNCTION (cnode)
    if (!cnode->alias && !cnode->thunk
	&& (cnode->has_gimple_body_p ()
	    || !DECL_IS_UNDECLARED_BUILTIN (cnode->decl)))
      (*debug_hooks->early_global_decl) (cnode->decl);
}

#include "gt-c-family-c-common.h"